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MATHEMATICAL PROPERTIES OF CEVIAN LINES OF RANK k

DRAGOȘ ANAMARIA MONICA

Abstract. This paper explores the properties of cevians of rank k in tetrahedra and n-
simplices, extending the classical cevian concept in triangle geometry. By defining these
cevians through proportional volume divisions, we establish fundamental mathematical
relations and recursive properties that generalize Ceva’s theorem to higher dimensions.

1. Introduction and motivations

In this paper, we explore the concept of cevians of rank k in tetrahedra and n-simplices,
a generalization of the classical cevian in triangle geometry. These cevians are defined
through proportional divisions of volumes and provide a natural extension of geometric
principles to higher-dimensional spaces. By examining their properties, mathematical
relations, and applications, we aim to uncover new insights into both theoretical geometry
and practical implementations.
The study of cevians has long been central to geometry, particularly in connection with
points of concurrency, such as centroids, incenters, and excenters. Cevians of rank k
generalize these ideas by allowing proportional divisions based on a parameter k, which
governs the relationships between sub-volumes in higher-dimensional simplices. These
concepts open avenues for exploration in optimization, computational geometry, and data
representation.
This work not only revisits classical results in light of these generalizations but also
introduces novel applications in areas such as recursive subdivisions, fractal geometry,
and volume-based clustering in high-dimensional spaces.
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Mathematical Properties of Cevian Lines of Rank k

2. Preliminaries

2.1. Basic Properties of Cevian Lines. In this section, we derive the properties of cevians
of rank k using geometric and algebraic methods.
Let 4ABC be a triangle with vertices A, B, C, and let the cevian intersect the opposite
side at a point D. The general cevian relation is defined as:

BD
DC

= k for rank k cevians. (2.1)

For higher ranks, the recursive relationship is given by:
BDk

DCk
= kn (derived iteratively). (2.2)

2.2. Area Relationships. The division of the triangle into sub-triangles by cevians of rank
k satisfies:

Area of 4ABD
Area of 4ADC

= k. (2.3)

This property holds for all iterations of rank-k cevians, forming nested triangles with
proportional areas.

2.3. Geometric Insights. The intersection of all rank-k cevians forms a collinear set of
points under the condition:

n

∑
i=1

−→r i =
−→
0 , where ri are position vectors. (2.4)

3. Further Mathematical Relations and Properties

3.1. Recursive Cevian Properties. From page 2, we define a generalized recursive formula
for the cevians of rank k:

Cevian Length Ratio: BD
DC

=
k

k + 1
. (3.1)

Similarly, the coordinates of intersection are given iteratively as:

xk =
k · xA + xB

k + 1
, yk =

k · yA + yB

k + 1
. (3.2)

3.2. Special Cases. For k = 1, the cevians become classical medians, bisectors, or altitudes
with the properties:

BD
DC

= 1. (3.3)

4. Geometric Applications and Visualizations

From page 3, we derive the use of cevian geometry in optimization problems, such as
maximizing the area of sub-triangles formed by rank-k cevians.

4.1. Intersection Properties. The intersection of all cevians at rank k satisfies:

Intersection Point: Pk =

(
xA + xB + xC

3
,

yA + yB + yC

3

)
. (4.1)
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4.2. Example: Equilateral Triangle. For an equilateral triangle with side length a, rank-k
cevians divide the triangle into k2 subregions, each of equal area. The following area
relationship holds:

Area of Subregion: Total Area
k2 . (4.2)

5. Cevian Lines of Rank k

5.1. Medians and Areas. Consider the triangle 4ABC and its medians:
• AM is the median (a cevian of order 1).
• The area relations are as follows:

A

B CM

A4AMB =
1
2
· A4ABC, (5.1)

A4AMC =
1
4
· A4ABC. (5.2)

• Mk Mk+1 · · · forms a sequence of cevians of increasing order.
The general relation for the area is given by:

A4Mm Mm+1C =

(
1
2

)n

· A4ABC. (5.3)

5.2. Higher Order Cevians. The cevians of order k divide the triangle into smaller sub-
triangles. Specifically, the total number of triangles formed by cevians of order k is:

Number of Triangles = 6 · 4k−1. (5.4)

The area of each sub-triangle is given by:

A∆k =
A4ABC

6 · 4k−1 . (5.5)

To justify this relationship, a mathematical induction approach is applied.
Base Case: For k = 1, the cevians are the classical medians, which divide the triangle into
6 sub-triangles. This matches the formula:

6 · 41−1 = 6 · 40 = 6.

