
Global Journal of Advanced Research
on Classical and Modern Geometries
ISSN: 2284-5569, Vol.14, (2025), Issue 1, pp.100-116

A VARIANT OF THE EULER LINE

FRIDAY MICHAEL

ABSTRACT. Four points – labeled here as P, Q, S, T – obtained as points of concurrence
of certain lines associated with any triangle, are considered: Q and S are endpoints of a
diameter of the triangle’s circumcircle, while P and T are endpoints of a diameter of the
nine-point circle. The line segments PQ and ST always meet the Euler line at the centroid,
and the centroid divides the lines in the same 2 : 1 ratio as it does for the Euler line. Q
forms an “orthocentric-like” system with the triangle’s vertices, just as S does.

1. INTRODUCTION AND MOTIVATIONS

In [1, 2], Dr Shawyer told how Josh Khler, a student of Steve Sigur, made the following
observation: “Through each midpoint of the sides of a triangle, draw a line whose slope
is the reciprocal of the slope of the side containing the midpoint. Then the lines concur
at a point on the nine-point circle”. (See also [3, 4, 5, 6] for related discussions.) Here,
we denote this point of concurrence by T. Applying the same construction to the ver-
tices (through each vertex, draw a line whose slope is the reciprocal of the slope of the
opposite side) yields lines that concur at a point S on the circumcircle of the triangle. As
expected, line ST always meets the Euler line at the centroid of the parent triangle, and
the centroid divides ST in a 2 : 1 ratio, with T closer to the centroid than S.

If we replace “reciprocal” with “negative” in the above constructions, we obtain two
additional points P (on the nine-point circle) and Q (on the circumcircle) that exhibit
similar behaviour. Line PQ meets the Euler line at the centroid, and is divided in a
2 : 1 ratio there. PT is a diameter of the nine-point circle, and QS is a diameter of
the circumcircle. S happens to be the reflection of the orthocenter in P, while T is the
midpoint of the orthocenter and Q. All four points are related to the circumcenter O, the
orthocenter H, and the side-lengths a, b, c via

2(PQ2 + ST2 − OH2) = a2 + b2 + c2 (1.1)
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Figure 1. The Euler line HO together with lines PQ and ST

Since S and T can be obtained from P and Q, our focus will be on P and Q. Due to the
2 : 1 ratio in which the centroid divides PQ, a number of easily verified distance-related
equations involving P, Q, the vertices, and the side-lengths are obtained:

PQ2 = 3(PA2 + PB2 + PC2)− a2 − b2 − c2 (1.2)

4PQ2 = 3(QA2 + QB2 + QC2)− a2 − b2 − c2 (1.3)

4(PA2 + PB2 + PC2) = QA2 + QB2 + QC2 + a2 + b2 + c2 (1.4)

which are, respectively, analogues of the following well-known equations involving the
circumcenter, the orthocenter, the vertices, and the side-lengths:

OH2 = 3(OA2 + OB2 + OC2)− a2 − b2 − c2 (1.5)

4OH2 = 3(HA2 + HB2 + HC2)− a2 − b2 − c2 (1.6)

4(OA2 + OB2 + OC2) = HA2 + HB2 + HC2 + a2 + b2 + c2 (1.7)

Finally, a less common formula for the length of the Euler line, namely

OH2 = (HM2
a − OM2

a) + (HM2
b − OM2

b) + (HM2
c − OM2

c ) (1.8)

where Ma, Mb, Mc are the midpoints of BC, CA, AB, will be proved. With P in place of O
and Q in place of H, we also prove the following analogue of (1.8):

PQ2 = (QM2
a − PM2

a) + (QM2
b − PM2

b) + (QM2
c − PM2

c ) (1.9)
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2. MAIN RESULTS

Let ABC be a triangle. Unless otherwise stated, we will denote:
• the lengths of sides BC, CA, AB by a, b, c, respectively
• the midpoints of sides BC, CA, AB by Ma, Mb, Mc
• the radius of the circumcircle of ABC by R
• the circumcenter by O, the orthocenter by H, the nine-point center by N
• the interior angles by ∠A = ∠CAB, ∠B = ∠ABC, ∠C = ∠BCA

2.1. An “orthocentric-like” system.

Proposition 2.1. Given a triangle ABC, define a line from vertex A in such a way that its slope
is the negative of the slope of the opposite side BC; similarly, define lines from B and C. Then
these lines are concurrent at a point Q on the circumcircle of ABC.

