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SIMILARITY, CONGRUENCE, AND HOMOTHETY FOR QUADRILATERALS

YU CHEN AND R/J. FISHER

ABSTRACT. Assume that Q = OABCD is a general quadrilateral; namely, it is nei-
ther cyclic nor orthocentric. Denote the intersection point of ¢4 and ¢gp by R. Let
Ou, Oy, Oc, and Oy (resp., N;, Np, N, and Ny) be the circumcenters (resp., nine-point
centers) of ABCD, AACD, AABD, and AABC, respectively. It is proved in [1] that
Qo = 00,0,0.0, and Qn = ON;N,NcN; are similar. In this paper, we prove that
when OABCD is a convex quadrilateral, Q and Q, are similar if and only if Q is a
trapezoid and that when ZA > 180°, Q and Q, are similar if and only if RD = -R

and ﬁ . 1@ = —Eg . R—D) Let Qoo and Qon be the circumcenter quadrilateral and the
nine-point center quadrilateral of Q,, respectively. Let Qno and Qnn be the circumcenter
quadrilateral and the nine-point center quadrilateral of Qy, respectively. We also prove
that Q, Qoo, and Qnn are homothetic and that Qon and Qy, are congruent and homothetic.

1. INTRODUCTION

This paper is a sequel to [1]. Given two quadrilaterals J ABCD and O A’B'C’'D’, write
OABCD ~ OA'B'C'D’ if there exists a positive number k which satisfies

AB_BC_CD_AD_AC_BD_k 1.1
A'B" = B'C’ — C'D — A'D' — A'C’ — B'D T ™ ()

When k = 1 in (1.1), we also write JABCD = OA'B'C'D’. We say that J ABCD
and O A’B'C'D’ are similar (resp., congruent) quadrilaterals if 0 ABCD ~ OIJKL (resp.,
OABCD 2 OA'B'C'D’),where (I,],K,L) = (A’,B',C'D’),(B/,C',D,/ A", (C',D',A’,B’),
(D',A',B,C),(D,C,B A", (C,B, A" D), (B, A,D,C,or (A,D,C,6B).

We say two similar quadrilaterals J ABCD and (J A’B'C'D’ are homothetic or similarly
placed if their corresponding sides are parallel. By [2, Theorem 32 on page 38], when
0 ABCD and O A’B'C’'D’ are homothetic but not congruent, the lines £ 4 4/, {p/, {ccr, and
{pp intersect at a common point S so that [0 A’B’C’D’ is a dilation of 0 ABCD through
S.

Given a quadrilateral [J ABCD, let O,, Oy, O, and Oy (resp., Ns, Np, N¢, and N;) be
the circumcenters (resp., nine-point centers) of ABCD, AACD, AABD, and ABCD,
respectively. When LJ ABCD is not cyclic (resp., not orthocentric), [JO,0,0.0; (resp.,
O N;N,N:N;) is a quadrilateral. A general quadrilateral is a quadrilateral that is neither
cyclic nor orthocentric. It is proved in [1, Theorem 6.1] that if [ ABCD is a general
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quadrilateral, then [0 O,0,0.0,; ~ O N;N,N:N;. In the current paper, we determine the
conditions under which a general quadrilateral and its circumcenter are similar and also
prove that certain quadrilaterals generated by L1 ABCD are similar, congruent, or homo-
thetic under the iteration by constructing circumcenter or nine-point center quadrilater-
als.

Given a quadrilateral L1 ABCD, let R be the intersection point of £ ¢ and ¢gp. Note that

{1@, RC } is a basis for the canonical vector space £ of geometric vectors associated to

the plane. The vectors IZZX and RD are expressible as ﬁ = —o&]@ and RD = —,BI@,
where a, € R~ {0,—1}. In Theorem 3.1 and Theorem 3.2, we prove that a convex
general quadrilateral [J ABCD and its circumcenter quadrilateral are similar if and only
if JABCD is a trapezoid and that a nonconvex general quadrilateral [JABCD with

ZA > 180° and its circumcenter quadrilateral are similar if and only if RD = —RB

and]ﬁ-ﬁéz—]@-@.

Assume that Q = [ ABCD is a general quadrilateral. Let Q, and Q, be the circumcenter
quadrilateral and the nine-point center quadrilateral of Q, respectively. Let Qoo and Qon
be the circumcenter quadrilateral and the nine-point center quadrilateral of Q,, respec-
tively, and let Qn, and Qnn be the circumcenter quadrilateral and the nine-point center
quadrilateral of Qy, respectively. In Theorem 4.1 and Theorem 4.2, we prove that Q, Q..,
and Qny are homothetic. In Theorem 4.3, we prove that Qo and Qy, are congruent and
homothetic; moreover, the center of the homothety is the center of mass of LJ ABCD.
The paper is organized as follows. In §2, we collect all needed results from [1]. Theo-
rem 3.1 and Theorem 3.2 are proved in §3. Then Theorem 4.1, Theorem 4.2, and Theo-
rem 4.3 are proved in §4. In §4, we also introduce a natural family O of quadrilaterals
generated by a general quadrilateral [ ABCD. Let A be the set of all words in the let-
ters o and n, including the empty word @. Set Qp = LJABCD. For each w € A, Quo
and Q,n mean the circumcenter quadrilateral and the nine-point center quadrilateral of
Qu, respectively. If wy, w, € A, then Qy, and Qy, are similar whenever the lengths of
the words w; and w;, have the same parity. Consequently, if the length of a word w is
even, then Q, and [ ABCD are similar, while if the length of w is odd, then Q, and
0,0,0.0; are similar. If (1 ABCD and [10,0,0.0; are similar, then all quadrilaterals
in Q are similar to each other.

