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A NEW PROOF OF THE BARROW AND ERDOS-MORDELL INEQUALITY

NGUYEN NGOC GIANG, LE VIET AN, AND VO THANH DAT

ABSTRACT. In this article, we will introduce the new proof to the Barrow and Erdos-
Mordell inequality.

1. INTRODUCTION

The famous Erdos-Mordell inequality is a beautiful geometric inequality, which can be
stated as follows:

Theorem 1.1 (Erdos-Mordell inequality). From a point P inside a given triangle ABC, the
perpendiculars PD, PE, PF are drawn to its sides. Then

PA + PB + PC ≥ 2(PD + PE + PF).

Equality holds if and only if the triangle ABC is equilateral and the point P is its center.

Barrow’s inequality is a strengthened version of the Erdos - Mordell inequality in which:

Theorem 1.2 (Barrow inequality). Consider the triangle ABC and point P lying inside this tri-
angle. Draw the inner bisectors of angles ∠BPC, ∠CPA, and ∠APB meeting the sides BC, CA,
and AB of triangle ABC at X, Y, Z, respectively. Then

PA + PB + PC ≥ 2(PX + PY + PZ).

Equality holds if and only if the triangle ABC is equilateral and the point P is its center.

The proofs of theorem 1.1 and 1.2 can be referenced at [1-6]. And addition, some their
development and generalizations can be referenced at [7-16].
We now go to the new proof of these above in-equalties by using the strict lemmas of
two above inequalities.

Key words and phrases. The Barrow inequality, the Erdos-Mordell inequality.

72



A New Proof Of The Barrow And Erdos-Mordell Inequality

2. BUILDING THE CONCERNED RESULTS

Lemma 2.1. Given a triangle ABC and point P lying inside this triangle. Let BC belong to the
ray BC and CB belong to the ray CB such that ∠BPBC = ∠CPCB = ∠BAC. The pairs of points
BC, BA and CA, CB are defined similarly. Then we have the inequality:

PA + PB + PC ≥ 2
√

PAB · PBA + 2
√

PBC · PCB + 2
√

PCA · PAC.

Proof. We have:

∠AB AAC +∠ABPAC = ∠BAC +∠APAB +∠APAC

= ∠BAC +∠ACB +∠ABC = 180◦.

It follows AABPAC inscribed in a circle, hence ∠AAB AC = ∠APAC = ∠ABC so AB AC ∥
BC. From that, we have that two triangles AAB AC and ABC are similar according the
a-a case.
Hence, if let BC = a, CA = b, AB = c then

AAB

AB AC
=

AB
BC

=
c
a

and
AAC

AC AB
=

b
a

.

Applying the Ptolemy theorem to the inscribed quadrilateral AABPAC, we have:

AP · AB AC = AAB · PAC + AAC · PAB =⇒ PA = PAC
AAB

AB AC
+ PAB

AAC

AB AC
.

A

B C

P

AB AC

BA

CB BC

CA

FIGURE 1

From that, we obtain

PA = PAB
b
a
+ PAC

c
a

. (2.1)
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Similarly, we also have

PB = PBC
c
b
+ PBA

a
b

; (2.2)

PC = PCA
a
c
+ PCB

b
c

. (2.3)

Adding (2.1), (2.2) and (2.3) side-by-side, then applying the AM-GM inequaltiy to two
positive real numbers, we have:

PA + PB + PC =

(
PAB

b
a
+ PBA

a
b

)
+

(
PBC

c
b
+ PCB

b
c

)
+

(
PCA

a
c
+ PAC

c
a

)
≥ 2

√
PAB

b
a
· PBA

a
b
+ 2

√
PBC

c
b
· PCB

b
c
+ 2

√
PCA

a
c
· PAC

c
a

≥ 2
√

PAB · PBA + 2
√

PBC · PCB + 2
√

PCA · PAC.

□

Lemma 2.2. Give the triangle ABC having the inner bisector AD. Then we have the relation as
follows:

AD2 = AB · AC − DB · DC.