Proof. To verify concurrence, place the vertices of triangle ABC at A(x1, y1),B(x2, y2),C(x3, y3),
where the xi’s, yi’s, i = 1, 2, 3, are real numbers. Let the slopes of AB, BC, CA be m1, m2, m3
respectively, then

m1 =
y1 − y2

x1 − x2
, m2 =

y2 − y3

x2 − x3
, m3 =

y1 − y3

x1 − x3
The equations of the lines so defined are:

y − y1 = −m2(x − x1) =⇒ m2x + y − (y1 + m2x1) = 0

y − y2 = −m3(x − x2) =⇒ m3x + y − (y2 + m3x2) = 0

y − y3 = −m1(x − x3) =⇒ m1x + y − (y3 + m1x3) = 0

For concurrence, the determinant below should vanish:∣∣∣∣∣∣
m2 1 −(y1 + m2x1)
m3 1 −(y2 + m3x2)
m1 1 −(y3 + m1x3)

∣∣∣∣∣∣ =
∣∣∣∣∣∣

m2 1 −(y1 + m2x1)
m3 − m2 0 (y1 − y2) + m2x1 − m3x2
m1 − m2 0 (y1 − y3) + m2x1 − m1x3

∣∣∣∣∣∣
Expanding along the second column gives:

det = − [(m3 − m2)(y1 − y3 + m2x1 − m1x3)− (m1 − m2)(y1 − y2 + m2x1 − m3x2)]

= − [(m3 − m2)(m3 × (x1 − x3) + m2x1 − m1x3)− (m1 − m2)(m1 × (x1 − x2) + m2x1 − m3x2)]

= − [(m3 − m2)× ((m3 + m2)x1 − (m1 + m3)x3)− (m1 − m2)× ((m1 + m2)x1 − (m1 + m3)x2)]

= −
[
(m2

3 − m2
2 + m2

2 − m2
1)x1 + (m1 − m2)(m1 + m3)x2 + (m1 + m3)(m2 − m3)x3

]
= −(m1 + m3) [(m3 − m1)x1 + (m1 − m2)x2 + (m2 − m3)x3]

= −(m1 + m3)× 0
= 0

That (m3 −m1)x1 + (m1 −m2)x2 + (m2 −m3)x3 is zero follows from adding the left sides
of y1 − y2 = m1(x1 − x2), y2 − y3 = m2(x2 − x3), y3 − y1 = m3(x3 − x1) and re-arranging
the right sides. So these lines are indeed concurrent. Let the point of concurrence be Q.
To show that Q is on the circumcircle, suppose that sides AB, BC, CA make angles α, β, γ,
respectively, with the positive x-axis. For simplicity, let β = 0. Assume without loss of
generality that α < γ. The interior angles of triangle ABC are: ∠B = α, ∠C = π − γ,
and ∠A = γ − α. Through A, draw a line whose slope is the negative of the slope of BC
(since the slope of BC is zero, the line drawn will just be parallel to side BC); through B,
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draw a line whose slope is the negative of the slope of CA (this cevian will then make
an angle of π − γ with the positive x-axis); through C, draw a line whose slope is the
negative of the slope of side AB (the cevian so drawn will then make an angle of π − α
will the positive x-axis).

A

B
C

Q

π − γ

γ − α

π − γ

π − γ

Figure 2. Point Q

Since ∠CBQ = ∠QAC above, it follows from a well-known characterization of cyclic
quadrilateral (e.g. see [7]) that A, B, C, Q lie on the same circle. □

Corollary 2.1. Through the midpoints of each side of a triangle, draw lines in such a way that
the slope of each line is the negative of the slope of the side from which the line was drawn. Then
the lines are concurrent at a point P on the nine-point circle of the given triangle.

