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SUPER TWISTED PRODUCTS

TONG WU1, YONG WANG2,∗, XUE WANG2

Abstract. In the paper,we define the W2-curvature tensor on super Riemannian man-
ifolds. And we compute the curvature tensor, the Ricci tensor and the W2-curvature
tensor on super twisted product spaces. Furthermore, we investigate the W2-curvature
flat super twisted product manifolds. Finally, we get a result that a mixed Ricci-flat
super twisted product semi-Riemannian manifold can be expressed as a super warped
product semi-Riemannian manifold.

1. Introduction and motivations

The concept of warped products was first introduced by Bishop and ONeil (see [2]) to con-
struct examples of Riemannian manifolds with negative curvature. Singly warped prod-
ucts have a natural generalization. The (singly) twisted product B ×h F of two pseudo-
Riemannian manifolds (B, gB) and (F, gF) with a smooth function h : B × F → (0, ∞)
is the product manifold B × F with the metric tensor g = gB ⊕ h2gF. Here, (B, gB) is
called the base manifold, (F, gF) is called as the fiber manifold and h is called as the
warping function. In Riemannian geometry, warped product manifolds and their generic
forms have been used to construct new examples with interesting curvature properties
since then. In [5], F. Dobarro and E. Dozo had studied from the viewpoint of partial
differential equations and variational methods, the problem of showing when a Riemann-
ian metric of constant scalar curvature can be produced on a product manifolds by a
warped product construction. In [6], Ehrlich, Jung and Kim got explicit solutions to
warping function to have a constant scalar curvature for generalized Robertson-Walker
space-times. In [1], explicit solutions were also obtained for the warping function to make
the space-time as Einstein when the fiber is also Einstein. It is shown that a mixed Ricci-
flat twisted product semi-Riemannian manifold can be expressed as a warped product
semi-Riemannian manifold in [10].
Pokhariyal and Mishra first defined the W2-curvature tensor and they studied its physical
and geometrical properties in [11]. In [13] and [14], Sular and Özgur studied warped
product manifolds with a semi-symmetric metric connection and a semi-symmetric non-
metric connection, they computed curvature of semi-symmetric metric connection and
semi-symmetric non-metric connection and considered Einstein warped product manifolds
with a semi-symmetric metric connection and a semi-symmetric non-metric connection. In
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[15], Wang studied the Einstein multiply warped products with a semi-symmetric metric
connection and the multiply warped products with a semi-symmetric metric connection
with constant scalar curvature.
On the other hand, in [3], the definition of super warped product spaces was given. Ein-
stein warped products were studied in [7]. In [8], several new super warped product
spaces were given and the authors also studied the Einstein equations with cosmolog-
ical constant in these new super warped product spaces. In [16], Wang studied super
warped product spaces with a semi-symmetric metric connection. In [12], Shenawy. S
and Ünal. B studyed the W2-curvature tensor on (singly) warped product manifolds as
well as on generalized Robertson-Walker and standard static space-time and investigated
W2-curvature flat warped product manifolds. In this paper, we define the W2-curvature
tensor on super twisted products. Our motivation is to study super twisted products and
explore the Ricci tensor and the W2-curvature tensor on super twisted product manifolds.
This paper is organized as follows. In Section 2, we state some definitions of super man-
ifolds and super Riemannian metrics. We also define the W2-curvature tensor on super
Riemannian manifolds. In Section 3, we compute the curvature tensor, the Ricci tensor on
super twisted product spaces. Further, we give the W2-curvature tensor of the Levi-civita
connection on super twisted product spaces. In Section 4, we investigate W2-curvature
flat super twisted product manifolds. Finally, we get a result that a mixed Ricci-flat super
twisted product semi-Riemannian manifold can be expressed as a super warped product
semi-Riemannian manifold.

2. Preliminaries

In this section, we give some definitions about Riemannian supergeometry.
Definition 2.1. (Definition 1 in [3]) A locally Z2-ringed space is a pair S := (|S|,OS)
where |S| is a second-countable Hausdorff space, and a OS is a sheaf of Z2-graded Z2-
commutative associative unital R-algebras, such that the stalks OS,p, p ∈ |S| are local
rings.
In this context, Z2-commutative means that any two sections s, t ∈ OS(|U|), |U| ⊂
|S| open, of homogeneous degree |s| ∈ Z2 and |t| ∈ Z2 commute up to the sign rule
st = (−1)|s||t|ts. Z2-ring space Um|n := (U, C∞

Um ⊗∧Rn), is called standard superdomain
where C∞

Um is the sheaf of smooth functions on U and ∧Rn is the exterior algebra of Rn.
We can employ (natural) coordinates xI := (xa, ξA) on any Z2-domain, where xa form a
coordinate system on U and the ξ A are formal coordinates.
Definition 2.2. (Notation and preliminary concepts in [4]) A supermanifold of dimension
m|n is a super ringed space M = (|M|,OM) that is locally isomorphic to Rm|n and |M|
is a second countable and Hausdorff topological space.
The tangent sheaf T M of a Z2-manifold M is defined as the sheaf of derivations of
sections of the structure sheaf, i.e., T M(|U|) := Der(OM(|U|)), for arbitrary open set
|U| ⊂ |M|. Naturally, this is a sheaf of locally free OM-modules. Global sections of the
tangent sheaf are referred to as vector fields. We denote the OM(|M|)-module of vector
fields as Vect(M). The dual of the tangent sheaf is the cotangent sheaf, which we denote
as T ∗M. This is also a sheaf of locally free OM-modules. Global section of the cotangent
sheaf we will refer to as one-forms and we denote the OM(|M|)-module of one-forms as
Ω1(M).
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Definition 2.3. (Definition 4 in [3]) A Riemannian metric on a Z2-manifold M is a Z2-
homogen
-eous, Z2-symmetric, non-degenerate, OM-linear morphisms of sheaves 〈−,−〉g : T M ⊗
T M → OM. A Z2-manifold equipped with a Riemannian metric is referred to as a
Riemannian Z2-manifold.

