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A NEW APPROACH OF THE FERMAT-TORRICELLI CONFIGURATION

T. BÎRSAN

ABSTRACT. In this paper, we aim to approach the Fermat-Torricelli configuration in a
new way. Given a triangle ABC, instead of the six equilateral triangles constructed (inside
or outside) on its sides, we consider three equilateral triangles AA1 A2, BB1B2, CC1C2
with the same orientation as the given triangle and such that A1, A2 ∈ BC, B1, B2 ∈ CA,
and C1, C2 ∈ AB (Fig. 1). This new configuration is denoted F . It is shown that F
includes the classic Fermat-Torricelli configuration, and new concepts are introduced and
studied.

1. INTRODUCTION

Consider an arbitrary triangle ABC with sidelenghts a, b, c. Let A+ and A− be the ver-
tices of the equilateral triangles built on the BC outside and inside the triangle ABC,
respectively; similarly define points B+, B− and C+, C−.
Denote by T a

+ and T a
− the circumcircles of the equilateral triangles A+BC and A−BC,

respectively, and similarly we define T b
+ and T b

−, T c
+ and T c

−. These six circles are called
the Torricelli circles of triangle ABC. We also note with Na

+, Na
−, Nb

+, Nb
−, Nc

+, Nc
− the cir-

cumcenters of the six Torricelli circles. The triangles Na
+Nb

+Nc
+ and Na

−Nb
−Nc

− are called
the outer and inner Napoleon triangles of triangle ABC, respectively.
It is known that Fermat points (or Torricelli points or isogonic points) are defined by F+ :=
AA+ ∩ BB+ ∩ CC+ = T a

+ ∩ T b
+ ∩ T c

+ and F− := AA− ∩ BB− ∩ CC− = T a
− ∩ T b

− ∩ T c
− and

Napoleon points by N+ := ANa
+ ∩ BNb

+ ∩ CNc
+, and N− := ANa

− ∩ BNb
− ∩ CNc

−.
The classic Fermat-Torricelli configuration starts with points A, B, C, A+, B+, C+, A−, B−,
C− (Fig. 1) and then, by introducing new elements, a construction with wonderful prop-
erties is developed. On this subject there is a vast specialized literature - treatises, text-
books and papers: [6], [1], [7], [4], [10], [8] etc.

Now, we propose a new approach to the Fermat-Torricelli configuration. We construct
the equilateral triangle AA1A2 such that A1, A2 ∈ BC and having the same orientation
as the given triangle. In fact, the equilateral triangle AA1A2 has the vertex A and the
altitude ha in common with the triangle ABC. Similarly, the equilateral triangles BB1B2
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Fig. 1

and CC1C2 are constructed. Denote F the configuration that starts with the points A, B,
C, A1, A2, B1, B2, C1, C2 (Fig. 1). We will see that F includes the classic Fermat-Torricelli
configuration and that important concepts of triangle geometry are naturally involved
in this framework or new ones can be introduced.

2. BASICS OF THE CONFIGURATION F

We begin the study of the configuration F by defining in its terms the main objects
of the classical configuration: Fermat points, Torricelli circles, Napoleon triangles, and
Napoleon points.
The first objects of configuration F that we introduce are Torricelli circles and Fermat
points.

Proposition 2.1. We have:
(i) the quadrilaterals BC2CB1, CC1AA2, AB2A1B are cyclic and the circles circumscribed to
them are precisely T a

+, T b
+, T c

+, respectively;
(ii) the quadrilaterals BCC1B2, CAA1C2, ABA2B1 are cyclic and the circles circumscribed to
them are precisely T a

−, T b
−, T c

−, respectively (Fig. 2).

Proof. (i) Since the triangles BB1B2, CC1C2 are equilateral, it results that∠BB1B2 = ∠BC2C
=

π

3
. From ∠BB1B2 = ∠BC2C, it follows that BC2CB1 is a cyclic quadrilateral. On the

other hand, since ∠BC2C =
π

3
, we deduce that the equilateral triangle built on BC out-

side the given triangle has the vertex A+ on the circumcircle of quadrilateral BC2CB1.
So, the circumcircle of BC2CB1 is T a

+. The remaining statements are proven in the same
way.
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Fig. 2

(ii) Since ∠BB2C = ∠BC1C =
π

3
, it follows that BCC1B2 is a cyclic quadrilateral. Obvi-

ously, the equilateral triangle BCA− is inscribed in the circumcircle of this quadrilateral.
As a result, the circumcircle of the quadrilateral BCC1B2 is T a

−. Etc. □

We agree to note (ABC) the circumcircle of the triangle ABC, (ABCD) the circumcircle
of the cyclic quadrilateral ABCD, etc.

Corollary 2.1. (i) (BC2CB1) ∩ (CC1AA2) ∩ (AB2A1B) = F+;
(ii) (BCC1B2) ∩ (CAA1C2) ∩ (ABA2B1) = F− (Fig. 2).

Proof. (i) By Proposition 2.1, we have: (BC2CB1) ∩ (CC1AA2) ∩ (AB2A1B) = T a
+ ∩ T b

+ ∩
T c
+. This and the fact that T a

+ ∩ T b
+ ∩ T c

+ = F+ lead to the statement (i).
(ii) It is demonstrated similarly. □

Corollary 2.2. (i) The circumcenters of the quadrilaterals BC2CB1, CC1AA2, AB2A1B are the
points Na

+, Nb
+, Nc

+, respectively.
(ii) The circumcenters of the quadrilaterals BCC1B2, CAA1C2, ABA2B1 are the points Na

−, Nb
−,

Nc
−, respectively (Fig. 3).
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In order to highlight the basic triangles AA1A2, BB1B2, CC1C2, we reformulate the state-
ments of the previous corollary.