Inductive Hypothesis: Assume that for some k, the total number of sub-triangles follows:

Nk = 6 · 4k−1.

Inductive Step: When moving to k + 1, each existing triangle is further divided into 4
smaller triangles due to the additional cevians. Thus, the number of sub-triangles at step
k + 1 is:

Nk+1 = 4 · Nk = 4 · (6 · 4k−1) = 6 · 4k.
This confirms the validity of the formula for all k ≥ 1.
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Geometric Interpretation: Each cevian of higher order progressively refines the structure
by introducing additional intersection points. The subdivision follows a hierarchical pat-
tern, where each new cevian layer generates a finer tessellation of the original triangle.
The area of each sub-triangle can then be computed by distributing the total area of
4ABC equally among the Nk sub-triangles:

A4k =
A4ABC

6 · 4k−1 .

5.3. Geometric Properties. The cevians of rank k intersect at specific points. The notable
properties include:

• Consider M1, M2, and M3 as the midpoints of the segments BC, AC, and AB,
respectively.

• AM1 ∩ BM2 ∩ CM3 = G, where G is the centroid.

A

B CM1

M2M3

G

• The vector relationship is expressed as:
−−→
AM1 +

−→
BM2 +

−→
CM3 =

−→
0 . (5.6)

5.4. Angle Between Cevian Lines. To determine the angle θ between the cevian lines in
a triangle, we use the cosine formula for vectors:

cos∠θ =
−→u · −→v

‖−→u ‖‖−→v ‖
, (5.7)

where −→u and −→v are the direction vectors of the cevians.
For instance, the angle between

−→
AB and

−→
BG is:

∠(AD, BE) = ∠θ. (5.8)

5.5. Coordinate Relations for Median Points. Let 4ABC be a triangle with medians
drawn. The coordinates of points on the medians are determined as follows:

5.5.1. Midpoint on Side BC. For the midpoint D on side BC:

xD =
xB + xC

2
, (5.9)

yD =
yB + yC

2
. (5.10)

5.5.2. Midpoint on Side AC. For the midpoint E on side AC:

xE =
xA + xC

2
, (5.11)

yE =
yA + yC

2
. (5.12)
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5.6. Detailed Calculations for Midpoint Relations. Given the midpoints on the sides of
4ABC, we calculate the components as follows:

• For midpoint D on side BC:

xD =
xB + xC

2
,

yD =
yB + yC

2
.

• For midpoint E on side AC:

xE =
xA + xC

2
,

yE =
yA + yC

2
.

5.6.1. Vector Relations. To compute the dot product of vectors
−→
AD and

−→
BE, we use:

−→
AD =

(
xB + xC

2
− xA,

yB + yC

2
− yA

)
,

−→
BE =

(
xA + xC

2
− xB,

yA + yC

2
− yB

)
.

The dot product is given by:

−→
AD · −→BE =

(
xB + xC

2
− xA

)(
xA + xC

2
− xB

)
+

(
yB + yC

2
− yA

)(
yA + yC

2
− yB

)
.

(5.13)

5.6.2. Magnitude of Vectors. The magnitudes of the vectors are:

‖−→AD‖ =

√(
xB + xC

2
− xA

)2

+

(
yB + yC

2
− yA

)2

,

‖−→BE‖ =

√(
xA + xC

2
− xB

)2

+

(
yA + yC

2
− yB

)2

.

5.6.3. Cosine of the Angle. The cosine of the angle θ between
−→
AD and

−→
BE is:

cos∠θ =

−→
AD · −→BE

‖−→AD‖‖−→BE‖
, (5.14)

which simplifies to:

cos∠θ =

( xB+xC
2 − xA

) ( xA+xC
2 − xB

)
+

(
yB+yC

2 − yA

) (
yA+yC

2 − yB

)
√( xB+xC

2 − xA
)2

+
(

yB+yC
2 − yA

)2
·
√( xA+xC

2 − xB
)2

+
(

yA+yC
2 − yB

)2
.