Proof. We apply the construction in Proposition (2.1) to the medial triangle. The point
of concurrence will lie on the circumcircle of the medial triangle, which is the nine-point
circle of the parent triangle. □

Proposition 2.2. Given a triangle ABC, define a line from vertex A in such a way that its slope
is the reciprocal of the slope of the opposite side BC; similarly, define lines from B and C. Then
these lines are concurrent at a point S on the circumcircle of ABC.

Corollary 2.2. Through the midpoints of each side of a triangle, draw lines in such a way that
the slope of each line is the reciprocal of the slope of the side from which the line was drawn. Then
the lines are concurrent at a point T on the nine-point circle of the given triangle.

Definition 2.1. Define an “orthocentric-like” system to mean four points A, B, C, D in which
each point is the point of concurrence of three lines, determined using the same rule, from the
triangle formed by the other three points.

In the case of the regular orthocentric system, the “rule” is simply the definition of an
altitude. In the case of an “orthocentric-like” system, the “rule” will be whatever was
applied to the parent triangle to yield the original point of concurrence – such a point
of concurrence determined from a parent triangle may not be a triangle center in the
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mould of orthocenter, circumcenter, etc, so in what follows, we just call such a point of
concurrence a “pseudo-center”.

Proposition 2.3. Given any triangle ABC, and the point of concurrence Q defined in Proposi-
tion 2.1, the four points A, B, C, Q form an “orthocentric-like” system.

Proof. Given triangle ABC in which point Q is the point of concurrence of lines defined in
the following way: through A draw a line whose slope is the negative of the slope of side
BC, etc. Claim: C is the “pseudo-center” of triangle ABQ. Indeed, through A, draw a line
whose slope is the negative of the slope of side BQ – but then, by construction, the slope
of BQ is the negative of the slope of side AC. So we’re drawing, through A, a line whose
slope is the slope of side AC, which is side AC itself. Similarly, through B, we draw a line
whose slope is the negative of the slope of side AQ – but then, by construction, the slope
of AQ is the negative of the slope of BC. This amounts to drawing a line, through B,
with same slope as the slope of BC, which is BC itself. The two lines so drawn intersect
at C. By Proposition 2.1 we know that the third line through Q with slope the negative
of the slope of side AB will also go through C. This shows that C is the “pseudo-center”
of triangle ABQ. Repeating for triangles BCQ and CAQ completes the proof. □

Proposition 2.4. Given any triangle ABC with midpoints Ma, Mb, Mc of sides BC, CA, AB,
and the point of concurrence P defined in Corollary 2.1, the four points Ma, Mb, Mc, P form an
“orthocentric-like” system.

Proposition 2.5. Given any triangle ABC, and the point of concurrence S defined in Proposition
2.2, the four points A, B, C, S form an “orthocentric-like” system.

Proof. Similar to the proof of Proposition 2.3. Given triangle ABC in which point S is the
point of concurrence of lines defined in the following way: through A draw a line whose
slope is the reciprocal of the slope of side BC, etc. Claim: C is the “pseudo-center” of
triangle ABS. Let m1, m2, m3 be the slopes of sides AB, BC, CA. Through A, draw a
line whose slope is the reciprocal of the slope of side BS – but then, by construction, the
slope of BS is 1

m3
. So we’re drawing, through A, a line whose slope is 1/ 1

m3
= m3, the

slope of side AC, which is side AC itself. Through B, we draw a line whose slope is the
reciprocal of the slope of side AS – but then, by construction, the slope of AS is 1

m2
. This

amounts to drawing a line, through B, with same slope as the slope of BC, which is BC
itself. The two lines so drawn intersect at C. By Proposition 2.2 we know that the third
line through S with slope the reciprocal of the slope of side AB will also go through C.
This shows that C is the “pseudo-center” of triangle ABS. Repeating for triangles BCS
and CAS completes the proof. □

Proposition 2.6. Given any triangle ABC with midpoints Ma, Mb, Mc of sides BC, CA, AB,
and the point of concurrence T defined in Corollary 2.2, the four points Ma, Mb, Mc, T form an
“orthocentric-like” system.