Corollary 2.3. (i) Na
+ is the intersection of the perpendicular bisectors of the sides BB1 and CC2

of the triangles BB1B2 and CC1C2;
(ii) Na

− is the intersection of the perpendicular bisectors of the sides BB2 and CC1 of the same
triangles.
The other vertices of Napoleon triangles are similarly defined.

So, Fermat points, Napoleon points, and Napoleon triangles are defined in the configu-
ration F as easily as in the classic one.

Remark 2.1. From the above, it follows that the configuration F coincides with the classic
Fermat-Torricelli configuration and represents only a new way of approaching it. We will see
that the choice of triangles AA1A2, BB1B2, CC1C2 as fundamental elements of F will allow us
to highlight an important number of new and interesting properties of this configuration.

For the next sentence, we recall some known results.

Lemma 2.1. (i) The lengths of the sides of triangles AA1A2, BB1B2, CC1C2 are given by

la =
4∆√

3a
, lb =

4∆√
3b

, lc =
4∆√

3c
.

(ii) We have:

l2
+ =

1
2

(
a2 + b2 + c2 + 4

√
3∆
)

, l2
− =

1
2

(
a2 + b2 + c2 − 4

√
3∆
)

([7, p. 220]), where l+ and l− denote the common lengths of the segments AA+, BB+, CC+ and
AA−, BB−, CC− respectively, and ∆ is the area of triangle ABC.

Lemma 2.2. Let P be the trace of AF1 on the side BC (Fig. 4). Then

(i) AP =
4∆l+

4∆ +
√

3a2
,

(ii) BP =
4∆ +

√
3
(
c2 + a2 − b2)

2
(

4∆ +
√

3a2
) a, and CP =

4∆ +
√

3
(
a2 + b2 − c2)

2
(

4∆ +
√

3a2
) a,

and similar formulas with respect to vertices B and C ([2, p. 11]).

Proposition 2.2. (i) The cevians BB2, CC1 intersect on the Fermat cevian AF+.
(ii) The cevians BB1, CC2 intersect on the Fermat cevian AF−.
Similar properties relative to Fermat cevians BF+, BF−, and CF+, CF− (Fig. 4).

Proof. (i) We have to show that

PB
PC

· B2C
B2A

· C1A
C1B

= −1.

But, BP, CP are given by Lemma 2.2, and

AB2 =
1
2

lb − c cos A =
2∆√

3b
− b2 + c2 − a2

2b
=

4∆ −
√

3
(
b2 + c2 − a2)

2
√

3b
,

B2C = b + AB2 =
4∆ +

√
3
(
a2 + b2 − c2)

2
√

3b
,
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Fig. 3

C1 A =
1
2

lc − b cos A =
2∆√

3c
− b2 + c2 − a2

2c
=

4∆ −
√

3
(
b2 + c2 − a2)

2
√

3c
,

C1B = c + C1A =
4∆ +

√
3
(
c2 + a2 − b2)

2
√

3c
.

Substituting the found expressions and performing the calculations, we immediately
find that the above equality is verified. □

Remark 2.2. Based on Proposition 2.2, we can define the points F+ and F− as follows:

F+ := AX1 ∩ BY1 ∩ CZ1, F− := AX2 ∩ BY2 ∩ CZ2,

where X1 := BB2 ∩ CC1, X2 := BB1 ∩ CC2 etc. Thus, if the configuration F is constructed on
the basis of the equilateral triangles AA1A2, BB1B2, CC1C2, this definition of points F+ and F−
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Fig. 4

corresponds to the usual one in the classical configuration (F+ := AA+ ∩ BB+ ∩ CC+, F− :=
AA− ∩ BB− ∩ CC−).

Denote by Oa, Ob, Oc the centers of the equilateral triangles AA1A2, BB1B2, CC1C2, re-
spectively.

Proposition 2.3. We have: (i) Na
+ = B2Ob ∩C1Oc, Nb

+ = C2Oc ∩ A1Oa, Nc
+ = A2Oa ∩ B1Ob;

(ii) Na
− = B1Ob ∩ C2Oc, Nb

− = C1Oc ∩ A2Oa, Nc
− = A1Oa ∩ B2Ob (Fig. 5).

Proof. (i) Consider the cyclic quadrilateral BCC1B2. By Proposition 2.1, the circle (BCC1B2)

is Torricelli circle T a
−. Since B̂2 = Ĉ1 =

π

3
, then the interior bisectors of these angles

intersect in the middle of the minor arc BC of the circle T a
−, i.e. in the point Na

+. Ob-
viously, the interior bisectors of B̂2 and Ĉ1 are B2Ob and C1Oc, respectively. Hence,
B2Ob ∩ C1Oc = Na

+.
(ii) Consider the cyclic quadrilateral BB1CC2 and we do the same.
The proof is complete. □

Remark 2.3. The preceding proposition provides a way of defining Napoleon triangles different
from the above and the classical one.
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Fig. 5

It is absolutely necessary to make precise the position of points A1, A2, B1, B2, C1, C2
on the sides of the triangle ABC. This is equivalent to the position of triangles AC1B2,
BA1C2, CB1A2 in relation to ABC (Fig. 6).