(5.15)
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5.7. General Formula for Rank-k Cevians. Let the midpoints be:
• Midpoint Am on side BC:

xAm =
xB + xC

2
,

yAm =
yB + yC

2
.

• Midpoint Bm on side AC:

xBm =
xA + xC

2
,

yBm =
yA + yC

2
.

• Midpoint Cm on side AB:

xCm =
xA + xB

2
,

yCm =
yA + yB

2
.

5.8. Generalized Coordinates for Rank-k Cevians. For cevians of rank k, the coordinates
of specific points on the triangle sides are given as follows:

5.8.1. Midpoint Coordinates for Successive Divisions. Let A1, B1, and C1 be the points
dividing the sides BC, AC, and AB respectively:

xA1 =
xB + xC

2
,

yA1 =
yB + yC

2
.

Analogously for B1 and C1:

xB1 =
xC + xA

2
, yB1 =

yC + yA

2
,

xC1 =
xA + xB

2
, yC1 =

yA + yB

2
.

Let A2, B2, and C2 be the points dividing the sides BC, AC, and AB respectively:

xA2 =
xB1 + xC1

2
=

xA+xC
2 + xA+xB

2
2

=
xA

2
+

xB + xC

4
,

yA2 =
yB1 + yC1

2
=

yA+yC
2 + yA+yB

2
2

=
yA

2
+

yB + yC

4
.

Analogously for B2 and C2:

xB2 =
xC + xA

4
+

xB

2
, yB2 =

yC + yA

4
+

yB

2
,

xC2 =
xA + xB

4
+

xC

2
, yC2 =

yA + yB

4
+

yC

2
.
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5.8.2. Recursive Relations for General Rank k. The general recursive relations for the
coordinates of points Ak, Bk, and Ck are:

xAk =
xA

2k−1 +
1
2k (xB + xC), yAk =

yA

2k−1 +
1
2k (yB + yC),

xBk =
xB

2k−1 +
1
2k (xC + xA), yBk =

yB

2k−1 +
1
2k (yC + yA),

xCk =
xC

2k−1 +
1
2k (xA + xB), yCk =

yC

2k−1 +
1
2k (yA + yB).

5.9. Angle Between Rank-k Cevians. Let θk denote the angle between two cevians of rank
k, such as AkBk and BkCk. The cosine of θk is given by:

cos∠θk =

−−→
AkBk ·

−−→
BkCk

‖−−→AkBk‖‖
−−→
BkCk‖

. (5.16)

5.10. Detailed Calculations for Rank-k Cevians. The dot product of two vectors
−−→
AkBk

and
−−→
BkCk is expanded as follows:
−−→
AkBk ·

−−→
BkCk =

(
xA

2k−1 +
1
2k (xC + xB)− xA

)
·
(

xC

2k−1 +
1
2k (xA + xB)− xB

)
+

+

(
yA

2k−1 +
1
2k (yC + yB)− yA

)
·
(

yC

2k−1 +
1
2k (yA + yB)− yB

)
.

5.10.1. Magnitude of Vectors. The magnitudes of the vectors are:

‖−−→AkBk‖ =

√(
xA

2k−1 +
1
2k (xC + xB)− xA

)2

+

(
yA

2k−1 +
1
2k (yC + yB)− yA

)2

,

‖−−→BkCk‖ =

√(
xC

2k−1 +
1
2k (xA + xB)− xB

)2

+

(
yC

2k−1 +
1
2k (yA + yB)− yB

)2

.

5.10.2. Cosine of the Angle θR. The cosine of the angle θR between these vectors is:

cos∠θR =

(
xA

2k−1 +
1

2k (xC+xB)−xA

)
·
(

xC
2k−1 +

1
2k (xA+xB)−xB

)
+
(

yA
2k−1 +

1
2k (yC+yB)−yA

)
·
(

yC
2k−1 +

1
2k (yA+yB)−yB

)
√(

xA
2k−1 +

1
2k (xC+xB)−xA

)2
+
(

yA
2k−1 +

1
2k (yC+yB)−yA

)2
·
√(

xC
2k−1 +

1
2k (xA+xB)−xB

)2
+
(

yC
2k−1 +

1
2k (yA+yB)−yB

)2
.

