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GEOMETRIC PROOFS AND FURTHER GENERALIZATIONS OF DAO THAN
OAI’S NAPOLEON HEXAGON THEOREM

HANS HUMENBERGER, BERTHOLD SCHUPPAR, MICHAEL DE VILLIERS

ABSTRACT. Recently we published a paper concerning a generalization of Napoleon’s
theorem, De Villiers/Humenberger/Schuppar (2022). Then we were pointed to Dao Tanh
Oai (2015) where a theorem concerning another generalization of Napoleon’s theorem is
presented (without a proof). In this paper we present two purely geometric proofs for
Dao Tanh Oai’s generalization of Napoleon’s theorem and some further generalizations.

In Dao Tanh Oai (2015) the following theorem is presented and called Theorem 1, and
here we call it the same.

Theorem 1. Let ABCDEF be a hexagon and ∆ABG, ∆DHC, ∆IEF all outwardly or
inwardly constructed equilateral triangles (in Fig. 1 all outwardly). Let A1, B1, C1 be
the centroids of ∆FGC, ∆BHE, and ∆DIA respectively, let A2, B2, C2 be the centroids
of ∆DGE, ∆AHF, and ∆BIC respectively. Then ∆A1B1C1 and ∆A2B2C2 are equilateral
triangles.
Additionally (not mentioned in Dao Tanh Oai (2015)): There is a third such equilateral
∆A3B3C3 where A3, B3, C3 are the centroids of the triangles IGH, ACE, DBF.
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Figure 1

In Dao Tanh Oai (2015) a reference1 is given where it is said to be a proof for Theorem
1 using complex numbers, but we could not find such a proof there. But at this link one
can find another very short and dense proof (for an even stronger result) by Bogomolny
(2013) using affine transformations and linear algebra. There no hexagon appears, but rather
three arbitrary directly similar triangles, and the equilateral triangles of Theorem 1 are, of
course, directly similar to each other, so that one can immediately see that Theorem 1 is
covered by this “final chapter of the asymmetric propeller story”, as it is called there.
In the following we give two proofs for Theorem 12 which use only geometric arguments.
The first proof works with several steps starting from the well-known Napoleon config-
uration, basically all steps the same, thus a proof for one such step suffices.
The second proof works with the stronger result of the “final chapter of the asymmetric
propeller story” but does not use the above mentioned (short, dense, and rather abstract)
arguments. We will use another means, which could be called the “fundamental theorem
of similarity” (see below). This second proof will also provide a further generalization.

1http://www.cut-the-knot.org/m/Geometry/FinalAsymmetricPropeller.shtml
2A dynamic web sketch illustrating the theorem, and further generalizations discussed later in this paper, is
available for the reader at: dynamicmathematicslearning.com/dao-than-oai-napoleon-generalization.html
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Initially, let us briefly recall the well-known configuration of Napoleon’s theorem. Let
∆ACE be a triangle and on its three sides equilateral triangles (all outwardly or all in-
wardly, in Fig. 2a all outwardly) are erected. Then the centroids A1, B1, C1 of these
equilateral triangles themselves build an equilateral triangle3. It is also well known that
the line segments AH, CI, and EG are equal and concurrent at the Fermat-Torricelli point
T of the initial ∆ACE, and that these lines make angles of 60◦ and 120◦ at T (Fig. 2a).

Figure 2a 2b

1. FIRST PROOF

For this first proof we will need four other results, some of them not so well known, thus
we will formulate them as Lemmas and give proofs.

Lemma 1. In Fig. 2a the points A2, B2, C2 which are defined as the points dividing the
line segments EG, AH, and CI in the ratio 1 : 2 build an equilateral triangle.

Proof. If we rotate the line segment EG around A counterclockwise with 60◦ (yielding
the line segment IC) and then again with 60◦ counterclockwise around E we have finally
EG 7→ AH and A2 7→ B2 (see Fig. 2b). Let E′ ∈ IC be the image of A2 under the first
rotation with center A, then ∆AA2E′ is equilateral and the distance IE′ equals one third
of IC. Since the image of E′ under the second rotation (center E) is B2 also ∆EE′B2 is
equilateral. But looking at ∆EE′B2 differently one can say: if we rotate EG around B2
with 60◦ counterclockwise we have EG 7→ E′G′ (with G′ ∈ IC) and the points C2 and C
trisect E′G′. Therefore, the image of A2 under the 60◦ counterclockwise rotation around
B2 is C2, and thus ∆A2B2C2 is equilateral.