The form of the given triangle is decisive. If C <
π

3
, then D̂AC >

π

6
, and the point A2

lies between D and C. Moreover, we also have that ÊBC >
π

6
, hence the point B1 lies

between E and C. Consequently, the triangle CB1A2 overlaps on ABC (Fig. 6). With

similar arguments, if C >
π

3
it follows that the vertex C lies both beetwen E and B1
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Fig. 6

and beetwen D and A2. In this case, the triangle CB1A2 is outside of ABC (Fig. 6). The

case C =
π

3
is trivial: the points B1 and A2 coincide with C, i.e. the triangle CB1A2

degenerates at point C.

The triangle ABC can have no more than two angles smaller than
π

3
. Hence, one or

two of the triangles AC1B2, BA1C2, CB1A2 overlaps the triangle ABC, as one or two

angles of the given triangle is smaller than
π

3
. The proofs of the preceding sentences

have been given where the triangle ABC has only one angle smaller than
π

3
, but can be

easily adapted to the remaining case. This strategy will also be adopted below. So, we
will assume in the sequel that A >

π

3
, B >

π

3
, and C <

π

3
.

3. ORTHOCENTROIDAL CIRCLE AND POINTS H+ AND H−

The orthocentroidal circle CHG (i.e. the circle having the segment HG as diameter) and the
symmedian point K play an important role in the study of the configuration F . Obviously,
CHG contains the orthogonal projections of the centroid G on the altitudes of the triangle
ABC; the triangle determined by these projections is called the orthocentroidal triangle of
ABC (Fig. 7). We recall four notable results in this regard: 1) F+ and F− are inverse
points in the orthocentroidal circle ([9]), 2) F+ and F− are the isodynamic points of the
orthocentroidal triangle of ABC ([5, p. 3],[2, p. 11]), 3) the Napoleon triangles Na

+Nb
+Nc

+

and Na
−Nb

−Nc
− are perspective from the circumcenter O, 4) the lines F+F− and N+N−

intersect at the point K ([8, p. 129]).
Recall that by Oa, Ob, Oc we have denoted the centers of the equilateral triangles AA1A2,
BB1B2, CC1C2, respectively.
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Fig. 7

Proposition 3.1. The triangle OaObOc is the orthocentroidal triangle of ABC. The circle deter-
mined by the centers Oa, Ob, Oc is the orthocentroidal circle of ABC.

Proof. It suffice to show that Oa is the projection of G on the altitude from A of the triangle
ABC. For this, we consider the triangle determined by BC and the support lines of
altitude and median from A and take into account that G divides the median in the ratio
2:1. Since G divides the median in the ratio 2:1, its projection divides the altitude by A
in the same ratio and, and thus coincides with Oa. □

Next, we will introduce two points that will play an important role in the study of the
configuration F .

Proposition 3.2. 1) The lines A1Oa, B1Ob, C1Oc are concurrent on the orthocentroidal circle.
2) The lines A2Oa, B2Ob, C2Oc are concurrent on the orthocentroidal circle (Fig. 8).

Proof. 1) Let X denote the intersection point of the lines A1Oa and B1Ob. Then, ÔaXOb =

Â1XOb = π − Â1XB1. In the quadrilateral A1XB1C we have: Â1XB1 = 2π − X̂A1C −

C − ĈB1X = 2π − π

6
− C −

(
ĈB1B + B̂B1Ob

)
= 2π − π

6
− C −

(
2π

3
+

π

6

)
= π − C. So,

we get: ÔaXOb = π − (π − C) = C. On the other hand, ÔaHOb = D̂HB = C. Hence, it
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Fig. 8

follows that ÔaXOb = ÔaHOb, that is X ∈ CHG. Therefore, A1Oa,and B1Ob intersect at a
point on the circle CHG.
Similarly, it is shown that B1Ob and C1Oc intersect on the circle CHG. Consequently, the
three lines A1Oa, B1Ob and C1Oc are concurrent in a point located on CHG.
2) The statement is shown with the same arguments. □

According to this proposition, we define the points H+ and H− by

H+ := A1Oa ∩ B1Ob ∩ C1Oc and H− := A2Oa ∩ B2Ob ∩ C2Oc,

and call them the orthocentroidal points of the triangle ABC.

Proposition 3.3. The following statements are true:
1) the triangle HH+H− is equilateral;
2) the orthocentroidal points H+, H− are symmetric with respect to the Euler line and the mid-
point of H1H2 is the nine-point center of the given triangle (Fig. 8).

Proof. 1) We have: ĤH+H− = ĤOcH− = π − Ĥ−OcC = π − Ĉ2OcC = π − 2π

3
=

π

3
.

Similarly, we get: ĤH−H+ =
π

3
. Thus, ∆HH+H− is equilateral.

2) The assertions are consequences of the fact that H is on the Euler line and the triangle
HH+H− is equilateral (Fig. 8). □
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Remark 3.1. The sidelength of the equilateral triangle HH+H− is obtained immediately from
the formula OH2 = 9R2 −

(
a2 + b2 + c2) [4, p. 20]. Indeed, since HG is the diameter of its

circumcircle, it follows that H+H2
− =

3
4

HG2 =
3
4

(
2
3

OH
)2

, hence

H+H2
− = 3R2 − 1

3
(
a2 + b2 + c2) .