2. PRELIMINARIES

In this section, we collect the results from [1] which are applied to prove the main theo-
rems in §3 and §4.
Given a quadrilateral L1 ABCD, let R be the intersection point of {4¢c and ¢gp. There

are o, p € R~ {0, —1} such that ﬁ = —al@ and ﬁ = —ﬁI@ Let O,, Oy, O, and
Oy (resp., Ni, Ny, N, and Ny) be the circumcenters (resp., nine-point centers) of ABCD,
ANACD, AABD, and AABC, respectively. By [1, Theorem 5.1], both [0 O,0,0.0,; and
UN;N,N:N; are quadrilaterals.

By [1, Definition 3.1], the cyclic characteristic and the orthocentric characteristic of L1 ABCD

are defined by
ke = (RA-RC — RE - RD)? @.1)
ko = (RA-RC + RB-RD)? — 4(RA - RB)(RC - RD). 2.2)
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By [1, Definition 4.1], the normalized cyclic characteristic and the normalized orthocentric
characteristic of L] ABCD are defined by

= AR D) RARE (RERD) 23)

and

= IR0 510 RARE (T (2.4)

The quadrilateral J ABCD is cyclic (resp., orthocentric) if and only if x, = 0 (resp.,
Ko = 0).

Lemma 2.1 ([1, Lemma 5.1]). Define x = REB- I@ and I1 = RB?- RC? — x2. The four
circumcenters of L1 ABCD are given by

R—OZ _ (1—ﬁ)RB2~RC22E(/%RB2—RC2)xEﬁ n RBZ[RCZ—;sZerL(l—ﬁ)x] 1@’
R—>Ob _ RCZ[/S(zx—l)Jé—gucRCZ—ﬁzRBz]ﬁ (/sZRBZ—aRCZ);ﬁ—lf(a—l)RBZRCZ1@,
162 _ (a?RC— 5RBZ)§‘X1_¢»[¢(,5 1)RBRC* 58 i RB2[a(B— 1)x+ﬁR32—a2Rc2]I@
R—>Od _ RCZ[RBZ—aZRHCZ—(l—a x]I@+ (1—a)RB2. Rczz;rl(aRCZ RB?)x 1@

The four nine-point centers of L1 ABCD are given by

m _ —2(1—ﬁ)x2—(/SRBZ—RCZ)x+(1—ﬁ)RBZ~RC2Eg i —2x2+(1—ﬁ)RBZJi_-Ii-RB2~RC2+/5RB4 I@,

4TI
m _ Zﬁzxz+,B(1fa)RCZJ!;;Iﬁ2RBZ-RC2faRC‘*1@ i Zﬁ(ocfl)x2+(aRszﬁ:’BerI%Z)erﬁ(lfvc)RBz-RCZ I@,
1)x%4(BRB?—a?RC?)x+a(1—B)RB2-RC? 2 +a(1—-B)RB*x—a?RB2-RC?>—BRB*
RN, = 22(B-Dx+(p CRC)xta(1-f) RE 4 25 +a(1-p) s BRE' R &
— _ _ C2(1—a)¥%— _ .
RN, = 2x2+(1 zx)RCziﬁrRBz RC2+aRC4E§ + 2(1—a)x>—(aRC? 411{{32)x+(1 a)RB? RCZI@.

Lemma 2.2 ([1, Lemma 5.2]). Define x = RB - RC and TT = RB?- RC2 — x2. The six vectors
between circumcenters are

O—>aob —(BRB*—aRC?)(RC?+x) l@ n (BRB?—aRC?)(BRB*+x) Ez

ZﬁH 2pI1
—_— _ _
0,0, = —(1+a) 5215‘%2 aRC?)x I@ 4 () [%R];iHaRCZ)RBZ 1@/

l

0,0, = (BRB*>— adzc:2 (RC*—x) 1@+ /sRBLaRCZ)(RBLx)Eg

—> o . _
0,0, = (BRB? ocRZ(;;HaRCZ Bx) Eﬁ I (BRB? ocRZi; r(I,BRBZ ax 1@
— - _

0,0, = (1+8) 5R§;Ha12c2 )RC? 1@ L =(+p) 521;%2 aRC?)x 1@
O—>cod (BRB?>— “RZiZH ) («RC?+x) I@ n ﬁRBLaéz“cﬁ) (RB*+ax) 138
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The six vectors between nine-point center vectors are