We will insist that the Riemannian metric is homogeneous with respect to the Z2-degree,
and we will denote the degree of the metric as |g| ∈ Z2. Explicitly, a Riemannian metric
has the following properties:
(1)| 〈X, Y〉g | = |X|+ |Y|+ |g|,
(2)〈X, Y〉g = (−1)|X||Y| 〈Y, X〉g ,
(3) If 〈X, Y〉g = 0 for all Y ∈ Vect(M), then X = 0,
(4) 〈 f X + Y, Z〉g = f 〈X, Z〉g + 〈Y, Z〉g ,
for arbitrary (homogeneous) X, Y, Z ∈ Vect(M) and f ∈ C∞(M). We will say that a
Riemannian metric is even if and only if it has degree zero. Similarly, we will say that a
Riemannian metric is odd if and only if it has degree one. Any Riemannian metric we
consider will be either even or odd as we will only be considering homogeneous metrics.

Definition 2.4. (Definition 9 in [3]) An affine connection on a Z2-manifold is a Z2-degree
preserving map

∇ : Vect(M)× Vect(M) → Vect(M); (X, Y) 7→ ∇XY,

which satisfies the followings
1) Bi-linearity

∇X(Y + Z) = ∇XY +∇XZ; ∇X+YZ = ∇XZ +∇YZ,

2)C∞(M)-linearrity in the first argument

∇ f XY = f∇XY,

3)The Leibniz rule
∇X( f Y) = X( f )Y + (−1)|X|| f | f∇XY,

for all homogeneous X, Y, Z ∈ Vect(M) and f ∈ C∞(M).

Definition 2.5. (Definition 10 in [3]) The torsion tensor of an affine connection
T∇ : Vect(M)⊗C∞(M) Vect(M) → Vect(M) is defined as

T∇(X, Y) := ∇XY − (−1)|X||Y|∇YX − [X, Y],

for any (homogeneous) X, Y ∈ Vect(M). An affine connection is said to be symmetric if
the torsion vanishes.

Definition 2.6. (Definition 11 in [3]) An affine connection on a Riemannian Z2-manifold
(M, g) is said to be metric compatible if and only if

X 〈Y, Z〉g = 〈∇XY, Z〉g + (−1)|X||Y| 〈Y,∇XZ〉g ,

for any X, Y, Z ∈ Vect(M).
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Theorem 2.1. (Theorem 1 in [3]) There is a unique symmetric (torsionless) and metric
compatible affine connection ∇L on a Riemannian Z2-manifold (M, g) which satisfies the
Koszul formula

2
〈
∇L

XY, Z
〉

g
= X 〈Y, Z〉g + 〈[X, Y], Z〉g

+ (−1)|X|(|Y|+|Z|)(Y 〈Z, X〉g − 〈[Y, Z], X〉g)

− (−1)|Z|(|X|+|Y|)(Z 〈X, Y〉g − 〈[Z, X], Y〉g), (2.1)

for all homogeneous X, Y, Z ∈ Vect(M).
Definition 2.7. (Definition 13 in [3]) The Riemannian curvature tensor of an affine con-
nection

R∇ : Vect(M)⊗C∞(M) Vect(M)⊗C∞(M) Vect(M) → Vect(M)

is defined as
R∇(X, Y)Z = ∇X∇Y − (−1)|X||Y|∇Y∇X −∇[X,Y]Z, (2.2)

for all X, Y and Z ∈ Vect(M).
Directly from the definition it is clear that

R∇(X, Y)Z = −(−1)|X||Y|R∇(Y, X)Z, (2.3)
for all X, Y and Z ∈ Vect(M).
Definition 2.8. (Definition 14 in [3]) The Ricci curvature tensor of an affine connection is
the symmetric rank-2 covariant tensor defined as

Ric∇(X, Y) := (−1)|∂xI |(|∂xI |+|X|+|Y|) 1
2

[
R∇(∂xI , X)Y + (−1)|X||Y|R∇(∂xI , Y)X

]I
, (2.4)

where X, Y ∈ Vect(M) and [ ]I denotes the coefficient of ∂xI and ∂xI is the natural frame
of T M.
Definition 2.9. (Definition 16 in [3]) Let f ∈ C∞(M) be an arbitrary function on a Rie-
mannian Z2-manifold (M, g). The gradient of f is the unique vector field gradg f such
that

X( f ) = (−1)| f ||g|
〈

X, gradg f
〉

g
, (2.5)

for all X ∈ Vect(M).
Definition 2.10. (Definition 17 in [3]) Let (M, g) be a Riemannian Z2-manifold and let
∇L be the associated Levi-Civita connection. The covariant divergence is the map DivL :
Vect(M) → C∞(M), given by

DivL(X) = (−1)|∂xI |(|∂xI |+|X|)(∇∂xI X)I , (2.6)

for any arbitrary X ∈ Vect(M).

Definition 2.11. (Definition 18 in [3]) Let (M, g) be a Riemannian Z2-manifold and let ∇L

be the associated Levi-Civita connection. The connection Laplacian (acting on functions)
is the differential operator of Z2-degree |g| defined as

4g( f ) = DivL(gradg f ), (2.7)

for any and all f ∈ C∞(M).
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Definition 2.12. Let (M, g) be a Riemannian Z2-manifold and ∇ be the Levi-Civita con-
nection associated to the Riemannian metric gM. Let D ⊆ TM be a super distribution and
D⊥ ⊆ TM is the orthogonal distribution to D, then gM = gD + gD⊥ . Let πD : TM → D,
πD⊥

: TM → D⊥ be the projections. For X, Y ∈ Γ(D), we define ∇D
XY = πD(∇XY),

then we have the fundamental form of submanifold on Riemannian Z2-manifold (M, g)

∇XY = ∇D
XY + B(X, Y), (2.8)

∇Xξ = −(−1)|X||ξ|Aξ X + L⊥
X ξ, (2.9)

where B(X, Y) = πD⊥∇XY, L⊥
X ξ = πD⊥∇Xξ and πD∇Xξ = −(−1)|X||ξ|Aξ X for any

homogenous ξ ∈ Γ(D⊥) and X, Y ∈ Γ(D).

Then

B( f X, Y) = f B(X, Y), B(X, f Y) = (−1)| f ||X|B(X, Y)

B(X, Y) = (−1)|X||Y|B(Y, X) + πD⊥
[X, Y];

A f ξ X = f Aξ X, Aξ f X = (−1)| f ||ξ|Aξ X, gD⊥
(B(X, Y), ξ) = (−1)|X|(|Y|+|ξ|)gD(Y, Aξ X).

(2.10)

When D is a submanifold of M, we also have similar formula.