On the other hand, the preceding proposition makes it possible to define the points H+

and H− independently of the configuration F . Thus, the points H+ and H− can be con-
structed as the vertices of the equilateral triangle inscribed in the orthocentroidal circle
CHG and having the orthocentre H as one of its vertices or as the points of intersection
of the circle CHG with the perpendicular to Euler line at nine-point center (in both these
definitions the resulting triangle HH+H− must be of the opposite orientation to that of
the triangle ABC).
Another way to define the points H+ and H− is given by the following sentence:

Proposition 3.4. The following statements are true:
1) H+ = (AB1C1) ∩ (BC1A1) ∩ (CA1B1) ,
2) H− = (AB2C2) ∩ (BC2A2) ∩ (CA2B2) (Fig. 9).

Proof. 1) Denote by H1 the intersection point of the circles (BC1A1) and (CA1B1) other
than A1. Obviously,

B̂1H1C1 = 2π − Â1H1B1 − Â1H1C1.

Since the quadrilateral A1H1B1C is cyclic, we have: Â1H1B1 = π − C. Also, because
A1BH1C1 is cyclic quadrilateral, we have that Â1H1C1 = Â1BC1 = π − B. Therefore,
B̂1H1C1 = 2π − (π − C)− (π − B) = B + C = π − A. Hence, B̂1H1C1 = B̂1AC1, i.e. the
quadrilateral AH1B1C1 is cyclic, and H1 lies on the circle (AB1C1). We conclude that the
three circles have in common the point H1.
It remains to show that H+ coincides with H1. First, from the fact that the orthocentroidal
triangle is similar to the given one, we have: ÔaOcOb =C. Then, ̂OaH+Ob =C, and there-
fore ̂A1H+Ob = C. It follows that Â1H+B1 = π − ̂A1H+Ob = π − C, whence Â1H+B1

= π − C. Combining the last relation with the relation Â1H1B1 = π − C established
above, we get: Â1H+B1= Â1H1B1. Hence H+ lies on the circle (CA1B1). In the same way
we show that H+ is also on the circles (AB1C1), and (BC1A1). So, H+ and H1 coincide.
2) A similar argument works to prove this statement. □

Proposition 3.5. With the preceding notation and conventions, we have the following sets of
collinear points:
(i) A1, Oa, H+, Nb

+, Nc
− on the line A1Oa,

(ii) A2, Oa, H−, Nc
+, Nb

− on the line A2Oa,
and analogous sets of points relative to the lines B1Ob, B2Ob and C1Oc, C2Oc.

Proof. (i) Indeed, by Proposition 2.3, Nb
+, Nc

−∈A1Oa. Also, by Proposition 3.2, H+ ∈ A1Oa.
(ii) It is done in the same way. □

Now, we will complete the property 3) stated at the beginning of this section. First, we
will need the following elementary and well-known result.
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Fig. 9

Lemma 3.1. Let ABC be an equilateral triangle and let X1, X2 ∈ BC, Y1, Y2 ∈ CA, Z1, Z2 ∈
AB such that BX1 = CY1 = AZ1 and BZ2 = CX2 = AY2. Then, the triangle determined by
the lines X2Y1, Y2Z1, Z2X1 is equilateral and has the same center as the given one.

Proposition 3.6. (i) the Napoleon triangles are perspective in three manners:(
Na
+Nb

+Nc
+

Na
−Nb

−Nc
−

)
,
(

Na
+Nb

+Nc
+

Nb
−Nc

−Na
−

)
, and

(
Na
+Nb

+Nc
+

Nc
−Na

−Nb
−

)
;

(ii) the three centres of perspective are the points O, H+ and H− respectively;
(iii) the three axes of perspective determine an equilateral triangle, TaTbTc, with the center G (Fig.
10).

Proof. (i)-(ii) It is known that O ∈ Na
+Na

− ∩ Nb
+Nb

− ∩ Nc
+Nc

−. By Proposition 3.5, we have:
H+ ∈ Na

+Nb
− ∩ Nb

+Nc
− ∩ Nc

+Na
− and H− ∈ Na

+Nc
− ∩ Nb

+Na
− ∩ Nc

+Nb
−.

(iii) Denote the points of intersection of the sidelines of triangle Na
+Nb

+Nc
+ and Na

−Nb
−Nc

−
as in Fig. 10. Then, the line UV (or TaTb) is the axis of perspective of triangle Na

+Nb
+Nc

+

and Na
−Nb

−Nc
−, WX (or TbTc) is the axis of Na

+Nb
+Nc

+ and Nb
−Nc

−Na
−, and YZ (or TcTa)

is the axis of Na
+Nb

+Nc
+ and Nc

−Na
−Nb

−. By a counterclockwise rotation about G through
2π

3
, we obtain that Na

+X = Nb
+Z = Nc

+V and Na
+W = Nb

+Y = Nc
+U. Then, by applying

Lemma 3.1 to the triangle Na
+Nb

+Nc
+, we get the desired result. □
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Fig. 10

The triangles HH+H− and OH+H− are symmetric with respect to the line H+H−. We
note that OH+H− is equilateral and has the center G, the same as the Napoleon triangles
(Fig. 11).

Proposition 3.7. (i) Na
+, Nb

+, Nc
+ are the perspective centers of the pairs of triangles (OH+H−,

Na
−Nb

−Nc
−), (OH+H−, Nb

−Nc
−Na

−) and (OH+H−, Nc
−Na

−Nb
−), respectively.

(ii) Na
−, Nb

−, Nc
− are the perspective centers of the pairs of triangles (OH+H−, Na

+Nc
+Nb

+),
(OH+H−, Nb

+Na
+Nc

+), and (OH+H−, Nc
+Nb

+Na
+), respectively (Fig. 11).