2.2. Distance-based comparison with the orthocenter and circumcenter. In terms of
distances, point Q occasionally behaves like the orthocenter, while point P acts like the
circumcenter. For example, in any triangle, the distance from a vertex to the orthocenter
is twice the distance from the circumcenter to the midpoint of the opposite side. We
have an analogue in Theorem 2.1 below; its proof – and that of Theorem 2.2 – easily
follows from homothety. However, a separate approach is followed in order to utilize
the properties of points P and Q.
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Theorem 2.1. In triangle ABC, let Q and P be as defined in Proposition 2.1 and Corollary 2.1.
Then the distance AQ is twice the distance PMa, where Ma is the midpoint of side BC.

Proof. Let H, O, N be the orthocenter, circumcenter, and nine-point center, respectively.
Let Y be the midpoint of HQ and Z the midpoint of AH. Since Q is on the circumcircle
of ABC (Proposition 2.1), then Y is on the nine-point circle, and Z is on the nine-point
circle as well. Consider the diagram below:

A

B
C

Q

P Ma

Y
Z

H
O

N

Figure 3. AQ is twice PMa

By definition, the slope of AQ is the negative of the slope of BC and the slope of PMa
is also the negative of the slope of BC, thus AQ is parallel to PMa. In triangle AHQ,
ZY is parallel to AQ – and equal to half its length – because Z and Y are the midpoints
of AH and HQ. This implies that ZY is also parallel to PMa. It is well-known that AH
is parallel to OMa and AH = 2 × OMa. This gives: ZH = OMa. Since HO and PY
are bisected at N, we have that HPOY is a parallelogram, so HY is parallel to PO, and
∠HYP = ∠YPO. In turn, ∠ZYH = ∠OPMa.

According to Corollary 2.1, P is on the nine-point circle, the line segment PY through N
is a diameter of the nine-point circle, and so ∠PZY = 90◦. Since AH is parallel to OMa
and ZY is parallel to PMa, it follows that ∠PMaO = 90◦. Therefore, triangle PMaO is
congruent to triangle ZYH, with ZH = OMa, ZY = PMa, and HY = PO. Since triangle
ZYH is similar to triangle AQH (similarity ratio of 1/2), we have that triangle PMaO is
similar to triangle AQH. Thus, AQ = 2 × PMa. □

Theorem 2.2. Let Q and P be as defined in Proposition 2.1 and Corollary 2.1. The line PQ
intersects the Euler line at the centroid of the parent triangle ABC, and the centroid divides PQ
in a 2 : 1 ratio, with P closer to the centroid than Q.
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Proof. In the diagram below, OP is parallel to QH and OP = 1
2 QH. Let Y be the midpoint

of QH, and let Z be the midpoint of PQ.

A

B
C

Q

P

Y

H O
N

Figure 4. Parallelogram POYH

POYH is a parallelogram because PO is parallel to HY and PO = HY. Thus, the diag-
onals PY and HO bisect each other. Since N is the midpoint of HO, then N is equally
the midpoint of PY. Similarly, POQY is a parallelogram because PO is parallel to YQ
and PO = YQ, so the diagonals PQ and OY bisect each other at Z, the midpoint of PQ.
In triangle POY, both PZ and ON are medians, so they intersect at the centroid G′ of
triangle POY. We claim that this is the same centroid as that of the parent triangle ABC.
Indeed, since NG′ : G′O = 1 : 2 we can let NG′ = t and get G′O = 2t, for some positive
t. Then NO = 3t and HN = 3t as well. Thus HG′ : G′O = 4t : 2t = 2 : 1. It is the
centroid G of the parent triangle ABC that divides the Euler line HO in the ratio 2 : 1,
with the centroid closer to O than to H. Therefore, G′ = G.

Now consider median PZ in triangle POY. We have PG : GZ = 2 : 1, and continuing
as before leads to PG : GQ = 1 : 2. Thus the centroid G divides the line PQ in the same
ratio as it divides the Euler line OH, and P is closer to the centroid than Q. □

Proposition 2.7. If X is the midpoint of PQ, then OP2 = HQ × NX, where Q, P are as defined
in Proposition 2.1 and Corollary 2.1.