Definition 2.13. Let (Mm,n, g) be a Riemannian Z2-manifold, the W2-curvature tensor is
also given by

W2(X, Y, Z, T) = g(K(X, Y)T, Z), (2.11)

for any homogenous X, Y, Z, T ∈ Vect(M) and where

K(X, Y)T := R(X, Y)T − 1
(m − n − 1)

[X · Ric(Y, T)− (−1)|Y||T|Ric(X, T)Y]. (2.12)

3. The W2-curvature tensor on super twisted products

Let (M = M1 ×µ M2, gµ = π∗
1 g1 + π∗

1(µ)π
∗
2 g2) be the super twisted product with |g| =

|g1| = |g2| = 0 and |µ| = 0 and µ ∈ C∞(M) and its body ε(µ) > 0. For simplicity, we
assume that µ = h2 with |h| = 0. Let ∇L,µ be the Levi-Civita connection on (M, gµ) and
∇L,M1 (resp. ∇L,M2) be the Levi-Civita connection on (M1, g1) (resp. (M2, g2)).

Lemma 3.1. For X, Y, Z ∈ Vect(M1) and U, W, V ∈ Vect(M2), we have

(1)∇L,µ
X Y = ∇L,M1

X Y,

(2)∇L,µ
X U =

X(h)
h

U,

(3)∇L,µ
U X = (−1)|U||X| X(h)

h
U,

(4)∇L,µ
U W =

U(h)
h

W + (−1)|U||W|W(h)
h

U − (−1)|V|(|U|+|W|) g2(U, W)

h
gradg2

h

− hg2(U, W)gradg1
h +∇L,M2

U W. (3.1)
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Proof. (1)By (2.1) and [X, V] = 0, we have gµ(∇L,µ
X Y, Z) = g1(∇L,M1

X Y, Z) and
gµ(∇L,µ

X Y, V) = 0, so (1) holds.
(2)Similarly, we have gµ(∇L,µ

X U, Y) = 0 and 2gµ(∇L,µ
X U, V) = X(µ)

µ gµ(U, V), so (2) holds
by µ = h2.
(3)By (2) and ∇L,µ having no torsion, we have (3).
(4)By (2.1) and (2.5), we have

2gµ(∇L,µ
U W, X) = −(−1)|X|(|U|+|W|)X(µ)g2(U, W)

= −(−1)|X|(|U|+|W|)g1(X, gradg1
(µ))g2(U, W)

= −gµ(g2(U, W)gradg1
(µ), X). (3.2)

And
2gµ(∇L,µ

U W, V)

= U(h2)g2(W, V) + (−1)|U||W|W(h2)g2(U, V)− (−1)|V|(|U|+|W|)V(h2)g2(U, W)

+ 2gµ(∇L,M2
U W, V), (3.3)

then we have

PM2∇L,µ
U W =

U(h)
h

W + (−1)|U||W|W(h)
h

U − (−1)|V|(|U|+|W|) g2(U, W)

h
gradg2

h, (3.4)

so (4) holds. �

Let RL,µ denotes the curvature tensor of the Levi-Civita connection on (Mm,n, gµ) and
let RL,M1 (resp. RL,M2) be the curvature tensor of the Levi-Civita connection on (M1, g1)

(resp. (M2, g2)). Let Hh
M1

(X, Y) := XY(h)−∇L,M1
X Y(h), then Hh

M1
( f X, Y) = f Hh

M1
(X, Y)

and Hh
M1

(X, f Y) = (−1)| f ||X| f Hh
M1

(X, Y), where Hh
M1

is a (0, 2) tensor.

Proposition 3.1. For X, Y, Z ∈ Vect(M1) and U, V, W ∈ Vect(M2), we have

(1)RL,µ(X, Y)Z = RL,M1(X, Y)Z,

(2)RL,µ(V, X)Y = −(−1)|V|(|X|+|Y|) Hh
M1

(X, Y)
h

V,

(3)RL,µ(X, Y)V = 0,

(4)RL,µ(V, W)X = (−1)|W||X|V
(

X(h)
h

)
W − (−1)|V|(|W|+|X|)W

(
X(h)

h

)
V,

(5)RL,µ(X, V)W = (−1)(|X|+|V|)|W|W
(

X(h)
h

)
V − (−1)|X|(|V|+|W|)+|V||W|g2(W, V)

gradg2

X(h)
h

− (−1)|X|(|V|+|W|) gµ(V, W)

h
∇L,M1

X (gradg1
h),

(6)RL,µ(V, W)U = RL,M2(V, W)U + (−1)|U||W|gµ(V, U)gradg1

W(h)
h

− (−1)(|U|+|W|)|V|

gµ(W, U)gradg1

V(h)
h

− (−1)|V|(|W|+|U|) (gradg1
h)(h)

h2 g2(W, U)V + (−1)|W||U| (gradg1
h)(h)

h2

g2(V, U)W. (3.5)
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Proof. (1)By Lemma 3.1 and (2.2), we can get (1).
(2)By Lemma 3.1 and the Leibniz rule, we have

∇L,µ
V ∇L,µ

X Y = (−1)|V|(|X|+|Y|)∇
L,M1
X Y(h)

h
V, −∇L,µ

X ∇L,µ
V Y = −(−1)|V|(|X|+|Y|) XY(h)

h
V,

(3.6)

by (2.2) and [V, X] = 0 and the definition of Hh
M1

(X, Y), we get (2).
(3) By Lemma 3.1, we have ∇L,µ

X ∇L,µ
Y V = XY(h)

h V and by (2.2) and the definition of [X, Y],
we get (3).
(4)By Lemma 3.1, we have

∇L,µ
V ∇L,µ

W X = (−1)|W||X|
[

V
(

X(h)
h

)
W + (−1)|V||X| X(h)

h
∇L,µ

V W
]

, (3.7)

−∇L,µ
W ∇L,µ

V X = −(−1)|V||X|
[

W
(

X(h)
h

)
V + (−1)|W||X| X(h)

h
∇L,µ

W V
]

, (3.8)

−∇L,µ
[V,W]

X = (−1)(|V|+|W|)|X| X(h)
h

[V, W], (3.9)

then by (2.2) and ∇L,µ having no torsion, we get (4).
(5)For W1 ∈ Vect(M2), by (4) and (4.12) in [9], we have

gµ(RL,µ(X, V)W, W1)

= (−1)(|X|+|V|)(|W|+|W1|)gµ(RL,µ(W, W1)X, V)

= (−1)(|X|+|V|)(|W|+|W1|)gµ((−1)|X||W1|W
(

X(h)
h

)
W1 − (−1)(|X|+|W1|)|W|W1

(
X(h)

h

)
W, V)

= (−1)(|X|+|V|)|W|+|V||W1|W
(

X(h)
h

)
gµ(W1, V)− (−1)(|X|+|W|)|W1|+|V|(|W|+|W1|)W1

(
X(h)

h

)
gµ(W, V), (3.10)

by (2.5), we have

W1

(
X(h)

h

)
= (−1)|W1||X|g2(gradg2

X(h)
h

, W1), (3.11)

then,

PM2 RL,µ(X, V)W = (−1)|X|(|V|+|W|)W
(

X(h)
h

)
V − (−1)|X|(|V|+|W|)+|V||W|g2(W, V)

gradg2

X(h)
h

.