Proof. It follows directly from the fact that O ∈ Na
+Na

−, O ∈ Nb
+Nb

−, O ∈ Nc
+Nc

− and
Proposition 3.5. □

4. SIMILARITY PROPERTIES OF TRIANGLES IN TRIADS
(AB2C1, BC2A1, CA2B1) AND (AB1C2, BC1A2, CA1B2)

We have seen that the configuration F can be built starting with the equilateral triangles
CBA+, BCA− and those obtained cyclically from them or starting with the equilateral
triangles AA1A2, BB1B2, CC1C2. The second way allows us to imagine within the config-
uration F new and varied figures with interesting properties.
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Fig. 11

In this sense, we will focus our attention on the properties of dual triads (AB2C1, BC2A1,
CA2B1) and (AB1C2, BC1A2, CA1B2). Two triangles that have a common vertex which is
also the vertex of the triangle ABC are called duals (for example, AB2C1 and AB1C2 are
dual to each other).
We start with an elementary but important result for the study that follows.

Proposition 4.1. The six triangles AB2C1, BC2A1, CA2B1; AB1C2, BC1A2, CA1B2 have the
properties:
(i) each of them is inversely similar to the given triangle ABC;
(ii) any two of them are directly similar.

Proof. (i) We limit ourselves to seeing that one of them is inversely similar to the triangle
ABC. For example, let’s show that the triangles ABC and AB2C1 are inversely similar.
But, it is clear that we have: Â = Â, B̂2 = B̂, Ĉ1 = Ĉ (the last two result from the
properties of the cyclic quadrilateral BCC1B2). Then, AB2C1 ∼ ABC and, obviously, they
are inversely similar.
(ii) follows from (i). □

Remark 4.1. Positions of points A1, A2; B1, B2; C1, C2 on the sidelines of the triangle ABC
depend on the shape of this triangle. If A > B > C, we have three cases to consider. It is easy to
specify the position of Ai, Bi, Ci (i = 1, 2) in each of these cases (Fig. 12):

I. A >
2π

3
,

π

3
> B > C (B − A1 − A2 − C, C − A − B1 − B2, C1 − C2 − A − B) ;
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Fig. 12

II. A > B >
π

3
> C (A1 − B − A2 − C, C − B1 − A − B2, C1 − A − B − C2) ;

III. A >
π

3
> B > C (B − A1 − A2 − C, C − B1 − A − B2, C1 − A − C2 − B) .

Remark 4.2. With regard to the triad (AB2C1, BC2A1, CA2B1) we find that: 1) the trian-
gle AB2C1 is external to the triangle ABC in all cases, 2) the triangle BC2A1 falls on it in
cases I and III, and 3) the triangle CA2B1 falls on it in all cases. With regard to the dual triad
(AB1C2, BC1A2, CA1B2) the situation is simpler: only the triangle AB1C2 can be external to
the triangle ABC and this only happens in the case I. So, if A > B > C, we have the following
table:

AB2C1 BC2A1 CA2B1 AB1C2 BC1A2 CA1B2
I e f f e f f
I I e e f f f f
I I I e f f f f f

(e indicates that the triangle is external to ABC, and f that it falls on ABC).
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We adopt some notations. Relative to the dual triangles AB2C1 and AB1C2, let Oa
+ and

Oa
− be their circumcenters, respectively. The circumcircles (AB2C1) and (AB1C2) are also

denoted (Oa
+), (Oa

−) and their radii are denoted ra
+ and ra

−, respectively. Define Ob
+, Ob

−;
Oc

+, Oc
− and rb

+, rb
−; rc

+, rc
− cyclically.

We denote S (d) the reflection in the line d and H (V, ρ) the homothety with center V
and rotio ρ. Also, R(P, α) denotes the rotation about P and angle α; the angle of rotation
α will be oriented only positively (counterclockwise).

According to the statement (i) in Proposition 4.1, ABC is inversely similar to all triangles
in the two triads; we have six pairs of such triangles: (AB2C1, ABC), (BC2A1, BCA),
(CA2B1, CAB); (AB1C2, ABC), (BC1A2, BCA), (CA1B2, CAB). The theory of similitude
([1], [7], [10]) guarantees that a triangle in any of these pairs is the image of the other by
a reflexion in a line followed by a homothety.

Proposition 4.2. We have:

(i) ABC = H
(

A,
R
ra
+

)
· S (w′

A) (AB2C1) ;

(ii) BCA = H
(

B,
R
rb
+

)
· S (wB) (BC2A1) in cases I and III, and

BCA = H
(

B,
R
rb
+

)
· S (w′

B) (BC2A1) in case II;

(iii) CAB = H
(

C,
R
rc
+

)
· S (wC) (CA2B1) ;

(iv) ABC = H
(

A,
R
ra
−

)
· S(w′

A)(AB1C2) in case I, and ABC = H
(

A,
R
ra
−

)
· S(wA)(AB1C2)

in cases II and III;

(v) BCA = H
(

B,
R
rb
−

)
· S (wB) (BC1A2) ;

(vi) CAB = H
(

C,
R
rc
−

)
· S (wC) (CA1B2) ,

where wA and w′
A denote the internal and external bisectors of angle A etc.

Proof. These statements are proven in the same way. The external or internal bisector
will be used depending on whether the source triangle is external or not to the triangle
ABC.
We detail only for (i). The triangles AB2C1 and ABC have in common the vertex A and
AB2C1 is external to the triangle ABC. We will use the external bisector of the angle
A. Define B′

2 = S (w′
A) (B2) and C′

1 = S (w′
A) (C1) . Obviously, B′

2 ∈ AB, C′
1 ∈ AC and

B′
2C′

1 ∥ BC. Hence, S (w′
A) (AB2C1) = AB′

2C′
1. On the other hand, because AB′

2C′
1 ∼ ABC

and B′
2C′

1 ∥ BC, it follows that H
(

A,
R
ra
+

)
(AB′

2C′
1) = ABC.