Lemma 2. Let ∆ABC be a triangle with centroid G. If C is moved to C′ let G′ be the
centroid of ∆ABC′. Then GG′ is parallel to CC′ and has one third of its length (Fig. 3a).

3One can see immediately that Theorem 1 is a generalization of Napoleon’s theorem, because in case of
B = C, D = E, and F = A it is nothing else than Napoleon’s theorem.
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Figure 3a 3b

Proof: GG′ is the image of CC′ under the homothety with the midpoint of AB as center
and factor k = 1

3 .

Lemma 3. Let ∆ABC and ∆AB′C′ be two equilateral triangles sharing the common point
A. Then BB′ and CC′ are equal and make an angle of 60◦ (in Fig. 3b at D 4).

Proof: The triangles ∆ABB′ and ∆ACC′ are congruent (side-angle-side) and ∠BAC =
60◦. In other words: ∆ACC′ is ∆ABB′ rotated by 60◦ around A.

Lemma 4. Let ∆ABG, ∆DCH, ∆IEF be three equilateral triangles with initially C =
B (Fig. 4a; no matter whether or not E and D coincide, analogously with A and F).
Moreover, let the centroids A1, B1, C1 of the triangles ∆FCG, ∆BEH, and ∆ADI build an
equilateral triangle. If then the point C is moved to C′, Fig. 4b) also the points A1, H,
and B1 move (→ A′

1, H′, B′
1). But still the ∆A′

1B′
1C1 is equilateral.

Figure 4a 4b

4This is essentially the same as in the original Napoleon configuration (see Fig. 2a), but here formulated
and briefly proven again.
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Proof. Due to Lemma 2 we have A1A′
1||BC′ and A1A′

1 = 1
3 BC′ (Fig. 4b). Because of

Lemma 3 we have HH′ = BC′ with an angle of 60◦ between them. Using again Lemma
2 we know B1B′

1||HH′ and B1B′
1 = 1

3 HH′. Altogether, A1A′
1 = B1B′

1 with an angle of 60◦

between them, which means that B1B′
1 is A1A′

1 rotated with 60◦ around C1. Furthermore,
we know C1B1 is C1A1 rotated with 60◦ around C1, thus ∠C1A1A′

1 = ∠C1B1B′
1 and the

triangles ∆C1A1A′
1 and ∆C1B1B′

1 are congruent (side-angle-side), and from that we can
conclude C1A′

1 = C1B′
1 and ∠A′

1C1B′
1 = 60◦, or equivalently ∆A′

1B′
1C1 is equilateral. This

completes the proof of Lemma 4.

Now we are prepared to prove Theorem 1. The only thing we have to do is to apply
Lemma 4 several times. On the one hand starting with the usual Napoleon configuration
(B = C, D = E, F = A) Lemma 4 guarantees that in case B ̸= C, D = E, F = A the
∆A1B1C1 is still equilateral (step 1); in the next step 2 we separate D and E, and in the
third step we separate F and A. We wanted to stress the issue of “proof as explanation”
(see De Villiers 2012), so we decided to give an illustrative own figure for every step (see
Fig. 5a-d). Again, in both steps 2 and 3 due to Lemma 4 the ∆A1B1C1 stays equilateral.

Figure 5a 5b

Figure 5c 5d
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And with the ∆A2B2C2 we do it the same way starting from the configuration of Lemma
1 which says that the corresponding dividing points in the ratio 1 : 2 (namely A2, B2, C2)
build an equilateral triangle. Note here that all three “green triangles” (∆DGE, ∆AHF,
∆BIC) are initially degenerated to line segments, the centroid of ∆EGD is at the begin-
ning the point dividing EG in the ratio 1 : 2 (analogous with the others). Then making
again three steps (in each step using Lemma 4) yields Fig. 6a-d, the ∆A2B2C2 stays equi-
lateral in each step. This completes the proof of Theorem 1.

Figure 6a 6b

Figure 6c 6d
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The proof for the ∆A3B3C3 works analogously. Since the triangles ACE and DBF are the
same initially (A = F, B = C, D = E; see Fig. 2a), and since it is well known that in the
original Napoleon configuration (Fig. 2a) the centroids of ∆IGH and ∆ACE coincide,
we know that initially we have A3 = B3 = C3, in other words ∆A3B3C3 is an equilateral
triangle degenerated to a single point. Again, stepwise separating the points B, C, then
E, D, and finally A, F – using Lemma 4 in each step – provides a proof.