I\TNb _ 2Bx*+B(BRB*—aRC?)x—(BRB*+aRC?) RC2E§ L 2px 2_(BRB*—aRC?)x ﬁ(ﬁRBszcz)RBZI@

]\m — (1+w)(ﬁlif;fa1<c2 ﬁ% o () ux f(ffrzlz%akcz BQ]Eé v

I\TNd: —2/3x2+(ﬁRB2—ocRC2)r;c+(ﬁRBZ—i-azRCz)RCZEﬁ 20x+ (ﬁRBZ—aRCZi%—(BRBZ—HXRCZ)RBZ1@’
m _ —2apx*+p(BRB*— aRCD:g);CI-Q—a (BRB?+&RC?)RC? ﬁ n 20Bx?+a( /SRBZ—aRCi)ﬁ = —B(BRB*+aRC?)RB? 1@,
Z\TNd _ (+p)[= 2ﬁx2+(§RB2+aRc2 )RC?] @—I- (1+8) ﬁ{jgf_l—azzd ﬁ

N.Nj = —2apx? *(ﬁRBZfaRCAL?I{cIJm(ﬁRBZJmRCZ Rczﬁﬁ —2ax +uc(,BRB27ucRi;)ric+(ﬁRB2+aRC2)RBz 1@

Lemma 2.3 ([1, Lemma 5.3]). Assume that [J ABCD is not cyclic. Let R, be the intersection
point of £o,0. and Lo,0,, i.e.,

R—RZ _ (1—/5)RBZ~R§12_[—(1—a)RC2xI@ I (l—a)RBLRCZ—(l—ﬁ)RBZx]@‘

211
Then
m = —«xm, ITO; = —ﬂm,
RO} = - #45, RO = 54F,
R,0; - R,0. = % (RB - RC), RO — sgn (ap) KBEC.

Consequently, if & and & represent the normalized cyclic characteristic and the normalized or-
thocentric characteristic of 3 O,0,0.0y, respectively, then &, = k. and &), = &,.

Lemma 24 ([1, Lemma 5. 4]) Assume that [1 ABCD is not orthocentric. Let R,, be the inter-

section point of ¢, and {

NgNc NN’

R—RZ _ (1-B)RB*-RC*+(1—a)RC?x—2(1—B)x 1@+ (1—&)RB2-RC2+(1—B)RB2x—2(1—a)x 138

411 411
Then
R.N, = — aR,N,, m = —ﬁlw,
RN} =4 . BRC, R.N? = £ 5fF,
R.N;-RuN, = %(RB - R), NN — son (ap) KBRS,

Consequently, if k! and &/ represent the normalized cyclic characteristic and the normalized
orthocentric characteristic of [ N, N, NNy, respectively, then . = &, and &]| = &,.

Lemma 2.5 ([1, Lemma 6.1]). Given any pairwise distinct I,],K,L € {A,B,C, D}, we have
OZ-O]Z = %KL2 and NZ-N]‘2 = C’l’go K12, where

1 1+a)? 1+
CAB =3, CBC = 5, CAC = %, cco=2E, cap=up, and cpp= B(1+a)’"
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3. QUADRILATERALS AND THEIR CIRCUMCENTER QUADRILATERALS

In this section, we find the conditions under which a noncyclic quadrilateral L1 ABCD
and its circumcenter quadrilateral JO,0,0.0, are similar. By [1, Theorem 2.3], we have
UABCD = J0,0,0.0, if JABCD is orthocentric. We assume that [J ABCD is a gen-
eral quadrilateral.

A trapezoid is a quadrilateral with at least one pair of parallel sides. A trapezoid ABCD is
a convex quadrilateral, so its diagonals AC and BD intersect at a point R. See Figure 1. In

this case, we have RA = —aRCand RD = — ,51@, where « and f are positive numbers.

Figure 1. Trapezoid ABCD

Lemma3.1. (1) JABCD is a trapezoid with AD // BC if and only if & = B.
(2) O ABCD is a trapezoid with AB//CD if and only if « = %

Proof. (1) Suppose that (0 ABCD is a trapezoid with AD //BC. Then ARBC ~ ARDA so
thata = 4 = R — g

Conversely, suppose that « = B for JABCD. By [1, Lemma 3.1], « and B are positive
numbers. Since % =a =B = XD and ZARD = ZCRB, we get ARBC ~ ARDA. Then
we have /RAD = /RCB, so AD//BC

The statement (2) can be proved similarly. O

Theorem 3.1. Let LJ ABCD be a convex general quadrilateral. Then 1D ABCD and its circum-
center quadrilateral [10,0,0.0, are similar if and only if J ABCD is a trapezoid.