Combining these two partial results, we get ABC = H
(

A,
R
ra
+

)
· S (w′

A) (AB2C1) . □

Now, let’s examine two triangles chosen from the directly similar triangles AB2C1, BC2A1,
CA2B1 and AB1C2, BC1A2, CA1B2. The dual triangles have in common a vertex of the
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triangle ABC. It is easy to verify that two triangles that are not dual, one from the first
triad and the other from the second, have in common a vertex which is among the points
A1, A2, B1, B2, C1, C2. It is obvious that two triangles in the same triad have no common
vertices.
The simplest is the case of dual triangles. There are three pairs of dual triangles.

Proposition 4.3. The dual triangles AB2C1 and AB1C2, BC2A1 and BC1A2, CA2B1 and
CA1B2 are homothetic. More specifically, we have:

(i) AB1C2 = H
(

A, εa
ra
−

ra
+

)
(AB2C1),

(ii) BC1 A2 = H
(

B, εb
rb
−

rb
+

)
(BC2A1),

(iii) CA1B2 = H
(

C, εc
rc
−

rc
+

)
(CA2B1),

where εa, εb, εcwill be taken −1 or +1 depending on whether the dual triangles are opposite in
their common vertex or not.

Proof. By Proposition 4.1, two dual triangle are directly similar. It is used that B2C1∥B1C2,
C2 A1∥C1A2, and A2B1∥A1B2. □

More complicated is the study of pairs of triangles chosen from different triads and
which are not dual. We have six such pairs: (AB2C1, BC1A2), (AB2C1, CA1B2), (BC2A1,
CA1B2), (BC2A1, AB1C2), (CA2B1, AB1C2), (CA2B1, BC1A2). The triangles in any pair
are directly similar. Thus, each of them is the image of the other through a rotation fol-
lowed by a homothety of the same center. Let’s write these pairs again highlighting the
homologous elements of triangles: (AB2C1, A2BC1), (AB2C1, A1B2C), (BC2A1, B2CA1),
(BC2 A1, B1C2A), (CA2B1, C2AB1), (CA2B1, C1A2B) .
We will see that the two geometric transformations have as their center one of the ver-
tices A1, A2, B1, B2, C1, C2 and that the angle of rotation is simply expressed by the angles
A, B, C of the given triangle, but their expressions depend on the position of the two
triangles in relation to it (see Fig. 12 and the above table).

Proposition 4.4. Relative to the pairs of triangles above we have:

(i) A2BC1 = H
(

C1,
rb
−

ra
+

)
· R(C1, C) (AB2C1) in all cases;

(ii) A1B2C = H
(

B2,
rc
−

ra
+

)
· R(B2, 2π − B) (AB2C1) in all cases;

(iii) B2CA1 = H
(

A1,
rc
−

rb
+

)
· R(A1, π + A) (BC2A1) in cases I and III,

and B2CA1 = H
(

A1,
rc
−

rb
+

)
· R(A1, A) (BC2A1) in case II;

(iv) B1C2A = H
(

C2,
ra
−

rb
+

)
· R(C2, 2π − C) (BC2A1) in cases I and II,

and B1C2A = H
(

C2,
ra
−

rb
+

)
· R(C2, π − C) (BC2A1) in case III;

17
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(v) C2AB1 = H
(

B1,
ra
−

rc
+

)
· R(B1, B) (CA2B1) in case I, and

C2 AB1 = H
(

B1,
ra
−

rc
+

)
· R(B1, π + B) (CA2B1) in cases II and III;

(vi) C1A2B = H
(

A2,
rb
−

rc
+

)
· R(A2, π − A) (CA2B1) in all cases.

Proof. Normally, these statements are proven in the same way. Therefore, we limit our-
selves to proving only one of them. For example, let’s show the second part of statement
(iii).
The triangles BC2A1 and B2CA1 have a common vertex, namely, the point A1. It is
easy to see that the (positive) angle between A1B and A1B2 is equal to A and that
the value of the (positive) angle between A1C2 and A1C is also A (Fig. 12). We de-
note B′ and C′

2 the images of the points B and C2 by rotation R(A1, A). It is clair that
B′ ∈ A1B2, C′

2 ∈ A1C, and B′C′
2 ∥ BC. As a result, we get: B′C′

2A1 = R(A1, A) (BC2A1)

and H
(

A1,
rc
−

rb
+

)
(B′C′

2A1) = B2CA1. By combining these results, we achieve the re-

quired equality. □

More interesting results are obtained when the pairs are formed by triangles taken from
the same triad. F+ and F− will be the centers of rotation and homothety as the pairs are
formed with triangles of the second or first triad. The next two sentences are demon-
strated with the same arguments as the previous ones. In fact, the Torricelli circles of the
triangle ABC are used appropriately. Therefore, we will give some details only for the
first of them.