Proof. With X as given and with reference to Figure 4 above, we have that NX is parallel
to YQ and NX = 1

2YQ. As YQ itself and PO both equal 1
2 HQ, we obtain NX = 1

4 HQ,
whence

PO2 =
1
4

HQ2 = NX × HQ

□

Proposition 2.8. The equation PQ2 − OH2 = 3(OQ2 − HP2) holds in any triangle.

Proof. Let G be the centroid of triangle ABC. Consider the diagram below:
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Q

P

G

H

O

Figure 5. Common point G to triangles QGO and HGP

By Theorem 2.2 we have QG : GP = 2 : 1. Let QG = 2t and GP = t, for some t > 0.
Also, OG : GH = 1 : 2 means we can set OG = k, GH = 2k, for some k > 0. In triangle
QOG, we have:

cos G =
k2 + (2t)2 − OQ2

2(k)(2t)
In triangle HPG, we have:

cos G =
(2k)2 + t2 − HP2

2(2k)(t)
Equating these two gives

k2 + 4t2 − OQ2 = 4k2 + t2 − HP2

HP2 − OQ2 = 3(k2 − t2)

Now, OH = 3k implies k = OH
3 and PQ = 3t gives t = PQ

3 . Substituting:

HP2 − OQ2 = 3
(

OH2

9
− PQ2

9

)
3(HP2 − OQ2) = OH2 − PQ2

□

Similarly, the following holds:

Proposition 2.9. In any triangle, we have 2PQ2 + OH2 = 6PO2 + 3QO2.
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Proposition 2.10. In any triangle ABC with side-lengths a, b, c we have

PQ2 = 3(PA2 + PB2 + PC2)− a2 − b2 − c2.

Proof. It is well-known that MA2 + MB2 + MC2 = 1
3 (a2 + b2 + c2) + 3MG2 where G is

the centroid and M is any point in the plane of any triangle ABC (e.g., see [8, 9, 10, 11]).
Let M = P, then PA2 + PB2 + PC2 = 1

3 (a2 + b2 + c2)+ 3PG2. By Theorem 2.2, PG = 1
3 PQ

and so

PA2 + PB2 + PC2 =
1
3
(a2 + b2 + c2) + 3

(
1
9

PQ2
)

PQ2 = 3(PA2 + PB2 + PC2)− a2 − b2 − c2

□

If we let M = Q instead and use GQ = 2
3 PQ we obtain

Proposition 2.11. In any triangle ABC with side-lengths a, b, c we have

4PQ2 = 3(QA2 + QB2 + QC2)− a2 − b2 − c2.

Proposition 2.12. In any triangle ABC, let H, O be the orthocenter and circumcenter, and let
Ma, Mb, Mc be the midpoints of sides BC, CA, AB respectively. Then:

OH2 = (HM2
a − OM2

a) + (HM2
b − OM2

b) + (HM2
c − OM2

c )

Proof. It is well-known that OH2 = 9R2 − a2 − b2 − c2 (e.g., page 102 in [8]), where a, b, c
are the usual side-lengths. Also AH2 = 4R2 − a2; similarly for BH & CH. Consider
triangle BHC, where HMa is a median, and the right-angled triangle COMa:

A

B C

OH

Ma

Figure 6. Triangle BHC and right-angled triangle COMa
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We have

HM2
a =

2BH2 + 2CH2 − BC2

4

=
2(4R2 − b2) + 2(4R2 − c2)− a2

4

OM2
a = R2 −

( a
2

)2

HM2
a − OM2

a =
12R2 − 2b2 − 2c2

4

Similarly, HM2
b − OM2

b = 12R2−2a2−2c2

4 and HM2
c − OM2

c = 12R2−2a2−2b2

4 . Adding:

(HM2
a − OM2

a) + (HM2
b − OM2

b) + (HM2
c − OM2

c ) =
36R2 − 4(a2 + b2 + c2)