Proof. Since the general quadrilateral [J ABCD is not cyclic, we have ZA + ZC # 180°
and ZB + ZD # 180°. As labelled in Figure 2, let K, L, M, and N be the midpoints
of AB, BC, CD, and AD, respectively. Consider the circles C(AO.), C(BOy), C(CO,),
and C(DOy,) with diameters AO., BO;, CO,, and DOy, respectively. By the convexity of
OABCD,

LA+ /0, =180°, 4B+ /0, =180°, ZC+/£0,=180°, and ZD+ ZO, = 180°.

=) At least one of the angles of [J ABCD is not equal to 90°, since [J ABCD is not cyclic.
Without loss of generality, we assume that ZC # 90°. Then Z0, = 180° — ZC # 90°.
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Figure 2. Convex General 0 ABCD and Its Circumcenter Quadrilateral

Assume one of the eight possible correspondences between [J ABCD and [JO,0,0.0,
is a similarity correspondence, say, JWXYZ ~ 0O,0,0.04. Then W ¢ {A,C}. For
otherwise, if W = A, then ZA = Z0, = 180° — ZC implies that ZA + ZC = 180°, a
contradiction; on the other hand, if W = C, then ZC = Z0O, = 180° — ZC implies that
ZC =90°, a contradition. Consequently, we have W = B or D.
If W = B, then ZB iAOL: 180° — ZC, or equivalently, /B + ZC = 180°. So 1 ABCD
is a trapezoid with AB//CD.
If W=D, then /D = £0, = 180° — ZC, or equivalently, ZC + ZD = 180°. So 1 ABCD
is a trapezoid with AD // BC.
<) Assume that J ABCD is a trapezoid with AD //BC. By Lemma 3.1, we get « = .
Since ARBC ~ ARDA, we also have AD = aBC. By Lemma 2.5,

0,05 = §§CD* = §CD?,

0,02 = 45 AD? = §5AD? = §BC?,

0.0% = B AB? = % AB?,

0,03 = % BC? = B2 = & AD?,

2% =
0,02 = EL Y5 BD? = §BD?,

0403 = S AC? = & AC2,

4B(1+a)?
So LJABCD ~ JO40.040,.
Assume that J ABCD is a trapezoid with AB//CD. By Lemma 3.1, we get § = 1. An

analogous argument can prove that J ABCD ~ JO,0,0,0,. g

Theorem 3.2. Let 1 ABCD be a nonconvex general quadrilateral with the interior angle at
vertex A greater than 180°. Then LD ABCD and its circumcenter quadrilateral 1 0,0,0.0y are

similar if and only if
RD=—RB and RA-RC = —RB-RD.

Proof. Since L ABCD is nonconvex and ZBAD > 180°, we have a < 0 and > 0.
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Figure 3. Nonconvex Quadrilateral 0 ABCD and It Circumcenter Quadrilateral

=) Assume that 0 ABCD and [00,0,0.0; are similar, say, OWXYZ ~ 00,0,0.0,.
Since Z0,0,0; > 180°, we have W = A and Y = C; that is, either JADCB ~
00,0400, or HABCD ~ JO,0,0.0,. See Figure 3.
Case 1: 1ADCB ~ [J OaObOSOd

H .
By Lemma 2.3, we have R,0; = —BR,0y. Since JADCB ~ [10,0,0.0,4, we also have
RE = —ﬁﬁ Then RD = —,B@ and RB = —ﬁ]@ force p =1, 1ie, RD = —RB. Note
that ARBC ~ AR,040. and R,0 = R,0;. By Lemma 2.3,

R.OF _ R,0? N RO} _ R,0?
RB? RC? RB? RC2

ak.RC? __ &%.RB?
= “ARBZ — 2aRC2

= ¢*RC* = RB*
= —aRC? = RB?

— RA-RE¢ = —RB - RD,

Case 2: 1 ABCD ~ J0,0,0.04
Note that ARBC ~ AR,0,0O,. By Lemma 2.3,

R,0? _ R,0? N ak.RC2 _ PR.RB?

RBZ — RC? 4BRB?2 — 4aRC?
= a’RC* = g*RB*
= —aRC? = BRB?

— RA-RC = —RB-RD
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and

ROLEO. _ TBRC _, g (o) EAIE _ FBRC

R,0p-R,O. — RBRC — 58N

_RB-RC _ RB-RC

= TRBRC — RBRC

— RB-RC =0
— (RA-RB)(RC - RD) = 0.

Thenx, = (ﬁ ‘RC + RB- 1@)2 - 4(@ . 1@) (I@ . I@) = 0,s0 J ABCD is orthocentric,
a contradiction. This case cannot occur.