(3.12)

By Proposition 9 in [3] and (2.2), we have

gµ(RL,µ(X, V)W, Y) = −(−1)|W||Y|gµ(RL,µ(X, V)Y, W) = −(−1)(|W|+|V|)|Y| Hh
M1

(X, Y)
h

gµ(V, W). (3.13)
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By the definition of gradg1
(h) and ∇L,M1 preserving the metric, we can get

g1(∇L,M1
X (gradg1

h), Y) = (−1)|Y||g1|Hh
M1

(X, Y) = Hh
M1

(X, Y), (3.14)

so

gµ(RL,µ(X, V)W, Y) = −(−1)|X|(|V|+|W|)gµ(
gµ(V, W)

h
∇L,M1

X (gradg1
h), Y). (3.15)

By (3.7) and (3.10), we get (5).
(6) By (2.5), we have

gµ(RL,µ(V, W)U, X) = −(−1)|X||U|gµ(RL,µ(V, W)X, U)

= −(−1)|X||U|gµ((−1)|X||W|V
(

X(h)
h

)
W − (−1)|V|(|X|+|W|)

W
(

X(h)
h

)
V, U)

= (−1)|X||U|+|V|(|X|+|W|)gµ(W
(

X(h)
h

)
V, U)− (−1)|X|(|U|+|W|)

gµ(V
(

X(h)
h

)
W, U). (3.16)

By XW = (−1)|X||W|WX and XV = (−1)|X||V|VX, we have

PM1 RL,µ(V, W)U = (−1)|U||W|gµ(V, U)gradg2

W(h)
h

− (−1)(|U|+|W|)|V|gµ(W, U)gradg2

V(h)
h

.

(3.17)

By Definition 2.7 and Definition 2.12, we have

RD(X, Y)Z = (R(X, Y)Z)> − (−1)|Y||Z|AB(X,Z)Y + (−1)|X|(|Y|+|Z|)AB(Y,Z)X,

where RD (resp. R) denotes the curvature tensor of ∇D (resp. ∇) and R> denotes
tangential component of R.
Then by g(B(X, Y), ξ) = (−1)(|Y|+|ξ|)|X|g(Y, Aξ X), we have

g(Aξ X, Y) = (−1)|Y|(|X|+|ξ|)g(Y, Aξ X) = (−1)|ξ|(|X|+|Y|)g(B(X, Y), ξ), (3.18)

so

g(RD(X, Y)Z, W)

= g(R(X, Y)Z), W)− (−1)|Y||Z|g(AB(X,Z)Y, W) + (−1)|X|(|Y|+|Z|)g(AB(Y,Z)X, W)

= g(R(X, Y)Z), W)− (−1)|X|(|Y|+|W|)+|W||Z|g(B(Y, W), B(X, Z)) + (−1)|W|(|Y|+|Z|)

g(B(X, W), B(Y, Z)). (3.19)

By B(U, W) = −hg2(U, W)gradg1
h = − gµ(U,W)

h gradg1
h, we have

gµ(RM2(V, W)U, W1)

= gµ(RL,µ(X, Y)Z), W1)− (−1)|V|(|W|+|W1|)+|W1||U|gµ(B(W, W1), B(V, U))

+ (−1)|W1|(|W|+|U|)gµ(B(V, W1), B(W, U))
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= gµ(RL,µ(X, Y)Z), W1) + (−1)|V|(|W|+|U|) |gradg1
h|2g

h2 gµ(W, U)gµ(V, W1)

− (−1)|W||U| |gradg1
h|2g

h2 gµ(V, U)gµ(W, W1),

= gµ(RL,µ(X, Y)Z), W1) + (−1)|V|(|W|+|U|) (gradg1
h)(h)

h2 gµ(W, U)gµ(V, W1)

− (−1)|W||U| (gradg1
h)(h)

h2 gµ(V, U)gµ(W, W1), (3.20)

then, we get (6). �

In the following, we compute the Ricci tensor of manifold Mm,n. Let M1 (resp. M2) have
the (p, m1) (resp. (q, m2)) dimension, where n1 = p − m1, n2 = q − m2 and m − n =
n1 + n2. Let ∂xI = {∂xa , ∂ξ A} (resp. ∂yJ = {∂yb , ∂ηB}) denote the natural tangent frames
on M1 (resp. M2). Let RicL,µ (resp. RicL,M1 , RicL,M2) denote the Ricci tensor of (M, gµ)
(resp. (M1, g1), (M2, g2)). Then by (2.4), (2.7) and (3.5), we have

Proposition 3.2. The following equalities holds

(1)RicL,µ(∂xL , ∂xK) = RicL,M1(∂xL , ∂xK)−
(q − m2)

h
Hh

M1
(∂xL , ∂xK),

(2)RicL,µ(∂xL , ∂yJ ) = −(q − m2 − 1)(−1)|∂xL ||∂yJ |∂yJ

(
∂xL(h)

h

)
,

(3)RicL,µ(∂yJ , ∂xL) = −(q − m2 − 1)∂yJ

(
∂xL(h)

h

)
,

(4)RicL,µ(∂yL , ∂yJ ) = RicL,M2(∂yL , ∂yJ )− gµ(∂yL , ∂yJ ) · [
4L

g1
(h)

h
+ (q − m2 − 1)

(gradg1
h)(h)

h2 ].