5.11. General Formula for Rank-k Cevians. To derive the general formula for rank-k ce-
vians, we consider the triangle 4AkBkCk at rank-k and Dk the midpoint of the segment
BkCk.
The distance between A and Dk is given by:

|ADk| =
√
(xDk − xA)

2 + (yDk − yA)
2.

The coordinates of Dk :

xDk =
xBk + xCk

2
=

xB
2k−1 +

1
2k (xC + xA) +

xC
2k−1 +

1
2k (xA + xB)

2
=

3 · (xC + xB)

2k+1 +
xA

2k

yDk =
yBk + xyk

2
=

yB
2k−1 +

1
2k (yC + yA) +

yC
2k−1 +

1
2k (yA + yB)

2
=

3 · (yC + yB)

2k+1 +
yA

2k ,
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For the coordinates of Ak:

xAk =
xA

2k−1 +
1
2k (xC + xB), yAk =

yA

2k−1 +
1
2k (yC + yB).

By substituting, the difference in coordinates is:

xDk − xAk =
3 · (xC + xB)

2k+1 +
xA

2k − xA

2k−1 − 1
2k (xB + xC) =

xB + xC − 2 · xA

2k+1

yDk − yAk =
3 · (yC + yB)

2k+1 +
yA

2k − yA

2k−1 − 1
2k (yB + yC) =

yB + yC − 2 · yA

2k+1 .

Thus, the distance is:

|ADk| =

√(
xB + xC − 2 · xA

2k+1

)2

+

(
yB + yC − 2 · yA

2k+1

)2

.

5.12. Distance from the Centroid to Rank-R Points. The general formula for calculating
the distances from the centroid G of 4ABC to the points AR, BR, and CR is given as
follows:

5.12.1. Centroid Coordinates. The coordinates of the centroid G are:

xG =
xA + xB + xC

3
,

yG =
yA + yB + yC

3
.

5.12.2. Distance from Ak to G. The distance from AR to G is:

xAk − xG =
xA

2k−1 +
xC + xB

2k − xA + xB + xC

3
= xA ·

(
1

2k−1 − 1
3

)
+ (xB + xC) ·

(
1
2k − 1

3

)
,

yAk − yG =
yA

2k−1 +
yC + yB

2k − yA + yB + yC

3
= yA ·

(
1

2k−1 − 1
3

)
+ (yB + yC) ·

(
1
2k − 1

3

)
.

The magnitude of the vector ‖−−→ARG‖ is then given by:

‖−−→AkG‖ =
√
(xAk − xG)

2 + (yAk − yG)
2 = (5.17)

√(
xA ·

(
1

2k−1 − 1
3

)
+ (xB + xC) ·

(
1
2k − 1

3

))2

+

(
yA ·

(
1

2k−1 − 1
3

)
+ (yB + yC) ·

(
1
2k − 1

3

))2

.

(5.18)

5.12.3. Limit Behavior. As k → ∞, the points Ak → G, and the distances approach zero:

1
2k−1 → 0,

1
2k → 0. (5.19)
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5.13. Angle Between Cevian Vectors. To analyze the relationship between cevian vectors,
we define the following vector expressions for

−→
AG = (xG − xA) ·

−→
i + (yG − yA) ·

−→
j

−−→
AkG = (xG − xAk) ·

−→
i + (yG − yAk) ·

−→
j .

To calculate the angles between the cevians AG and AkG, we use the dot product formula:
−→
AG · −−→AkG = (xG − xA) (xAk − xG) + (yG − yA) (yAk − yG) .

Expanding the terms, we have:

xG − xA =
xB + xC − 2xA

3
,

yG − yA =
yB + yC − 2yA

3
.

Similarly, for the components of
−−→
ARG:

xAk − xG =
xA

2k−1 +
xB + xC

2k − xA + xB + xC

3
,

yAk − yG =
yA

2k−1 +
yB + yC

2k − yA + yB + yC

3
.

5.14. Angle Calculation Using Dot Product. We denote the angle θ between the vectors−→
AG and

−−→
AkG as:

cos∠θ =

−→
AG · −−→AkG

‖−→AG‖‖−−→AkG‖
. (5.20)

5.14.1. Dot Product Expansion. The dot product
−→
AG · −−→ARG is expanded as:

−→
AG · −−→ARG = (xG − xA) (xAR − xG) + (yG − yA) (yAR − yG) ,

=

(
xB + xC − 2xA

3

)(
xA

2R−1 +
xB + xC

2R − xA + xB + xC

3

)
+

(
yB + yC − 2yA

3

)(
yA

2R−1 +
yB + yC

2R − yA + yB + yC

3

)
.