2. SECOND PROOF

For a second proof we prove a generalization of Theorem 1 to similar triangles. For that
we need the following

Fundamental Theorem of Similarity (FTS) 5.
If F and F′ are any two directly similar6 figures with the vertices P in F corresponding to
vertices P′ in F′, and the lines PP′ are divided by P′′ in the same ratio7, then the new figure
F′′ formed by the points P′′ is directly similar to F and F′ (in Fig. 7 F is a quadrilateral
I JKL).

Figure 7

This important and powerful theorem can be proved in various ways (see DeTemple/
Harold (1996), De Villiers (1998), Abel (2007), Fried (2021)). With this result one can
prove the “final chapter of the asymmetric propeller story” in a more explanatory way,
not using the concepts of affine operators and the like.

5A dynamic sketch for the case when F is a quadrilateral is available for the reader at
http://dynamicmathematicslearning.com/fundamental-theorem-similarity.html.
6Two similar figures are directly similar if their corresponding angles have the same rotational sense (and are
not reversed in relation to each other as in a reflection).
7The ratio r : (1 − r) would – in terms of linear algebra – yield P′′ = (1 − r)P + rP′.
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Theorem 2. (“The final chapter of the asymmetric propeller story”)
Given three directly similar triangles ABG, DHC, IEF 8 then the centroids A1, B1, C1 of
the three triangles (FGC, BHE, DIA) formed by joining corresponding vertices form a
∆C1B1 A1 directly similar to the other three.

Figure 8

Proof. To come from the similar triangles ABG, DHC, IEF to the resulting similar
∆C1B1 A1 we need two steps of FTS: In the first step one combines, say ∆ABG and ∆DHC,
with factor r = 1

2 (that means we focus on the midpoints of corresponding points) yield-
ing the ∆XYZ which due to FTS is similar to the triangles ABG, DHC, IEF. Assume
a point mass of 1 at each of the vertices A, B, C, D, E, F, G, H, I. At each of the vertices
X, Y, Z we can now imagine a point mass of 2 (since they are respective midpoints be-
tween two corresponding vertices). Thus, in order to get the centroid A1 of the ∆FGC
we have to look for a point dividing ZF in the ratio 1 : 2 9, analogously with B1 and C1.
That means altogether, in the second step one combines ∆XYZ with ∆IEF with factor
r = 1

3 or r = 2
3 (that depends on which of the two triangles XYZ or IEF one starts from)

to get C1B1A1 which, again due to FTS, is similar to the triangles ABG, DHC, IEF.

Remarks
• Referring to Theorem 1 all the erected equilateral triangles are, of course, directly

similar to each other. Thus, Theorem 2 automatically provides a proof of Theorem
1, for all three cases ∆AiBiCi. All three triangles can be drawn in the same sketch
because in each case Ai, Bi, Ci are centroids of triangles built up of corresponding
vertices of directly similar triangles (Fig. 1).

8In Fig. 8 these triangles are erected on the sides of a hexagon ABCDEF, in order that this fits to our original
hexagon problem. But one could also delete the line segments BC, DE, FA so that the hexagon disappears
and only the three directly similar triangles are left.
9At F we have a point mass of 1, at Z a point mass of 2; then we use the well known law of leverage.
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• It should be emphasized that in Theorem 2 and Fig. 8 the order of the vertices
in the mentioned triangles is important (the given directly similar triangles and
∆C1B1A1): equal angles at the first, second and third vertex, respectively. Analo-
gously, this is important below (alternative arrangements, Fig. 9 and 10).

When the initial three triangles are directly similar (and not equilateral any more), the
triangles A2B2C2 and A3B3C3 (as defined at the beginning) are no longer similar to the
initial three similar triangles, because the vertices of the triangle with centroid A2 are no
longer corresponding vertices of directly similar triangles (analogously with B2 and C2).
This brings us to the following paragraph.

Alternative arrangements of directly similar triangles. If three directly similar triangles
ABG, HCD & FIE are constructed the centroids A2, B2, C2 of the three triangles (DGE,
AHF, BIC) will form a ∆B2C2A2 directly similar to the other three (here the order of
vertices is important!) as shown in Fig. 9. But triangles A1B1C1 and A3B3C3 (in any
order of the vertices) would not be similar to the initial three directly similar triangles.

Figure 9

Similarly, if three directly similar triangles ABG, CDH & EFI are given, then the cen-
troids A3, B3, C3 of the three triangles (IGH, ACE & DBF) form a ∆B3C3A3 directly
similar to the other three (here the order of vertices is important!) as shown in Fig. 10.
Likewise, triangles A1B1C1 and A2B2C2 (in any order of the vertices) would not be simi-
lar to the initial three directly similar triangles.
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Figure 10

As before, both results in the alternative arrangements above follow from the fundamen-
tal theorem of similarity.