(3.21)

Proof. (1)By Definition 2.8 and Proposition 3.1, we have

RicL,µ(∂xL , ∂xK)

= ∑
I
(−1)|∂xI |(|∂xI |+|∂xL |+|∂xK |) 1

2
[RL,µ(∂xI , ∂xL)∂xK + (−1)|∂xL ||∂xK |RL,µ(∂xI , ∂xK)∂xL ]I

+ ∑
J
(−1)|∂yJ |(|∂yJ |+|∂xL |+|∂xK |) 1

2
[RL,µ(∂yJ , ∂xL)∂xK + (−1)|∂xL ||∂xK |RL,µ(∂yJ , ∂xK)∂xL ]J

= RicL,M1(∂xL , ∂xK) + ∑
J
(−1)|∂yJ |(|∂yJ |+|∂xL |+|∂xK |) 1

2

[
− (−1)|∂yJ |(|∂xL |+|∂xK |) Hh

M1
(∂xL , ∂xK)

h

∂yJ − (−1)|∂xL ||∂xK |(−1)|∂yJ |(|∂xL |+|∂xK |) Hh
M1

(∂xK , ∂xL)

h
∂yJ

]J

= RicL,M1(∂xL , ∂xK)− ∑
J
(−1)|∂yJ ||∂yJ | 1

2

[Hh
M1

(∂xL , ∂xK)

h
+ (−1)|∂xL ||∂xK |

Hh
M1

(∂xK , ∂xL)

h

]
,

(3.22)
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by (−1)|∂yJ ||∂yJ | = ∑
q
j=1(−1)0 + ∑m2

k=1(−1)1 = q − m2, we have

RicL,µ(∂xL , ∂xK) = RicL,M1(∂xL , ∂xK)−
(q − m2)

2h

[Hh
M1

(∂xL , ∂xK)

h
+ (−1)|∂xL ||∂xK |

Hh
M1

(∂xK , ∂xL)

h

]
,

(3.23)

by ∇L,M1 having no torsion, we have

Hh
M1

(∂xL , ∂xK)

h
− (−1)|∂xL ||∂xK |

Hh
M1

(∂xK , ∂xL)

h
= ∂xL(∂xK(h))−∇L,M1

∂xL
∂xK(h)− (−1)|∂xL ||∂xK |∂xK(∂xL(h)) + (−1)|∂xL ||∂xK |∇L,M1

∂xK
∂xL(h)

= −[−[∂xL , ∂xK ](h) +∇L,M1
∂xL

∂xK(h)− (−1)|∂xL ||∂xK |∂xK(∂xL(h))]

= −TL,M1(∂xL , ∂xK)(h)
= 0, (3.24)

so (1) holds.
(2)By Definition 2.8, we get

RicL,µ(∂xL , ∂yJ )

= ∑
I
(−1)|∂xI |(|∂xI |+|∂xL |+|∂yJ |) 1

2
[RL,µ(∂xI , ∂xL)∂yJ + (−1)|∂xL ||∂yJ |RL,µ(∂xI , ∂yJ )∂xL ]I

+ ∑
K
(−1)|∂yK |(|∂yK |+|∂xL |+|∂yJ |) 1

2
[RL,µ(∂yK , ∂xL)∂xK + (−1)|∂xL ||∂yJ |RL,µ(∂yK , ∂yJ )∂xL ]K

= ∑
K
(−1)|∂yK |(|∂yK |+|∂xL |+|∂yJ |) 1

2
[RL,µ(∂yK , ∂xL)∂xK + (−1)|∂xL ||∂yJ |RL,µ(∂yK , ∂yJ )∂xL ]K

= ∑
K
(−1)|∂yK |(|∂yK |+|∂xL |+|∂yJ |) 1

2
[−(−1)|∂yK ||∂xL |RL,µ(∂xL , ∂yK)∂yJ + (−1)|∂xL ||∂yJ |

RL,µ(∂yK , ∂yJ )∂xL ]K, (3.25)

by Propsition 3.1, we get

RL,µ(∂xL , ∂yK)∂yJ

= (−1)(|∂yK |+|∂xL |)|∂yJ |∂yJ

(
∂xL(h)

h

)
∂yK − (−1)|∂xL |(|∂yK |+|∂yJ |)+|∂yK ||∂yJ |g2(∂yJ , ∂yK)gradg2

∂xL(h)
h

.

(3.26)

By [3], we have

gradg f =
I

∑(−1)| f ||g|+|∂yJ |(| f |+|g|) ∂ f
∂yJ

gJ I∂yI ,

(3.27)

and

gαK = (−1)|∂yK |2+|∂yα |2+|g|2+|∂yK ||∂yα |gKα, (3.28)
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then

[(−1)|∂xL |(|∂yK |+|∂yJ |)+|∂yK ||∂yJ |g2(∂yJ , ∂yK)gradg2
(∂xL(lnh))]∂yK

= (−1)|∂xL |(|∂yK |+|∂yJ |)+|∂yK ||∂yJ |g2(∂yJ , ∂yK)∑
α

∂xL(∂yα(lnh))gαK
2

= (−1)|∂xL |(|∂yK |+|∂yJ |)+|∂yK ||∂yJ |(−1)(|∂yK |+|∂yJ |)(|∂yα |+|∂xL |)∂xL(∂yα(lnh))g2(∂yJ , ∂yK)gαK
2

= ∑
α

(−1)|∂yα |+|∂yK |+|∂yα ||∂yK |(−1)(|∂yJ |+|∂yK |)|∂xL |+|∂yJ ||∂yK |(−1)(|∂yJ |+|∂yK |)(|∂xL |+|∂yα |)

∂xL(∂yα(lnh))g2(∂yJ , ∂yK)gKα
2

= ∑
α

(−1)|∂yK |2+|∂yα |
(−1)(|∂yα |+|∂yK |)|∂yJ |∂xL(∂yα(lnh))g2(∂yJ , ∂yK)gKα

2 , (3.29)

so

∑
K
(−1)(|∂yK |+|∂yJ |+|∂xL |)|∂yK |(−1)|∂yK ||∂xL |[(−1)|∂xL |(|∂yK |+|∂yJ |)+|∂yK ||∂yJ |g2(∂yJ , ∂yK)

gradg2
(∂xL(lnh))]∂yK

= ∑
K,α

(−1)|∂yα |+|∂yJ ||∂yα |
∂xL(∂yα(lnh))g2(∂yJ , ∂yK)gKα

2

= ∑
α

(−1)|∂yα |+|∂yJ ||∂yα |
∂xL(∂yα(lnh))δα

J

= (−1)|∂yJ |+|∂yJ |2 ∂xL(∂yJ (lnh))