Proof. Draw the circumscribed circle of triangle ABC meeting AD at E ̸= A again. We

have that two triangles ABD and AEC are similar according the a-a case, so
AB
AD

=
AE
AC

.
It follows AB · AC = AD · AE.

A

B CD

E

FIGURE 2
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On the other hand, applying the Intersecting chords’ theorem, we have:

DA · DE = DB · DC.

It follows that

AB · AC = AD · AE = AD · (AD + DE) = AD2 + AD · DE = AD2 + BD · CD.

The lemma is proved. □

Lemma 2.3. Given a triangle ABC and point P lies inside this triangle. The line, which is
symmetric to PA with respect to the inner bisector of angle ∠BPC, meets the circumscribed circle
of triangle PBC at two points P and A′. Similarly to points B′ and C′. Then PA′ + PB′ + PC′ ≥
2(PA + PB + PC).

Proof. Let x = ∠BPC, y = ∠CPA and z = ∠APB.

A

B
C

P

A′

B′

C′

x

yz

FIGURE 3

We have:

∠A′BC = ∠A′PC (since A′ lies on the circumscribed circle of triangle BCP)

= 180◦ −∠APB (since AP is isogonal conjugate of A′P with respect to angle ∠BPC).
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Hence sin∠A′BC = sin∠APB = sin z.
Similarly: sin∠A′CB = sin y. Note that sin∠BA′C = sin∠BPC = sin x. Hence, apply-
ing the Sines theorem to the triangle A′BC, we have:

A′B
BC

=
sin∠A′BC
sin∠BA′C

=
sin y
sin x

. (2.4)

Similarly, we also have:

A′C
A′B

=
sin z
sin x

. (2.5)

Applying the Ptolemy theorem to the inscribed quadrilateral PBA′C, we have:

PA′ · BC = A′C · PB + A′B · PC ⇒ PA′ =
A′C
BC

· PB +
A′B
BC

· PC. (2.6)

From (2.4), (2.5) and (2.6), we have

PA′ =
sin z
sin x

· PB +
sin y
sin x

· PC. (2.7)

Similarly, we also have:

PB′ =
sin x
sin y

· PC +
sin z
sin y

· PA; (2.8)

and

PC′ =
sin y
sin z

· PA +
sin x
sin z

· PB. (2.9)

Adding (2.7), (2.8) and (2.9) side-by-side, then applying note on the inequalities
u
v
+

v
u
≥

2 for every positive numbers u and v, we obtain:

PA′ + PB′ + PC′ =

(
sin y
sin z

+
sin z
sin y

)
PA +

(
sin z
sin x

+
sin x
sin z

)
PB +

(
sin x
sin y

+
sin y
sin x

)
PC

≥ 2PA + 2PB + 2PC = 2 (PA + PB + PC) .

The equality happens if and only if sin x = sin y = sin z, that is ∠BPC = ∠CPA =
∠APB = 120◦ or P is the Fermat-Torricelli point of triangle ABC. □

3. PROOF OF THE INEQUALITY

Proof of theorem 1.1.

Proof. Draw the chord PD′ of the circumscribed circle of triangle PEF that is symmetric
to PD with respect to the inner bisector of ∠EPF. Similarly to E′ and F′.

Clearly, AP is the diameter of the circumscribed circle of triangle PEF so

PA ≥ PD′. (3.1)

Equality holds if and only if PD ⊥ EF or EF ∥ BC.
Similarly, we also have:

PB ≥ PE′; (3.2)

PC ≥ PF′. (3.3)
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A

B C
D

E

F
P

D′

FIGURE 4

From (3.1), (3.2), (3.3) and the lemma 2.3, we obtain

PA + PB + PC ≥ PD′ + PE′ + PF′ ≥ 2PD + 2PE + 2PF.

Equality holds if and only if two triangles DEF and ABC have corresponding sides that
are parallel and ∠BPC = ∠CPA = ∠APB = 120◦ or the triangle ABC is equilateral and
P is its center. □

Proof of theorem 1.2

Proof. Let BC belong to the ray BC and CB belong to the ray CB such that ∠CPCB =
∠BPBC = ∠BAC; Similarly to AB, BA and CA, AC.
Clearly, two angles ∠BPC and ∠BCPCB have the common inner bisector.