Proposition 4.5. The Fermat point F− is the center of rotation and homothety of the pair of
triangles (AB2C1, BC2A1), (BC2A1, CA2B1), (CA2B1, AB2C1) (Fig. 13). We have:

(i) A1BC2 = H
(

F−,
rb
+

ra
+

)
·R(F−, C) (AB2C1) in cases I and III, and A1BC2 = H

(
F−,

rb
+

ra
+

)
·

R(F−, π + C) (AB2C1) in cases II;

(ii) B1CA2 = H
(

F−,
rc
+

rb
+

)
· R(F−, π + A) (BC2A1) in cases I and III, and

B1CA2 = H
(

F−,
rc
+

rb
+

)
· R(F−, A) (BC2A1) in case II;

(iii) C1AB2 = H
(

F−,
ra
+

rc
+

)
· R(F−, B) (CA2B1) in all cases.

Proof. We will give some details for the second part of the statement (i). Let (A, A1)
and (B2, B) be two pairs of homologous points of the directly similar triangles AB2C1
and A1BC2 (Fig. 13). Obviously, C is the point of intersection of the lines AB2 and A1B.
According to the general theory of similitude, circles (CAA1) and (CB2B) intersect at
the center of rotation of triangles. But these circles are T b

− and T a
−, respectively, and their

intersection (other than C) is F−. So, F− is the center of rotation.
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Fig. 13

On the other hand, the angle of rotation is, for example, the positive oriented angle
∠ (F−A, F−A1) = 2π − ∠ (F−A1, F−A) = 2π − ÂF−A1 = 2π −

(
π − ÂCA1

)
= 2π −

(π − C) = π + C (I used the fact that the qudrilateral AF−A1C is inscribed in T b
−).

Now, it is easy to see that the triangle A1BC2 is the image of the triangle AB2C1 by the

rotation R(F−, π + C) followed by the homorhety H
(

F−,
rb
+

ra
+

)
.

The remaining statements are shown in the same way. □

Proposition 4.6. The Fermat point F+ is the center of rotation and homothety of the pair of
triangles (AB1C2, BC1A2), (BC1A2, CA1B2), (CA1B2, AB1C2). We have:

(i) A2BC1 = H(F+,
rb
−

ra
−
) ·R(F+, C)(AB1C2) in case I and A2BC1 = H

(
F+,

rb
−

ra
−

)
·R(F+, π+

C) (AB1C2) in cases II and III;
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(ii) B2CA1 = H
(

F+,
rc
−

rb
−

)
· R(F+, π + A) (BC1A2) in all cases;

(iii) C2AB1 = H
(

F+,
ra
−

rc
−

)
· R(F+, B) (CA1B2) in case I, and C2AB1 = H

(
F+,

ra
−

rc
−

)
·

R(F+, π + B) (CA1B2) in cases II and III.

Now, let’s find the formulas for the circumradii of the six triangles in these triads.

Proposition 4.7. We have the following formulas:

ra
+ =

2
√

3
3

R sin
(

A − π

3

)
, rb

+ = ε
2
√

3
3

R sin
(

B − π

3

)
, rc

+ = −2
√

3
3

R sin
(

C − π

3

)
(where ε is −1 in cases I, III and +1 in case II), and

ra
− = η

2
√

3
3

R sin
(

A +
π

3

)
, rb

− =
2
√

3
3

R sin
(

B +
π

3

)
, rc

− =
2
√

3
3

R sin
(

C +
π

3

)
,

(where η is −1 in case I and +1 in cases II, III).

Proof. Let us prove only the first formula. According to Proposition 4.1, the triangles
AB2C1 and ABC are similar. Hence, we have (Fig. 12):

ra
+ = R

AB2

AB
.

Let E be the foot of the altitude from B of the triangle ABC. Note that B2 − E − A in the
case I and B2 − A − E in the cases II and III. So, in the case I, we have:

AB2 = AE + EB2 = c cos (π − A) + hb tan
π

6
=

2
√

3
3

c sin
(

A − π

3

)
.

Therefore, in this case, we get:

ra
+ =

2
√

3
3

R sin
(

A − π

3

)
the desired formula. In cases II and III we make a similar calculation.
The others formulas are shown in the same way. □

Remark 4.3. The parameters ε and η agree with the respective arguments of the function sin
and ensure the positivity of the expression in the above formulas.

Corollary 4.1. (i) The points H, A, Oa
+, Oa

− are collinear.
(ii) HOa

+ = ra
−, HOa

− = ra
+.

(iii) AH = |ra
+ − ra

−| .
(iv) Oa

+, Oa
− are isotomic points with respect to the segment AH.

Analogous results are valid relative to vertices Band C.

Proof. (i) Since the triangles AB2C1 and ABC are inversely similar, we have Ôa
+AC1 =

ÔAC. But ÔAC = ĤAB. Hence, Ôa
+AC1 = ĤAB and the points Oa

+, A, H are collinear.
Etc.
(ii) We will use Proposition 4.7 and the fact that AH = 2R |cos A|. Let us show the first
formula in the case III (Fig. 12). We have:

HOa
+ = AOa

+ + AH = ra
+ + 2R cos A
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=
2
√

3
3

R sin
(

A − π

3

)
+ 2R cos A =

2
√

3
3

R
[
sin
(

A − π

3

)
+
√

3 cos A
]

=
2
√

3
3

R sin
(

A +
π

3

)
= ra

−.

In cases I and II we adapt this calculation by taking into account the order of the points
A, H, Oa

+ on the line AH.
(iii) and (iv) immediately follows from (i) and (ii). □

Corollary 4.2. The formulas
ra
+ = ONa

−, ra
− = ONa

+

and their analogues hold.

Proof. Let A′ be the midpoint of the segment BC. It is known that OA′ = R |cos A| .