% Since L1 ABCD is a nonconvex quadrilateral with RD = —RB and RA- I?f — RB-
RD,wehavea < 0and p = 1. By Lemma 2.3,

— —
Ro Oa = _“Ro Oc;

—
Rood = _,BRoob = _Roob/
RoOf, _ aRk.RB* _ mchczl

4p
k.RB? %.RB?
ROO? = ‘BKEM = KC40¢ 4
— =
R,0p-R,O; _ RB-RC _ _ RB-RC
ROy RO, — sgn(ap) Rp-RE = ~ RB-RC-

Next, we check the four similarities: (1) ARDC ~ AR,0,0¢, (2) ARAD ~ AR,0,0,
(3) ARCB ~ AR,0.04, and (4) ARAB ~ AR,0,0,. All of these similarities follow
from Lemma 2.3 and the hypotheses that RD = BRB = RB and

_aRC? = RA-RC = —RB-RD = BRB? = RB2.

They imply that 0 ADCB ~ 0 0,0,0.0, with similarity factor Y.
(1) ARDC ~ AR,0,0,

Since
RO} _ ak.RC? _ ak.RC2 _ _ k. _ RRB: _ PRRB> _ R,0? — ROy _ V=R _ RO
RD? 4BRB? 4RB2 4 = 1aRCZ ~ 4aRCZ RC2 RD 2 RC
and
- ——
R,0pR,O: _ RB-RC _ _ RB-RC _ RC-RD _
R.OpRoOc — sgn(aB) xpre = ~RBRC = RERD = £DRC = ZO4R,0,
we get ARDC ~ AR,0,0,.
In addition, we have
0,0; _ ROy _ /=R
CD — RD — 2 7
0,0, _ R,0.—R,0; __ R,O.+aR,0. __ (1+2)R,Oc _ R,O. _ /—F
AC — ~RC—RA ~— ~RC+aRC ~— (I+a)RC ~_ RC — ~2
ObOd — Roob+RoOd — Roob+ﬁRoob — (1+ﬁ)Roob _ Roob — —Ke
BD — ~RB+RD ~ RB¥pRB ~ (1+p)RD ~ RD — 2 -
(2) ARAD ~ AR,0,0,
Since
R,02 _ #’R,02 _ R,0? _ & — ROy _ V=R _ ROy _ ROy
RA2 — ®2RCZ — RCZ — 4 RA — 2 RA — RD
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and
T T — =
Ry0sRo0; _ —&(RoOpRoO:) _ ReOy-ReO: sgn(a 5)1@-1? __RBRC
Ro0aR0p — —a(R,0p-Ry0.) — R,Op-R,0, — 58 RBRC — ~ RB-RC
_ RERB _ —L(RARD) _ RARD _
= RCRD = “H{rakD) = KaRD = £LARD = ZOR,0,
we get ARAD ~ AR,0,0,.
In addition,
0,0, R,0p v — K¢
AD RD — ~ 2 -
Since
ROF _ PRO; _ RO _ & — ROy _ F — ROy _ RO
RB? ﬁzRDz RD? 4 RB RB RC
and
s s — - — -
RORO; — BROVRO) . ROVRO: — g (o) RO _ RERE , /BRC = /O4R,0
RoOc R,0, B(R,0;R,0;) R0, RoO, & R,0,R,O. — RB-RC dNole,
we get ARCB ~ AR,0.0,.
In addition,
0.0; _ R,O. __ —Kc
BC — RC — ~ 2 *
4) ARAB ~ AR,0,0,
Since
2 2R,02 2 . RO2 _ pROI RO N=7
R,O; _ a"R,0; _ R,O; __ ke ReYy B 0 = R,O, __ ke __ RoOy
RAZ — 2?RCZ = RCG2 ~ ~ 4 ~ RD* ~ PRBT RB? RA — "2 ~— RB
and
— = S —— — —
ROsRO; _ #PRORO) . _ ROVROL _ _gon(n3)RERC _ RBRC
RoO0aRO4 — —ap(RoOp RO RO, RO, 58 RB-RC — RB-RC

_ ~LRARB) _ RA-RB
- —%(RARB) ~ RA-RB
we get ARAB ~ AR,0,0;.
In addition,

= /ARB = ZO,R,0,,

0,04 __ R,O4 __ —Kc
AB = RA — 2 -

Finally, the equations

0:0p _ 0,0 _ 0s04 _ 00 _ 0404 _ OO0y _ v/—Fe

AD — AC ~ "AB ~ CD ~ BD ~ BC ~ 2
lead to J ADCB ~ JO,0,0.0,. O
Corollary 3.1. Assume that ABCD is a triangle such that C ¢ C(BD), the circle with diam-
eter BD, and C ¢ {,,. Let A be the inverse of C in C(BD). Then J ABCD is a nonconvex
quadrilateral that is similar to its circumcenter quadrilateral.

Proof. Without loss of generality, we assume that [ ABCD is not an orthocentric qudri-
lateral; otherwise, [10,0,0.0,; and [1 ABCD are congruent by [1, Theorem 2.3].