4
= 9R2 − a2 − b2 − c2

= OH2

□

Proposition 2.13. In any triangle ABC with Ma, Mb, Mc the midpoints of BC, CA, AB, we
have:

PQ2 = (QM2
a − PM2

a) + (QM2
b − PM2

b) + (QM2
c − PM2

c )

Proof. QMa is a median in triangle QBC, and so

QM2
a =

2QB2 + 2QC2 − BC2

4
=

2QB2 + 2QC2 − a2

4

Similarly, PMa is a median in triangle PBC, so PM2
a = 2PB2+2PC2−a2

4 . Thus

QM2
a − PM2

a =
2QB2 + 2QC2 − 2PB2 − 2PC2

4
In the same way, we get

QM2
b − PM2

b =
2QA2 + 2QC2 − 2PA2 − 2PC2

4
, QM2

c − PM2
c =

2QA2 + 2QB2 − 2PA2 − 2PA2

4
Adding:

(QM2
a − PM2

a)+ (QM2
b − PM2

b)+ (QM2
c − PM2

c ) = QA2 +QB2 +QC2 − PA2 − PB2 − PC2

Now, from Propositions 2.10 and 2.11

PQ2 = 3(PA2 + PB2 + PC2)− a2 − b2 − c2, 4PQ2 = 3(QA2 + QB2 + QC2)− a2 − b2 − c2

Eliminating −a2 − b2 − c2 between these two equations gives

PQ2 = QA2 + QB2 + QC2 − PA2 − PB2 − PC2

Thus
PQ2 = (QM2

a − PM2
a) + (QM2

b − PM2
b) + (QM2

c − PM2
c )

□
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2.3. Some special cases.

Proposition 2.14. If triangle ABC is right-angled at C, then triangle PQC is also right-angled
at C.

Proof. Suppose that ∠C = 90◦ in triangle ABC. Let O, H, R be the circumcenter, ortho-
center, and circumradius, respectively. From Propositions 2.8 and 2.9 we have:

PQ2 − OH2 = 3(OQ2 − HP2)

2PQ2 + OH2 = 6PO2 + 3QO2

Now, QO = R and PO = 1
2 HQ in any triangle. Since ∠C = 90◦ in the present case we

have in addition that OH = R and H = C. The second equation above becomes

2PQ2 + OH2 = 6
(

1
4

HQ2
)
+ 3QO2

4PQ2 + 2OH2 = 3HQ2 + 6QO2

4PQ2 + 2R2 = 3QC2 + 6R2

4PQ2 = 3QC2 + 4R2

Using the same substitutions in PQ2 − OH2 = 3(OQ2 − HP2) gives

PQ2 = 4R2 − 3PC2

If we now eliminate 4R2 from 4PQ2 = 3QC2 + 4R2 and PQ2 = 4R2 − 3PC2, we obtain

PQ2 = PC2 + QC2

This shows that triangle PQC is right-angled at C. (Compare with Proposition 2.17.) □

Note that the converse of Proposition 2.14 above does not hold in general. In fact, if side
AB of triangle ABC is parallel to the x-axis, then PQC is right-angled at C.

Proposition 2.15. Triangle HPO is right-angled at P, if and only if the parent triangle is a right
triangle.

Proof. From Propositions 2.8 and 2.9 again, we have:

PQ2 − OH2 = 3(OQ2 − HP2)

2PQ2 + OH2 = 6PO2 + 3QO2

Using QO = R and eliminating PQ2 from both equations gives

3OH2 = 6PO2 + 6HP2 − 3R2 =⇒ OH2 + R2 = 2PO2 + 2HP2

Now if the parent triangle is a right-triangle, then OH = R and so the above equation
becomes

2OH2 = 2PO2 + 2HP2 =⇒ OH2 = PO2 + HP2,
showing that triangle HPO is right-angled at P. On the other hand, if triangle HPO is
right-angled at P, then we have again that OH2 = PO2 + HP2; using this in

OH2 + R2 = 2PO2 + 2HP2

gives OH = R, so the parent triangle is right-angled. □
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Proposition 2.16. In any equilateral triangle, the length of PQ equals the common length of the
medians.