= ∂xL(∂yJ (lnh))

= (−1)|∂yJ ||∂xL |∂yJ (∂xL(lnh))

= (−1)|∂yJ ||∂xL |∂yJ

(
∂xL(h)

h

)
. (3.30)

And
1
2 ∑

K
(−1)|∂yK |(|∂yK |+|∂xL |+|∂yJ |)[−(−1)|∂yK ||∂xL |RL,µ(∂xL , ∂yK)∂yJ ]

∂yK

= −1
2
(q − m2 − 1)(−1)|∂xL ||∂yJ |∂yJ

(
∂xL(h)

h

)
, (3.31)

similarly,
1
2 ∑

K
(−1)|∂yK |(|∂yK |+|∂xL |+|∂yJ |)[(−1)|∂xL ||∂yJ |RL,µ(∂yK , ∂yJ )∂xL ]K

= −1
2
(q − m2 − 1)(−1)|∂xL ||∂yJ |∂yJ

(
∂xL(h)

h

)
, (3.32)

so (2) holds.
(3)By RicL,µ(∂yJ , ∂xL) = (−1)|∂xL ||∂yJ |RicL,µ(∂xL , ∂yJ ), (3) holds.
(4)By Definition 2.8 and Proposition 3.1, we have

RicL,µ(∂yL , ∂yJ )
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= ∑
I
(−1)|∂xI |(|∂xI |+|∂yL |+|∂yJ |) 1

2
[RL,µ(∂xI , ∂yL)∂yJ + (−1)|∂yL ||∂yJ |RL,µ(∂xI , ∂yJ )∂yL ]I

+ ∑
K
(−1)|∂yK |(|∂yK |+|∂yL |+|∂yJ |) 1

2
[RL,µ(∂yK , ∂yL)∂yJ + (−1)|∂yL ||∂yJ |RL,µ(∂yK , ∂yJ )∂yL ]K

= ∆1 + ∆2, (3.33)

where

∆1 := ∑
I
(−1)|∂xI |(|∂xI |+|∂yL |+|∂yJ |) 1

2
[RL,µ(∂xI , ∂yL)∂yJ + (−1)|∂yL ||∂yJ |RL,µ(∂xI , ∂yJ )∂yL ]I

∆2 := ∑
K
(−1)|∂yK |(|∂yK |+|∂yL |+|∂yJ |) 1

2
[RL,µ(∂yK , ∂yL)∂yJ + (−1)|∂yL ||∂yJ |RL,µ(∂yK , ∂yJ )∂yL ]K.

(3.34)

by Propsition 3.5, we have

∑
I
(−1)|∂xI |(|∂xI |+|∂yL |+|∂yJ |)[RL,µ(∂xI , ∂yL)∂yJ ]I

= −∑
I
(−1)|∂xI |(|∂xI |+|g|) gµ(∂yL , ∂yJ )

h

[∇L,M1
∂xI

(gradg1
h)

h

]I

= −
gµ(∂yL , ∂yJ )

h ∑
I
(−1)|∂xI |(|∂xI |+|gradg1

h|)
[∇L,M1

∂xI
(gradg1

h)

h

]I

= −
gµ(∂yL , ∂yJ )

h
Div∇L,M1 gradg1

h

= −
gµ(∂yL , ∂yJ )

h
4L

g1
(h), (3.35)

then, we get

∆1 =
1
2
[−gµ(∂yL , ∂yJ )

4L
g1
(h)

h
− (−1)|∂yL ||∂yJ |gµ(∂yL , ∂yJ )

4L
g1
(h)

h
],

= −
gµ(∂yL , ∂yJ )

h
4L

g1
(h), (3.36)

∆2 = RicL,M2(∂yL , ∂yJ ) + ∑
K
(−1)|∂yK |(|∂yK |+|∂yL |+|∂yJ |) 1

2

{
(−1)|∂yL ||∂yJ |gµ(∂yK , ∂yJ )gradg2

∂yL(h)
h

− (−1)(|∂yL |+|∂yJ |)|∂yK |gµ(∂yL , ∂yJ )gradg2

∂yK(h)
h

− (−1)(|∂yL |+|∂yJ |)|∂yK |

− (−1)|∂yK |(|∂yL |+|∂yJ |) (gradg1
h)(h)

h2 gµ(∂yL , ∂yJ )∂yK + (−1)|∂yL ||∂yJ | (gradg1
h)(h)

h2

gµ(∂yK , ∂yJ )∂yL + (−1)|∂yL ||∂yJ |
[
(−1)|∂yL ||∂yJ |gµ(∂yK , ∂yL)gradg2

∂yJ (h)
h

− (−1)(|∂yL |+|∂yJ |)|∂yK |gµ(∂yK , ∂yL)(gradg2

∂yK(h)
h

− (−1)(|∂yL |+|∂yJ |)|∂yK | (gradg1
h)(h)

h2
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gµ(∂yJ , ∂yL)∂yK + (−1)|∂yL ||∂yJ | (gradg1
h)(h)

h2 gµ(∂yK , ∂yL)∂yJ

]}
= RicL,M2(∂yL , ∂yJ )− gµ(∂yL , ∂yJ )(q − m2 − 1)

(gradg1
h)(h)

h2 , (3.37)

then,

∆1 + ∆2 = RicL,M2(∂yL , ∂yJ )− gµ(∂yL , ∂yJ )[
4L

g1
(h)

h
+ (q − m2 − 1)

(gradg1
h)(h)

h2 ], (3.38)

so (4) holds.
�

Theorem 3.1. Let M = M1 × M2 be a singly twisted product manifold with the metric
tensor g = g1 ⊕ h2g2. If X, Y, Z ∈ Vect(M1), U, V, Q ∈ Vect(M2), then

(1)KL,µ(X, Y)Z = KL,M1(X, Y)Z +
n2

(m − n − 1)(n1 − 1)
[X · RicL,M1(Y, Z)− (−1)|Y||Z|

RicL,M1(X, Z)Y] +
q − m2

(m − n − 1)h
[X · Hh

M1
(Y, Z)− (−1)|Y||Z|Hh

M1
(X, Z)Y]

(2)KL,µ(X, Y)Q = −q − m2 − 1
m − n − 1

[
(−1)|Y||Q|Q

(
X(h)

h

)
Y − X · Q

(
Y(h)

h

)]
(3)KL,µ(U, V)X = (−1)|V||X|U

(
X(h)

h

)
V + (−1)|U|(|V|+|X|)V

(
X(h)

h

)
U

+
q − m2 − 1
m − n − 1

[
(−1)|V||X|U · X

(
X(h)

h

)
− (−1)|X|(|V|+|U|)X

(
U(h)

h

)
V
]