Applying to the lemma 2.2, we have PBC · PCP = PX2 + XBC · XCB ≥ PX2.
Equality holds if and only if BC ≡ CB, that is ∠BPC = 2∠BAC. Hence√

PBC · PCB ≥ PX. (3.4)

Similarly, we also have: √
PCA · PAC ≥ PY; (3.5)√
PAB · PBA ≥ PZ. (3.6)

From (3.4), (3.5), (3.6) and the lemma 2.1, we follow

PA + PB + PC ≥ 2
√

PBC · PCB + 2
√

PCA · PAC + 2
√

PAB · PBA

≥ 2PX + 2PY + 2PZ.
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A

B C

P

CB BCX

FIGURE 5

Equality holds if and only if ∠BPC = 2∠BAC, ∠CPA = 2∠ABC and ∠APB = 2∠ACB
and triangle ABC is equilateral that is ABC is equilateral P is its center.
The theorem 1.2 is proved. □

4. A GENERALIZATION OF LEMMA 2.3 AND THE PROOF OF A GENERALIZED RESULT OF
ERDOS-MODELL INEQUALITY

From [2], we have the result as follows:

Theorem 4.1. Let ABC be a triangle and let P, Q, R be three points inside it such that QR ⊥
BC, RP ⊥ CA and PQ ⊥ AB. Let QR meet BC at D, RP meet CA at E and PQ meet AB at F.
Then

PA + QB + RC ≥ PE + PF + QF + QD + RD + RE.

We here introduce another proof based on the development of lemma 2.3 and from that
we have a new proof for the theorem 4.1. This lemma is as follows:

Lemma 4.2. Given a triangle ABC having the semi-perimeter p. Let A1, B1, and C1 be the
points lying on the opposite rays of rays BC, CA, and AB, respectively. Tangent lines at A of
the circumscribed circle of triangle ABC meet the circumscribed circle of triangle AB1C1 at A2
again. Points B2 and C2 are defined similarly as the definition of point A2. Then

AA2 + BB2 + CC2 ≥ 2(AC1 + CB1 + BA1 + p).

Proof. Denote by a = BC, b = CA and c = AB. We have:

∠ABC = ∠A2AB1 (since AA2 is tangent line of the circumscribed circle of triangle ABC)

= ∠A2C1B1) (since the quadrilateral AB1A2C1 is concyclic).

Similarly: ∠ACB = ∠A2B1C1.
Hence, we have that two triangles ABC and A2C1B1 are similar according the a-a case.

Hence
A2C1

B1C1
=

AB
CB

=
c
a

and
A2B1

C1B1
=

AC
BC

=
b
a

.
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FIGURE 6

Applying the Ptolemy theorem to the inscribed quadrilateral AB1A2C1, we have:

AA2 · B1C1 = AC1 · A2B1 + AB1 · A2C1 =⇒ AA2 = AC1
A2B1

C1B1
+ AB1

A2C1

B1C1
.

Since AB1 = AC + CB1 = b + CB1, it follows:

AA2 = AC1
b
a
+ CB1

c
a
+

bc
a

. (4.1)

Similarly, we also have:

BB2 = BA1
c
b
+ AC1

a
b
+

ca
b

, (4.2)

and

CC2 = CB1
a
c
+ BA1

b
c
+

ab
c

. (4.3)

Adding (4.1), (4.2) and (4.3) side-by-side, note on the inequalities
u
v
+

v
u

≥ 2 for ev-

ery positive numbers u and v, then
xy
z

+
yz
x

+
zx
y

=
1
2

(
y
z
+

z
y

)
x +

1
2

( z
x
+

x
z

)
y +
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1
2

(
x
y
+

y
x

)
z ≥ x + y + z for every positive numbers x, y, z, we have:

AA2 + BB2 + CC2 = AC1

(
a
b
+

b
a

)
+ CB1

( c
a
+

a
c

)
+ BA1

(
c
b
+

b
c

)
+

(
ab
c
+

bc
a
+

ca
b

)
≥ 2AC1 + 2CB1 + 2BA1 + (a + b + c) = 2(AC1 + CB1 + BA1 + p).