Further generalization. With the same technique one can show an even more general
result: Given four (n) directly similar quadrilaterals (n-gons) whose corresponding ver-
tices are similarly connected to produce four (n) quadrilaterals (n-gons), and then again
taking the centroids (point mass or average) of these four (n) similar quadrilaterals (n-
gons) will produce another quadrilateral (n-gon) similar to the other four (n). In Fig. 11
the case of quadrilaterals is shown (A, C, E, G are corresponding vertices and the centroid
of the quadrilateral ACEG is K; analogously with L, M, N).
An equivalent formulation would be: Given an octagon (2n-gon) and four (n) directly
similar quadrilaterals (n-gons) erected on alternate sides of the octagon (2n-gon). The
corresponding vertices are similarly connected to produce another four (n) quadrilater-
als (n-gons), and then taking their centroids (point mass or average) will produce another
quadrilateral (n-gon) similar to the other four (n).

Figure 11
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The reader is now invited to further explore other possible arrangements of the directly
similar quadrilaterals (n-gons) by considering different cyclic permutations of their la-
bels to find more ways of producing other similar centroid-quadrilaterals (centroid-n-
gons).

Conclusion. We presented two geometric proofs of Dao Tanh Oai’s generalization of
Napoleon’s theorem. The first one is a new proof. Moreover, we discussed a further equi-
lateral triangle in this configuration which is not mentioned by Dao Tanh Oai. Though
our second proof is not entirely new, and can be seen to be equivalent to that of Bogol-
mony (2013), we here instead used the Fundamental Theorem of Similarity to produce
a more explanatory proof of Dao Tanh Oai’s generalization of Napoleon’s theorem. In
addition, this second proof immediately suggested alternative arrangements of similar
triangles and the further generalizations (similar quadrilaterals, or in general, similar
n-gons instead of similar triangles). So the second proof also provides a nice illustrative
example of the so-called “discovery function” of proof, whereby proving a result gives
insight that leads to deeper understanding, other variations, and further generalization
(see De Villiers (2012)). Generally, we think geometric proofs are more explanatory than
proofs using vectors or complex numbers, and proof as explanation is a very important
function of proofs (among others like verification, see De Villiers (2012)). Proving results
in different ways always increases insight both for professional mathematicians as well
as for students.

REFERENCES

[1] Abel, Z. R. Mean geometry (2007). http://zacharyabel.com/papers/Mean-Geo A07.pdf
[2] Bogomolny, A. A Final Chapter of the Asymmetric Propeller Story (2013).

http://www.cut-the-knot.org/m/Geometry/FinalAsymmetricPropeller.shtml
[3] Dao Tanh Oai. Two generalizations of the Napoleon theorem (2015).

https://diendantoanhoc.org/index.php?app=core&module=attach&section=attach&attach id=22546
[4] DeTemple, D., Harold, S. A round-up of square problems. Mathematics Magazine, N. 9 (1996), 15-27.

https://doi.org/10.1080/0025570X.1996.11996375
[5] De Villiers, M. Dual generalisations of Van Aubel’s theorem. The Mathematical Gazette, N. 82 (1998), 405-

412. https://doi.org/10.2307/3619886
[6] De Villiers, M. Rethinking proof with Sketchpad. Emeryville: Key Curriculum Press (2012).
[7] De Villiers, M., Humenberger, H., Schuppar, B. Jha and Savaran’s generalisation of Napoleon’s theorem.

Global Journal of Advanced Research on Classical and Modern Geometries (GJARCMG), N. 11 (2022),
190-197. https://geometry-math-journal.ro/pdf/Volume11-Issue2/4.pdf

[8] Fried, M. From any two directly similar figures, produce a new one. International Journal of Geometry, N.
10 (2021), 90-94. https://ijgeometry.com/wp-content/uploads/2021/07/8.-90-94.pdf

UNIVERSITY OF VIENNA, FACULTY OF MATHEMATICS, A – 1090 VIENNA, AUSTRIA
FACULTY OF MATHEMATICS, TU DORTMUND UNIVERSITY, GERMANY
FACULTY OF EDUCATION (MATHEMATICS), UNIVERSITY OF STELLENBOSCH, 7600 STELLENBOSCH, SOUTH
AFRICA
Email address: hans.humenberger@univie.ac.at, berthold.schuppar@tu-dortmund.de, profmd1@mweb.co.za

168