Since R is the midpoint of BD, we have RD = —R . Next, by definition of inversion
in a circle, A is the point on the ra %mmng at R and passing through C such that
RA-RC = RB> = RB-RD, ie, RA-R —R Iﬁ Also the points A and C lie on
the same side of /gp, so L] ABCD is a nonconvex quadrilateral. Since [J ABCD is neither
cyclic nor orthocentric, it is a general quadrilateral. If C lies outside C(BD), then the
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interior angle of L1 ABCD at vertex A is greater than 180°, while the interior angle at
vertex C is greater than 180° when C lies inside C(BD) . By Theorem 3.2, 0 ABCD and
U0,0,0.0, are similar. Figure 4 illustrates the construction of L1 ADCB. O

Figure 4. Constructing a Nonconvex (0 ABCD Similar to Its Circumcenter Quadrilateral

4. HOMOTHETIC AND CONGRUENT QUADRILATERALS UNDER ITERATION

Let D ABCD be a general quadrilateral. As earlier, [JO,0,0.0, represents the circum-
center quadrilateral of [J ABCD. Denote the circumcenter quadrilateral of [10,0,0.0y
by 00;0,0.0.

Set Q = OABCD, Q, = 00,0,0.04, and Q,, = 00;0,0.0/;. We call Q, the iteration
of Q by circumcenter quadrilateral, and Q,, the iteration of Q, by circumcenter quadrilateral.
By [1, Theorem 5.1], Q,, is a well-defined quadrilateral.

Next, we argue that corresponding sides of Q and Q,, are parallel and hence

/A=/0, /B=/0, ZC=/0O. and £D = /O, 4.1)
Let K, L, M, and N be the midpoints of AB, BC, CD, and AD, respectively. We have
gocod = {po.x and EObOc = {o.n- Then EO;OZ 1 EOcOd and 4o g L £ 4p imply that KO;OL //laB
and 60;0& 1 lo,0. and lo.n L £ap imply gogog //Lap. In the same way, we argue that
lil/ Eogo; for all distincti,j € {a,b,c,d}. The equations in (4.1) follow immediately. Note

that the convexity of Q in the above argument is not relevant. That said, the two figures
in Figure 5 illustrate ZA = Z0), in both the convex and nonconvex cases.

In the same way, we can define the iterations Q, = [0 N;N,N:N,; and Qnn = O NN, N/ N/,
of Q by nine-point center quadrilaterals. Since Q, ~ Qy, we get

/A=/N, /B=/N|, /C=/N!, and /D= /N} (4.2)

Both (4.1) and (4.2) suggest that (1 O;0; 00/, and [0 N;N; N/N/, could be similar to J ABCD.
The next two theorems establish this fact in a strong sense.
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Figure 5. Two Iterations by Circumcenter Quadrilateral

Two similar quadrilaterals [J ABCD and [J A’B’C’D’ are said to be similarly placed or ho-
mothetic if 0 ABCD ~ A’B'C'D’ and their corresponding sides are parallel. In this
case, if J ABCD 2 [JA’B’C'D’, then the four lines £ 4 4/, {ggp/, {cc/, and {pps are concur-
rent at a point S and J A’B'C’'D’ is obtained by dilating [J ABCD through S by either +

the homothetic ratio 45 = BC = @D° — D' gee 2, Theorem 32 on page 38].

Theorem 4.1. If Q = OABCD is a noncyclic quadrilateral, then Q.. = 0,0,0.0/, the
iteration of Qo = 0,0,0.0, by circumcenter quadrilateral, and Q are homothetic.

Proof. As observed earlier, O; O} //1] for all distinct i, j € {a,b,c,d}. Tocompete the proof,
we only need to check that 0 ABCD ~ 0 O;0,0.0,.
Next, we prove that
0,0, _ 0,0, 0.0, 0,0, 0.0 _ 0,0, ||
AB — BC — CD — DA — AC — BD — & -
Apply Lemma 2.5 first to 1 O,0,0.0, and then to L ABCD as follows:

(0,0})? = 0,03 = %% . B Ap2 = X AB2.

4P — 4B a
By analogy, (O;O})Z = %I}Zfor all distinct #,j € {a,b,c,d}. So D ABCD ~ 00,0,0.0}
and % is the homothetic ratio. O

Theorem 4.2. If Q = O ABCD is a nonorthocentric quadrilateral, then Qn, = OO N;N; NN/,
the iteration of Qn = [0 NN, NN, by nine-point center quadrilateral, and Q are homothetic.

Proof. Let R, be the intersection point of ¢y, n, and ¢y, n,. To argue that (J N; N;N/N/, and
00 ABCD are homothetic, we will prove that for all distinct i,j € {a,b,c,d},

— _
NN = &T], (4.3)

which implies that N{N;//T] for all distincti,j € {a,b,c,d} and OO N;N;N/N/, ~ O ABCD.
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Set x = 1@ . I@ and IT = RB% - RC? — x2. The following equations hold:

RnNZ _ 4ap(1-p)x*—2ap(1—a)RC2x—a(1—B) (BRB*+aRC?)RC? Eﬁ

T6apIl
I 4zxﬁx272aﬁ(lfﬁ)RBzxflg?XI;lI?;JraRCZ)(ﬁRBz+a2RC2) 1@
RH—NZ _ f4aﬁ32x272aﬁ(17a)RCZJiJgféIﬁ_[RBZ+aRC2)(RBZ+04RC2) RB
I 4aﬁ(lfa)x272aﬁ(17ﬁ)R{362;ﬁ}/i‘3(17a)(ﬁRBz+aRC2)RBZ RA&, an
Rn—NZ _ 411,8(1—/5)x2—Zaﬁ(l—a)Rf;;ﬁ—ric(l—ﬁ)(,BRBZ-l—aRCZ)RCZ1@ :
n —4a2[3x2—Zocﬁ(1—ﬁ)RBZJ;—g:I§[r31RB2+aRC2)(ﬁRBZ+RC2) 1@,
m _ 40(/59:272a5(1foc)RC2x71(£‘1;lI?_Iz+aRC2)(52RB2+o¢RC2)Eﬁ
I 41x5(17a)x2fZaﬁ(lfﬁ)Rf;;ﬁ}/IS(lfa)(,BRBZ+¢XRC2)RBZ ﬁé

Proving the equations in (4.4) takes some work. Accepting these equations for the mo-
ment, observe that

NiNj = RuNj — RyN} = % RB + &% RC = 5 (RB + aRC) = B AB.

In the same way, the remaining five cases in (4.3) hold as well.
To justify (4.4), we proceed as follows.
First, apply Lemma 2.1 to the pair of (D N, N, N:N; and [0 N;N;N/N/, as follows: Set R =
Ry, N; = N/, B=N,, and C = N,. Define ' = R,Nj - R,N, IT' = R,N? - R,N? — (x')?,
and
_ (1=B)RuNj-RyNZ—(BR, Ny —RyNZ)x'—2(1—B) (x')?
fﬂ - 4H/ 7

_ RyN2R,N?+BR,N}+(1—B)R,N2x' —2(x')?
8a = v :

By Lemma 2.4, x’ = fxand IT' = %H. So

(1-B)RB2-RC?—(aRC2— £ RB2)x—2(1—p)x?

fa - 11 ’
RB2-RC?+ %5 RCH “U 0P RC2y 242
8a = a1 :
Then
RuN; = faRuNj + gaRuN:.
Note that R
RR; = RN, + 1% N, ..
Then

R,N, = RN, — RR;; = RN, — RN, — 14NN, = NoN; — 1% N, ..

In the same way, we get R, N. = N,N. — ﬁNd N.. In turn,

% \ \
RuNg = faNaNjy + 15 NaNE.
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Finally, apply Lemma 2.2 to the vectors N,;Nj, and N, N;. Define
_ 2Bx®+B(BRB2—aRC?)x—(BRB2+aRC?)RC?
far = 4BTT ’

_ 2aBx*—(BRB?>—aRC?)x—B(BRB>+aRC?)RB?

8ab = 411 s
_ (14a)(BRB?>—aRC?)x
fElC - 4nT1 7
_ (1+a)[2ax?—(BRB>+aRC?)RB?|
Sac = ol :
Then
-
RuN, = (faan + SR + (fufs + $52)RC.
We can show that
afac - 2 24+aRC? C2
fagab+ gl—{a _ 4aB(1—B)x>—2ap(1— “)R&;ﬁr?(l B)(BRB*+aRC*)R
a8ac _ 4aBx®—20B(1—B)RB?>x—(BRB?+aRC?)(BRB>+a*RC?
fafab + %—frx = aﬁx s L 1(664131'[ = = = )
The remaining three equations in (4.4) are checked in the same manner. 0

Theorem 4.3. Let 0 ABCD be a general quadrilateral. Let Qn, = 0 O]/O;/ OO, the iteration
of Qu = ON;N, NN, by circumcenter quadrilateral. Let Qon = OONJ/N)/N/'NY, the iteration
of Qo = O,0,0.0,4 by nine-point center quadrilateral. Then Qno and Qoy are congruent and
homothetic; moreover, the center of the homothety is the center of mass of [J ABCD.

Figure 6. Two Iterations by Circumcenter and Nine-Point Center Quadrilaterals

Proof.\ To prove that Qn, and Q. are congruent and homothetic, it suffices to check that
OyOl' = —NJ'N/ for all distinct i, j € {a, b, c,d}.

First, we express the vectors R, N/’ R Nb// , R NC// ,and R, N} /I"as the linear combinations
of RB and RC. Apply Lemma 2.1 to the pair of Q, and Q,,. This means replace Iwa,
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RN{,, RN., RN}, RB and RC in Lemma 2.1 with R,N/, RN/, R,N”, RoNg, R,0,, and

ROOC, respectively. Recall that x = RB-RC and IT = RB? - RC? — 12 . Using Lemma 2.3,
we get