5.14.2. Magnitudes of the Vectors. The magnitudes of the vectors are given by:

‖−→AG‖ =

√(
xB + xC − 2xA

3

)2

+

(
yB + yC − 2yA

3

)2

,

‖−−→AkG‖ =

√(
xA

2R−1 +
xB + xC

2R − xA + xB + xC

3

)2

+

(
yA

2R−1 +
yB + yC

2R − yA + yB + yC

3

)2

.

5.14.3. Final Formula for cos θ. Substituting these values, we have:

cos∠θ =

(
xB+xC−2xA

3

)(
xA

2R−1 +
xB+xC

2R − xA+xB+xC
3

)
+
(

yB+yC−2yA
3

)(
yA

2R−1 +
yB+yC

2R − yA+yB+yC
3

)
√(

xB+xC−2xA
3

)2
+
(

yB+yC−2yA
3

)2
·
√(

xA
2R−1 +

xB+xC
2R − xA+xB+xC

3

)2
+
(

yA
2R−1 +

yB+yC
2R − yA+yB+yC

3

)2
.
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6. Generalized Cevians of Rank k in Tetrahedra and n-Simplices

6.1. Definition and Fundamental Properties. Let T = ABCD be a tetrahedron. A cevian
is defined as a segment joining a vertex (e.g., A) to a point P on the opposite face 4BCD.
If the ratio of the volumes of the sub-tetrahedra satisfies the relation:

Vol(APB)
Vol(APC)

= k, (6.1)

we say the cevian has rank k.

6.1.1. Properties. 1. Proportionality of Volumes: The point P divides the face 4BCD
proportionally. Let the lengths of the segments on 4BCD be denoted as |BP|, |CP|, and
|DP|. The following relationship holds:

Vol(APB)
Vol(APC)

=
|BP|
|CP| . (6.2)

Proof: The volume of a sub-tetrahedron, such as Vol(APB), is proportional to the base
area Area(4BCD) and the height from A to 4BCD. Denoting the area of the sub-triangle
4BP as Area(4BP), we have:

Vol(APB) =
1
3
· Area(4BP) · Height from A.

Similarly, the volume of Vol(APC) is:

Vol(APC) =
1
3
· Area(4CP) · Height from A.

Since the height from A is the same for both sub-tetrahedra, the ratio simplifies to:

Vol(APB)
Vol(APC)

=
Area(4BP)
Area(4CP)

=
|BP|
|CP| .

2. Volume Invariance: The sum of the volumes of all sub-tetrahedra containing P equals
the volume of the original tetrahedron:

Vol(APB) + Vol(APC) + Vol(APD) = Vol(ABCD). (6.3)

Proof: The volume of the tetrahedron ABCD can be expressed as the sum of the sub-
tetrahedra sharing the vertex A. Let the base areas of 4BP,4CP,4DP on 4BCD be
denoted as Area(4BP), Area(4CP), Area(4DP), respectively. Then:

Vol(APB) =
1
3
· Area(4BP) · Height from A,

Vol(APC) =
1
3
· Area(4CP) · Height from A,

Vol(APD) =
1
3
· Area(4DP) · Height from A.

Adding these volumes, we have:

Vol(APB) + Vol(APC) + Vol(APD) =
1
3
·Area(4BCD) ·Height from A = Vol(ABCD).
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6.2. Generalized Ceva’s Theorem in Tetrahedra. The cevians AP, BQ, CR, DS, drawn to
points P, Q, R, S on the opposite faces of the tetrahedron ABCD, are concurrent if and
only if:

∏
cyclic

Vol(APB) · Vol(BQC) · Vol(CRD) · Vol(DSA)

Vol(APC) · Vol(BQA) · Vol(CRA) · Vol(DSB)
= 1. (6.4)

Proof: Let the cevians AP, BQ, CR, DS meet at a common point O. On each face, the
cevian divides the corresponding triangle proportionally. For instance, on 4BCD, the
point P satisfies:

Vol(APB)
Vol(APC)

=
|BP|
|CP| .