Proof. From Propositions 2.8 and 2.9 again, we have:

PQ2 − OH2 = 3(OQ2 − HP2)

2PQ2 + OH2 = 6PO2 + 3QO2

In an equilateral triangle, we have H = O, so the two equations above simplify to

PQ2 = 3(R2 − HP2)

2PQ2 = 6HP2 + 3R2

If we now eliminate HP2 from both equations, we obtain

4PQ2 = 9R2 =⇒ PQ =
3
2

R

But 3
2 R is the common length of each of the three medians in an equilateral triangle; for

example, the median from A has length

m2
a =

2b2 + 2c2 − a2

4
=

3
4

a2 =⇒ ma =

√
3

2
a =

√
3

2
(2R sin 60◦) =

3
2

R.

□

Corollary 2.3. In any equilateral triangle, the length of ST equals the common length of the
medians.

Proof. From Theorem 2.6 below we have 2(PQ2 + ST2 − OH2) = a2 + b2 + c2. In an
equilateral triangle H = O and a = b = c; also PQ = 3

2 R from the preceding result,
where R is the radius of the circumcircle. Thus:

2
(

9
4

R2 + ST2
)
= 3a2

ST2 =
3
2

a2 − 9
4

R2

=
3
2
(2R sin 60◦)2 − 9

4
R2

Thus ST = 3
2 R, which is the length of each of the three medians in an equilateral triangle.

□

Proposition 2.17. The following three statements are equivalent in any triangle ABC:
(1) Q coincides with a vertex (A, say)
(2) P coincides with the midpoint of the opposite side (midpoint of BC)
(3) AB and AC have opposite slopes.

In particular, in a right-triangle in which the legs (AC and BC, say) have slopes ±1, we have
that Q coincides with the orthocenter C, while P coincides with the circumcenter. (Proposition
2.14 will then give a degenerate triangle PQC, though PQ2 = PC2 + QC2 still holds, trivially.)

Proposition 2.18. The following two statements are equivalent in any triangle ABC:
(1) Q is the reflection of H over side AB
(2) the slope of side AB is ±1.
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2.4. Other properties.

Theorem 2.3. Let Q and P be as defined in Corollary 2.1 and Proposition 2.1. Then, given any
triangle ABC with circumcenter O, the line segment joining the midpoint of PQ to the midpoint
of PO is a diameter of the nine-point circle of the medial triangle.

Proof. We first show that both the midpoint of PQ and the midpoint of PO lie on the
nine-point circle of the medial triangle. Let X be the midpoint of PQ and Y the midpoint
of PO. Let F be the nine-point center of the medial triangle associated with ABC, then F
is the midpoint of ON. The radius of the nine-point circle of the medial triangle is 1

4 R,
where R is the radius of the circumcircle of ABC.

Q

P

X

F

Y

G

H

O

N

Figure 7. Points X, F, Y

We have GF : FO = 1 : 3 and GX : XQ = 1 : 3, and it follows that FX is parallel to OQ in
triangle GQO; moreover, FX = 1

4OQ. Since Q is on the circumcircle of triangle ABC, the
segment OQ is a radius, and so FX = 1

4 R. This shows that X is on the nine-point circle
of the medial triangle. Since O is the orthocenter of the medial triangle and P is on the
nine-point circle of the parent triangle ABC, it follows that the midpoint Y of PO is on
the nine-point circle of the medial triangle. Furthermore, in triangle OPQ, X and Y are
the midpoints of PQ and PO, so XY = 1

2 QO = 1
2 R. Therefore, XY is a diameter of the

nine-point circle of the medial triangle.
□

Theorem 2.4. The image of the reflection of the orthocenter in P, and the image of the reflec-
tion of Q in the circumcenter, coincide. Moreover, this common point is the point S defined in
Proposition 2.2.
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Proof. Since P is on the nine-point circle, the image of the reflection of the orthocenter in
P will be on the circumcircle. The first part of the proof then follows from the fact that PO
is parallel to HQ and PO = 1