The lemma is proved.
Equality holds if and only if a = b = c, that is the triangle ABC is equilateral. □

We now prove the theorem 4.1 as follows:

Proof. Draw the circumscribed circles of triangles AEF, BFD, CDE and PQR.
Tangent lines at P of the circumscribed circle of triangle PQR meet the circumscribed
circle of triangle AEF at A′ again. Similarly to the points B′ and C′.
Applying the lemma 4.1, we have:

PA′ + PB′ + PC′ ≥ 2PE + 2QF + 2RD + PQ + QR + RP. (4.4)

A

B C

P

Q

R

D

E
F

A′

FIGURE 7

Clearly, AP is the diameter of circumscribed circle of triangle PEF so PA ≥ PA′. Similarly
to PB ≥ PB′ and PC ≥ PC′. Hence

PA + PB + PC ≥ PA′ + PB′ + PC′. (4.5)

From (4.4) and (4.5), it follows:

PA + PB + PC ≥ 2PE + 2QF + 2RD + PQ + QR + RP.

Theorem 4.1 is proved. □
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5. THE SIMILAR INEQUALITY OF ERDOS-MODELL ONE AND ITS PROOF

Theorem 5.1. Given a triangle ABC and point P lying inside this triangle. Line which is
symmetric to AP with respect to the inner bisector of ∠BPC meets BC at D; line which is
symmetric to BP with respect to the inner bisector ∠CPA meets CA at E; line which is symmetric
to CP with respect to the inner bisector of ∠APB meets BC at F. Then

1
PA

+
1

PB
+

1
PC

≤ 1
2

(
1

PD
+

1
PE

+
1

PF

)
.

Proof. Denote by ∠BPC = x,∠CPA = y and ∠APB = z.
Draw the circumscribed circle of triangle PBC meeting AP at A′ again.
We have ∠BPD = ∠A′PC and ∠CA′P = ∠CBP = ∠DAB.

It follows that two triangles PBD and PA′C is similar, hence
PB
PD

=
PA′

PC
, it follows

PB · PC = PD · PA′.
On the other hand, ∠A′BC = ∠A′PC = 180◦ −∠APC = 180◦ − y, ∠A′CB = ∠A′PB =

180◦ −∠APB = 180◦ − z and B̂A′C = 180◦ −∠BPC = 180◦ − x.

Hence, applying the Law of Sine to triangle A′BC, we have
A′B
BC

=
sin∠A′BC
sin∠BA′C

=
sin y
sin x

and
CA′

BC
=

sin z
sin x

.

Applying the Ptolemy theorem to the concyclic quadrilateral BPCA′, we have

A′P · BC = A′B · PC + A′C · PB

=⇒ PA′ =
A′B
BC

PC +
A′C
BC

PB =
sin z
sin x

PC +
sin z
sin x

PB.

From that, we have

PB · PC = PD · PA′ = PD
PC sin z + PB sin y

sin x
.

It follows
1

PD
=

1
PB

sin z
sin x

+
1

PC
sin y
sin x

. (5.1)

Similarly, we also have:
1

PE
=

1
PC

sin x
sin y

+
1

PA
sin z
sin y

; (5.2)

and
1

PF
=

1
PA

sin y
sin z

+
1

PB
sin x
sin z

. (5.3)

From (5.1), (5.2), (5.3) and applying the inequalities
u
v
+

v
u
≥ 2 for every positive num-

bers u and v, we have:
1

PD
+

1
PE

+
1

PF
=

1
PA

(
sin z
sin y

+
sin y
sin z

)
+

1
PB

(
sin z
sin x

+
sin x
sin z

)
+

1
PC

(
sin x
sin y

+
sin y
sin x

)
≥ 2

1
PA

+ 2
1

PB
+ 2

1
PC

.
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FIGURE 8

Theorem 5.1 is proved.
Equality holds if and only if x = y = z or P is the Fermat-Torricenlli point of triangle
ABC. □
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