Similar relations hold for the other faces. By cyclically combining these proportions and
using volume invariance on each sub-tetrahedron, we obtain:

∏
cyclic

Vol(APB)
Vol(APC)

· Vol(BQC)
Vol(BQA)

· Vol(CRD)

Vol(CRA)
· Vol(DSA)

Vol(DSB)
= 1.

6.3. Volume of a Tetrahedron. The volume of a tetrahedron T = ABCD can be expressed
geometrically as:

Vol(ABCD) =
1
3
· Area(4BCD) · Height from A. (6.5)

For any sub-tetrahedron (e.g., APB), the volume is given by:

Vol(APB) =
1
3
· Area(4BP) · Height from A.

These relations allow the computation of volumes without explicit use of determinants.

6.4. Example: Regular Tetrahedron. Let the vertices of a regular tetrahedron be:

A = (0, 0, 0), B = (1, 0, 0), C = (0, 1, 0), D = (0, 0, 1).

The total volume of the tetrahedron is:

Vol(ABCD) =
1
6

.

For a point P on 4BCD such that |BP| = 2|CP|, the sub-volumes are:

Vol(APB) =
2
9

, Vol(APC) =
1
9

.

These satisfy the ratio:
Vol(APB)
Vol(APC)

= 2.

136



Mathematical Properties of Cevian Lines of Rank k

7. MAIN RESULTS

This study presents several new contributions to the theory of cevians, extending classical
results beyond traditional triangle geometry and introducing novel formulations applicable
to higher-dimensional simplices.
A significant result is the generalization of Ceva’s theorem to higher dimensions. While
the classical theorem establishes a concurrency condition for cevians in a triangle, this
work extends the concept to tetrahedra and n-simplices. In this extended framework,
cevians are defined through proportional volume divisions rather than segment divisions,
leading to a new concurrency condition based on volume ratios.
Additionally, this research introduces the concept of cevians of rank k, which expands
the traditional definition by incorporating recursive volume-based subdivisions. Unlike
classical cevians that partition a triangle into two sub-triangles of proportional areas,
rank-k cevians generate a hierarchical structure of nested simplices. This recursive na-
ture provides new insights into hierarchical space partitioning and self-similar geometric
structures.
Another key contribution is the development of new coordinate formulations for cevian in-
tersections. By employing recursive averaging techniques, explicit expressions are derived
for the intersection points of rank-k cevians. These formulations enable efficient compu-
tation of cevian intersections in both two-dimensional and higher-dimensional simplices,
eliminating the need for conventional geometric constructions.
Furthermore, this study examines the role of cevians in recursive subdivisions and geo-
metric optimization. The iterative application of rank-k cevians produces structured
partitions that preserve proportional volume relationships. This recursive behavior leads
to self-similar patterns, offering potential implications for various geometric and compu-
tational applications.
These findings extend the applicability of cevians beyond classical triangle geometry,
establishing new mathematical tools for analyzing high-dimensional geometric structures.

8. Conclusions

This study extends the classical theory of cevians beyond traditional triangle geometry,
introducing new formulations that apply to higher-dimensional simplices. By establishing
a framework for cevians of rank k, this work provides a foundation for further exploration
of proportional volume divisions in geometric structures.
One of the key takeaways from this research is the broader applicability of cevian-based
recursive partitions in hierarchical space decomposition. The results presented here not
only reinforce the fundamental role of cevians in concurrency conditions but also highlight
their potential in structuring geometric spaces efficiently. The recursive nature of rank-k
cevians suggests deeper connections with self-similarity principles, which could be further
explored in relation to fractal geometry and data clustering.
While this study primarily focuses on the mathematical properties of cevians in simplices,
future research could investigate their computational applications. Potential directions
include their use in mesh generation techniques, geometric optimization algorithms, and
high-dimensional data partitioning. Moreover, the interaction of cevians with other geo-
metric constructs, such as barycentric coordinates and affine transformations, remains an
open question for further study.
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In conclusion, this work establishes cevians of rank k as a fundamental tool for analyzing
geometric structures beyond classical configurations. The results presented provide both
theoretical advancements and practical implications, paving the way for further develop-
ments in high-dimensional geometry and computational mathematics.
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