(4)KL,µ(X, V)Y =
1

m − n − 1
(−1)|V||Y|[(m − n − q + m2 − 1)Hh

M1
(X, Y) + RicL,M1(X, Y)]V

+
q − m2 − 1
m − n − 1

X · Y
V(h)

h

(5)KL,µ(X, U)V = (−1)|X|(|V|+|U|)V
(

X(h)
h

)
U − (−1)|X|(|V|+|U|)+|U||V|g2(U, V)[h4L

g1
(h)

+ (q − m2 − 1)gradg1
(h)(h)] +

q − m2 − 1
m − n − 1

(−1)|V||U|V
X(h)

h
U

(6)KL,µ(U, V)Q = KL,M2(U, V)Q +
n1

(m − n − 1)(n2 − 1)
[U · RicL,M2(V, Q)− (−1)|V||Q|

RicL,M2(U, Q)V] + (−1)|V||Q|gµ(U, Q)gradg2

V(h)
h

− (−1)|U|(|V|+|Q|)

gµ(V, Q)gradg2

U(h)
h

− (−1)|U|(|V|+|Q|) gradg1
(h)(h)

h2 g2(V, Q)U

+ (−1)|V||Q| gradg1
(h)(h)

h2 g2(U, Q)V +
1

m − n − 1
[U · g2(V, Q)(h4L

g1
(h)

+ (q − m2 − 1)gradg1
(h)(h))]− 1

m − n − 1
[(−1)|V||Q|g2(U, Q)(h4L

g1
(h)

+ (q − m2 − 1)gradg1
(h)(h))V]. (3.39)
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Proof. (1)By Definition 2.13 and Propsition 3.2, we have

KL,µ(X, Y)Z = RL,µ(X, Y)Z − 1
(m − n − 1)

[X · RicL,µ(Y, Z)− (−1)|Y||Z|RicL,µ(X, Z)Y]

= RL,M1(X, Y)Z − 1
(m − n − 1)

X · [RicL,M1(Y, Z)− q − m2

h
Hh

M1
(Y, Z)]

+
1

(m − n − 1)
(−1)|Y||Z|[RicL,M1(X, Z)− q − m2

h
Hh

M1
(X, Z)]Y

= KL,M1(X, Y)Z +
n2

(m − n − 1)(n1 − 1)
[X · RicL,M1(Y, Z)− (−1)|Y||Z|

RicL,M1(X, Z)Y] +
q − m2

(m − n − 1)h
[X · Hh

M1
(Y, Z)− (−1)|Y||Z|Hh

M1
(X, Z)Y],

(3.40)

then (1) holds.
(2)By Definition 2.13 and Propsition 3.2, we have

KL,µ(X, Y)Q

= RL,µ(X, Y)Q − 1
(m − n − 1)

[X · RicL,µ(Y, Q)− (−1)|Y||Q|RicL,µ(X, Q)Y]

= − 1
(m − n − 1)

[
X · −q − m2 − 1

2
Q
(

Y(h)
h

)
+ (−1)|Y||Q| q − m2 − 1

2
Q
(

X(h)
h

)
Y
]

= − q − m2 − 1
2(m − n − 1)

[
(−1)|Y||Z|Q

(
X(h)

h

)
Y − X · Q

(
Y(h)

h

)]
, (3.41)

so (2) holds.
(3)By Definition 2.13 and Propsition 3.2, we have

KL,µ(U, V)X

= RL,µ(U, V)X − 1
(m − n − 1)

[U · RicL,µ(V, X)− (−1)|V||X|RicL,µ(U, X)V]

− 1
(m − n − 1)

[
U · −(q − m2 − 1)X

(
V(h)

h

)
+ (−1)(|V||X|(q − m2 − 1)X

(
U(h)

h

)
V
]

= (−1)|V||X|U
(

X(h)
h

)
V + (−1)|U|(|V|+|X|)V

(
X(h)

h

)
U

− q − m2 − 1
2(m − n − 1)h

[
U · X

(
V(h)

h

)
− (−1)(|V||X|X

(
U(h)

h

)
V
]

, (3.42)

so (3) holds.
(4)By Definition 2.13 and Propsition 3.2, we have

KL,µ(X, V)Y = RL,µ(X, V)Y − 1
(m − n − 1)

[X · RicL,µ(V, Y)− (−1)|V||Y|RicL,µ(X, Y)V]

= (−1)|X||V|RL,µ(V, X)Y − 1
m − n − 1

[X · −(q − m2 − 1)Y
(

V(h)
h

)
− (−1)(|V||Y|(RicL,M1(X, Y)− q − m2

h
Hh

M1
(X, Y))V]
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=
1

m − n − 1
(−1)|V||Y|[(n − q + m2 − 1)Hh

M1
(X, Y) + RicL,M1(X, Y)]V

+
q − m2 − 1
m − n − 1

X · Y
(

V(h)
h

)
, (3.43)

so (4) holds.
(5)By Definition 2.13 and Propsition 3.2, we have

KL,µ(X, U)V = RL,µ(X, U)V − 1
m − n − 1

[X · RicL,µ(U, V)− (−1)|U||V|RicL,µ(X, V)U]

= (−1)|X|(|U|+|V|)V
(

X(h)
h

)
U − (−1)|X|(|U|+|V|)+|V||U|g2(V, U)gradg2

X(h)
h

− (−1)|X|(|U|+|V|)hg2(U, V)∇L,M1
X (gradg2

h)− 1
m − n − 1

{
X ·

[
RicL,M2(U, V)

− gµ(U, V)

(4L
g1
(h)

h
+ (q − m2 − 1)

(gradg1
h)(h)

h2

)]
+ (−1)|U||V| (q − m2 − 1)

2

V
(

X(h)
h

)
U
}

= (−1)|X|(|U|+|V|)V
(

X(h)
h

)
U − (−1)|X|(|U|+|V|)+|V||U|g2(V, U)gradg2

X(h)
h

− (−1)|X|(|U|+|V|)hg2(U, V)∇L,M1
X (gradg2

h)− 1
m − n − 1

X · RicL,M2(U, V)