2 HQ in any triangle with circumcenter O and orthocenter
H (see Figure 8 below). Let the common point be U. To show that U = S, let m1, m2, m3
be the slopes of sides AB, BC, CA. By construction, the slope of QA is the negative of
the slope of side BC, namely −m2. Since QU is a diameter, we have that ∠QAU is a
right angle, and so the slope of AU is the negative reciprocal of the slope of QA, that is,
− 1

−m2
= 1

m2
. Repeating for the right triangles QBU and QCU, we find that the slopes of

BU and CU are 1
m3

and 1
m1

respectively. The only point with this property is the point S
described in Proposition 2.2, so U = S. □

Theorem 2.5. The line joining P to the midpoint of H and Q is a diameter of the nine-point
circle. Moreover, the midpoint of H and Q is the point T described in Corollary 2.2.

Proof. Since Q is on the circumcircle, the midpoint V of H and Q is on the nine-point
circle. To show that PV is a diameter of the nine-point circle, consider the diagram
below:

Q

P

V

H

O

N

Figure 8. A diameter PV of the nine-point circle

Since PO is parallel to HQ and PO = 1
2 HQ, we have that PO = HV and OV = PH,

so HPOV is a parallelogram. Thus, PV goes through the midpoint N of the Euler line,
which is the center of the nine-point circle, showing that PV is a diameter of the nine-
point circle. To see that V = T, let m1, m2, m3 be the slopes of sides AB, BC, CA as before.
First join PV to Ma, the midpoint of side BC. Then ∠PMaV is a right angle. By construc-
tion, the slope of PMa is −m2, and the slope of VMa has to be 1

m2
. Repeating for the other
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two midpoints shows that the slopes of VMb and VMc are 1
m3

and 1
m1

respectively. T is
by construction the only point with this property, so V = T. □

Theorem 2.6. In any triangle we have 2(PQ2 + ST2 − OH2) = a2 + b2 + c2.
Proof. By the preceding results, P is the midpoint of HS, T is the midpoint of HQ, and O
is the midpoint of QS. Thus, in the diagram below

A

B

C

Q

P

S

T

O

H

Figure 9. Medians HO, QP, ST in triangle HQS

the Euler line HO as well as QP and ST are all medians in triangle HQS. Noting that QS
is a diameter, we have QS = 2R, where R is the radius of the circumcircle of ABC. Also,
the length HO2 is 9R2 − a2 − b2 − c2 in any triangle with side-lengths a, b, c. Thus:

HO2 =
2HS2 + 2HQ2 − 4R2

4

ST2 =
2HS2 + 2(4R2)− HQ2

4

QP2 =
2HQ2 + 2(4R2)− HS2

4

QP2 + ST2 − HO2 =
20R2 − HS2 − HQ2

4

=
20R2 −

(
4HO2+4R2

2

)
4

=
20R2 − 2HO2 − 2R2

4

=
20R2 − 2(9R2 − a2 − b2 − c2)− 2R2

4

=
a2 + b2 + c2

2
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□

Proposition 2.19. One of the following is true: a × QA = a × PMa + b × PMb + c × PMc,
b × QB = a × PMa + b × PMb + c × PMc, c × QC = a × PMa + b × PMb + c × PMc.

Proof. • First observe that one of the following is true:

a× PMa = b× PMb + c× PMc, b× PMb = a× PMa + c× PMc, c× PMc = a× PMa + b× PMb

The points P, Ma, Mb, Mc all lie on the nine-point circle of triangle ABC, so we can
apply Ptolemy’s theorem. For example, using the configuration in the diagram
below

B

A

C

Ma

Mb

Mc

P

Figure 10. Point P on the nine-point circle

we have

PMc × Ma Mb = PMb × Ma Mc + Mb Mc × PMa

PMc ×
c
2
= PMb ×

b
2
+ PMa ×

a
2

c × PMc = a × PMa + b × PMb

• Using the fact that QC = 2 × PMc from Theorem 2.1 gives:

c × QC = 2c × PMc

= c × PMc + c × PMc

= c × PMc + (a × PMa + b × PMb)

□
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