RoNZl _ (ﬁRBZ70¢RC2%[:¢/§};/3)RC2+2[%3¢]I@ + (ﬁRBLaRCZ)[(ﬁRés:;r?ZRCZ)Jrza (1-8) x]Ez
m _ (ﬁRBZ—,xRCZ)[(jogazzcz)—z(l—a)x]I@ I (5RBZ—aRc28MlT «)RB?—2ax] 1@
i/ RB2—aRC?)[(1-B)RC?-2 RB2—aRC?)[(BRB?+RC?)—2(1—
RoN/ = _(BRB*« ?s[én PIRC*-2px] o (BRB*—aRC*)[( R (=Bl R&
RONZI _ _(/SRBZ—aRCZ)[(ﬁzgfgl—_&-[aRCz)—&-Zﬁ(l—a)x]I@ I (,BRBZ—aRCzégjéSﬁ(ll_[—a)RBz—i—Zax] IQ

Next, apply Lemma 2.1 to the pair of Q, and Qy,. Replace RNZ, RNy, RNi, RNy, I@ and

ZTC) with RnOE/{ , RnOlC’ , RnOg’ , Rnog , RnNZ,, and R, N, respectively. Using Lemma 2.4, we
get

Rﬁo’ _ _ a(1-p)(BRB*+aRC*)RC2-2B(BRB*~a’RCY)x 7 _ (5RBzfuczRCZ)(,BRBZwLocRCZ)fzaZ(lfﬁ)Rszl@

n“g — 8apIl 8 pll ’
RnOZ/ _ _(RBZfaRCZ)(ﬁRBZ;raoi_II{CZ)fZﬁ(lfa)RBzxl@ (1- a)(ﬁRBZJraRCZé);fI?IZ 20(RB>—aRC?)x Eg
RnO? __ (0= ﬁ)(ﬁRBz+aRC2%‘1‘§§2+2ﬁ (BRB?2—RC?)x l@ i (BRB>—RC?)( 5R32;rﬁu¢11§C2)+2a(1 B)RC2x 1@,
~h (B2RB?>—aRC?)(BRB>+aRC?)+28%(1—a)RB%x B(1—a)(BRB?4+aRC?)RB?+2a (B> RB%—aRC?)x
R, 0 = (ERE—aRC)(p S FPO-0RBxpg  p(1—u)(BRB>+a JRe a(fRE>—aRC?)x o &

For all distinct i,j € {a,b,c,d}, O”O/’ = R, O/’ Ry O/’ and N“N/’ = R, N/’ R N{’.

Using the above formulas, we have OZV O]-/’ = —N/'N; /i for all distinct i,j € {a,b,c,d}.
Finally, by Lemma 2.3 and Lemma 2.4, the homothety center is given by the vector

On the other hand, the center of mass G of [J ABCD is given by the vector equation

1@:%(1@@1@“@“@)
— }(RB+ RD) + }(RA + RC)
— LBRE 4+ LeRC,

It is well known that the center of mass of a quadrilateral is the intersection of the diag-
onals of its midpoint parallelogram. Figure 6 illustrates this fact. U

Use the letters o and n to represent the circumcenter and the nine-point center, respec-
tively. Define A to be the set of all words consisting of o and n including the empty word
@. Given w = wywy - - - w; with w; € {o,n}, we call k the length of w, written ¢(w) = k.
Write ¢, (w) for the number of times o occurring in w and ¢, (w) for the number of times
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n occurring in w. For example,

Qo =00,0,0.0;,  Qu=0ONMN,NN;, Qoo = 00,0,0.0,

Qm = DN;N&N;N;, Qon = DN;’N{J'NC"N", Ono = DO;’O{,’ é’Ofi’.
Set Qpy = JABCD. Givenw = wiwy - - -wx € Aand w1 € {o,n},setw’ = wijwy - - - wpwpiq
and

the nine-point center quadrilateral of Q,,  if wx;1 = n. (4.5)

Then Q = {Qu | w € A} is a family of quadrilaterals generated by J ABCD, where
all quadrilaterals have the same normalized cyclic and orthocentric characteristics by [1,
Theorem 5.1].

We use the sides of [1 ABCD to label the corresponding sides of Qy; for example, we
write Qon(I]) = N/'N[" for any distinct I, ] € {A, B,C, D}.

(1) Letw € A. By Lemma 2.5,

0y = { the circumcenter quadrilateral of Qy, ifwg 1 =o,
w'

£ g IJ>  if {(w) is even

400 (w)+20n (w) 4

clo(w) fn(w) (4.6)
C

2——KL? if £(w) is odd

4o (w)+20n (w

for all distinct I, ] € {A,B,C,D},.
(2) Ifwy, wy € Asatisfy £(wy) = ¢(w2) (mod 2), then Qy, and Qy, are similar; more-
over, if {,(w1) = £,(wy) and ¢, (w1) = ¢, (wy), then Qy, and Q,, are congruent
by (4.6).
Consequently, if Qg is not similar to Q,, then Q partitions into two sets, namely, [Qp]
and [Q,], the similarity classes represented by Qg and Q,, respectively; otherwise, Q
does not partition according to the parity of word length, since Qg is similar to Q..

’Qw(ﬁ”z =

¢y
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