+
1

m − n − 1
X · g2(U, V)[h4L

g1
(h) + (−1)|U||V| (q − m2 − 1)

2
V
(

X(h)
h

)
U,

(3.44)

so (5) holds.
(6)By Definition 2.13 and Propsition 3.2, we have

KL,µ(U, V)Q

= RL,µ(U, V)Q − 1
m − n − 1

[U · RicL,µ(V, Q)− (−1)|V||Q|RicL,µ(U, Q)V]

= RL,M2(U, V)Q + (−1)|Q||V|)gµ(U, Q)gradg2

V(h)
h

− (−1)|U|(|Q|+|V|)gµ(V, Q)gradg2

U(h)
h

− (−1)|U|(|Q|+|V|) (gradg1
h)(h)

h2 g2(V, Q)U

+ (−1)|V||Q| (gradg1
h)(h)

h2 g2(U, Q)V

− 1
m − n − 1

{
U ·

[
RicL,M2(V, Q)− gµ(V, Q)

(4L
g1
(h)

h
+ (q − m2 − 1)

(gradg1
h)(h)

h2

)]
− (−1)|V||Q|

[
RicL,M2(U, Q)− gµ(U, Q)

(4L
g1
(h)

h
+ (q − m2 − 1)

(gradg1
h)(h)

h2

)]
V
}

= KL,M2(U, V)Q +
n1

(m − n − 1)(n2 − 1)
[U · RicL,M2(V, Q)− (−1)|V||Q|RicL,M2(U, Q)V]
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+ (−1)|Q||V|)gµ(U, Q)gradg2

V(h)
h

− (−1)|U|(|Q|+|V|)gµ(V, Q)gradg2

U(h)
h

− (−1)|U|(|Q|+|V|) (gradg1
h)(h)

h2 g2(V, Q)U + (−1)|V||Q| (gradg1
h)(h)

h2 g2(U, Q)V

+
1

m − n − 1
U ·

[
g2(V, Q)(h4L

g1
(h)) + (q − m2 − 1)(gradg1

h)(h)
]

− 1
m − n − 1

[
(−1)|V||Q|g2(U, Q)(h4L

g1
(h)) + (q − m2 − 1)(gradg1

h)(h)
]

V, (3.45)

so (6) holds.
�

4. Mixed Ricci flat super twisted products

Definition 4.1. Let M = M1 ×µ M2 be a super twisted product of (M1, g1) and (M2, g2)
with twisting function h, then M = M1 ×µ M2 is called mixed Ricci-flat if Ric(X, V) = 0
for all X ∈ Vect(M1) and V ∈ Vect(M2).

Theorem 4.1. Let M = M1 ×µ M2 be a super twisted product of (M1, g1) and (M2, g2)
with twisting function h and q − m2 − 1 6= 0. Then, Ric(X, V) = 0 for all X ∈ Vect(M1)
and V ∈ Vect(M2) if and only if M = M1 ×µ M2 can be expressed as a super warped
product, M = M1 ×µ M2 of (M1, g1) and (M2, ĝ2) with a warping function Φ̂, where ĝ2
is a conformal metric tensor to g2.

Proof. First, we prove the sufficiency of the theorem. By Propsiton 3.2 and X(h)
h =

X(lnh), we know

RicL,µ(X, V) = −(q − m2 − 1)(−1)|X||V|VX(lnh) = 0, (4.1)
then by q − m2 − 1 6= 0, VX(lnh) = 0 and XV(lnh) = 0, XV(lnh) = 0 implies that
V(lnh) only depends on the points of M2, and similarly, VX(lnh) = 0 implies that X(lnh)
only depends on the points of M1. Thus h can be expressed as a sum of two functions Φ
and Ψ which are defined on M1 and M2, respectively, that is, lnh(s, t) = φ(s) + ψ(t) for
any (s, t) ∈ M1 × M2. Hence h = eφeψ, that is, h = Φ(s)Ψ(t), where Φ = eφ and Ψ = eψ

for any (s, t) ∈ M1 × M2. Thus we can write g = g1 ⊕ Φ2 ĝ2, where ĝ2 = Ψ2g2 , that is, a
super twisted product M1 ×µ M2 can be expressed as a super warped product M1 ×µ M2,
where the metric tensor of M2 is ĝ2 given above.
By Proposition 3.2, we find that it’s obvious about the necessity. �

Theorem 4.2. Let M = M1 ×µ M2 be a super twisted product of (M1, g1) and (M2, g2)
with twisting function h. If M is a W2-curvature flat super twisted product, then M =
M1 ×µ M2 can be expressed as a super warped product.

Proof. By Theorem 3.1, we know

KL,µ(X, Y)Q = −q − m2 − 1
m − n − 1

[
(−1)|Y||Q|Q

X(h)
h

Y − X · Q
Y(h)

h

]
= 0. (4.2)

If q − m2 − 1 6= 0, let Q = ∂yK , X = ∂xI , Y = ∂x J , when I 6= J, we have

(−1)|∂xJ ||∂yK |∂yK [∂xI (lnh)]∂x J − ∂xI · ∂yK [∂x J (lnh)] = 0, (4.3)
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Because a pair (I, J) is arbitrary, then I 6= J implies that ∂yK [∂xI (lnh)] = 0. So

lnh = φ(x) + ψ(y), (4.4)

for any (x, y) ∈ M1 × M2, then h = eφ(x)eψ(y).
If q − m2 − 1 = 0, then by Theorem 3.1, we know

KL,µ(U, V)X = (−1)|V||X|UX(lnh)V + (−1)|U|(|V|+|X|)VX(lnh)U = 0, (4.5)

similarly, let U = ∂yP , V = ∂yQ , X = ∂xI , when P 6= Q, we have

(−1)|∂xI ||∂yQ |
∂yP [∂xI (lnh)]∂yQ + (−1)|∂yP |(|∂yQ |+|∂xI |)∂yQ [∂xI (lnh)]∂yP = 0. (4.6)

Similar to (4.4), we can get

lnh = ω(x) + ν(y), (4.7)

for any (x, y) ∈ M1 × M2, then h = eω(x)eν(y), therefore we can get Theorem 4.2. �

Corollary 4.1. Let M = M1 ×µ M2 be a super twisted product of (M1, g1) and (M2, g2)

with twisting function h. Then, M is a super warped product if and only if KL,µ(X, Y)Q =
0 for X, Y ∈ Vect(M1), Q ∈ Vect(M2).
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