On the other hand, A′Na
+ = A′Na

− =
1
3

A+A′ =
1
3
·
√

3
2

a =

√
3

3
R sin A. With these

preparations, it is easy to calculate ONa
+ and ONa

− in each of the cases I-III. The required
result is obtained. □

5. RADICAL AXES AND CENTERS

We will study from this point of view the circumcircles of the triangles in the two triads,
i.e. the circles (Oa

+), (Ob
+), (Oc

+); (Oa
−), (Ob

−), (Oc
−). We will see that the Fermat points F+

and F− have un important role.
We need some preparations. First, let’s introduce a few points: B′ := AA1 ∩ (Oa

+), C′′ :=
AA2 ∩ (Oa

+), and, ciclycally, the points C′, A′′ on (Ob
+), and A′, B′′ on (Oc

+) (Fig. 14).

The following lemmas are easy to prove.

Lemma 5.1. (i) B′C′′∥BC, C′A′′∥CA, A′B′′∥AB.
(ii) The triangles AB′C′′, BC′A′′, CA′B′′ are equilateral.

Lemma 5.2. The points in the systems: 1) A−, B+, C1, C′′, 2) A−, B2, B′, C+, and their
analogues relative to the vertices B and C, are collinear.

Proposition 5.1. The following statement are true:
(i) the radical axis of the circles (Ob

+) and (Oc
+) is the Fermat cevian AF+ (or line AA+);

(ii) the radical axis of the circles (Ob
−) and (Oc

−) is the Fermat cevian AF− (or line AA−);
(iii) the radical axis of the circles (Oa

+) and (Oa
−) is the parallel through vertex A to the sideline

BC;
(iv) the radical axis of the circles (Ob

+) and (Oc
−) is the line A1C+,

as well as similar ones (Fig. 14).

Proof. (i) Since quadrilateral BC2CB1 is cyclic, we have AB · AC2 = AB1 · AC, and so A
is on the radical axis of the circles (Ob

+) and (Oc
+). On the other hand, the quadrilaterals

BA1C′C2 and CB1A2B′′ are cyclic and therefore B̂C′C2 = B̂A1C2, ĈB′′B1 = ĈA2B1. But,
according to Proposition 4.1, ABC ∼ A1BC2 ∼ A2B1C, and therefore B̂A1C2 = B̂1A2C =

A. Combining the previous relations, we obtain that B̂C′C2 = ĈB′′B1 = A. So, B1B′′C2C′

is a cyclic quadrilateral. It follows that A+C2 · A+C′ = A+B′′ · A+B1, i.e. A+ is on the
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Fig. 14

radical axis of the circles (Ob
+) and (Oc

+). In the end, AA+ is the radical axis of the circles
(Ob

+) and (Oc
+).

(ii) It is proved in the same way as for (i).
(iii) It is easy to see that the centers of the circles (Oa

+) and (Oa
−) lie on the perpendicular

through A to BC. It follows that these circles are tangent at A. Their radical axis is the
common tangent.
(iv) Obviously, the point A1 lies on both circles (Ob

+) and (Oc
−), and A′′ ∈ (Ob

+). Let
us show that we have and A′′ ∈ (Oc

−). For this purpose, it is sufficient to show that the

quadrilateral B2A1A′′C is cyclic. But it is easy to see that we have Â′′B2C = Â′′A1C =
π

3
.
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So, the common chord A′′A1 is the radical axis of the two circles. It remains to observe
that, by Lemma 5.2, the lines A′′A1 and A1C+ coincide. □

The following proposition is a direct consequence of Proposition 5.1.

Proposition 5.2. The following statement are true:
(i) the radical center of the circles (Oa

+), (Ob
+), (Oc

+) is the Fermat point F+;
(ii) the radical center of the circles (Oa

−), (Ob
−), (Oc

−) is the Fermat point F−;
(iii) the radical center of the circles (Oa

+), (Ob
+), (Oc

−) is the point C+;
(iv) the radical center of the circles (Oa

+), (Ob
−), (Oc

−) is the point A−,
as well as similar ones.

6. TRILINEAR COORDINATES OF H+ AND H−

We choose triangle ABC as the reference triangle. The barycentric coordinates of the
vertices of the orthocentroidal triangle are Oa(a2, a2 + b2 − c2, a2 − b2 + c2), Ob(a2 + b2 −
c2, b2,−a2 + b2 + c2), Oc(a2 − b2 + c2,−a2 + b2 + c2, c2) ([9, #X(5476)]) and can be easily
found by the reader. So, using the cosine formula, their trilinear coordinates are

Oa (1, 2 cos C, 2 cos B) , Ob (2 cos C, 1, 2 cos A) , Oc (2 cos B, 2 cos A, 1) .

Let us now find the trilinear coordinates of the points A1, A2; B1, B2; C1, C2 (the ver-
tices of the equilateral triangles AA1A2, BB1B2, CC1C2 other than A, B, C). Thus, for

A1 we have (Fig. 1b): d (A1, BC) = 0, d (A1, CA) = A1C sin C =
AA1 sin Â1AC

sin C
sin C =

AA1 sin Â1AC = AA1 sin
(

C +
π

3

)
, and d (A1, AB) = AA1 sin Â1AB = AA1 sin

(
B − π

3

)
.

So, we get A1

(
0, sin

(
C +

π

3

)
, − sin

(
B − π

3

))
. In the previous calculations, the fol-

lowing order on the sideline BC was assumed: A1 − B − A2 − C. We mention that this
result is valid and in the other possible positions of A1, A2 on BC: A1 − A2 − B − C,
B − A1 − A2 − C, A1 − B − A2 − C, B − C − A1 − A2.
Similarly, the trilinear coordinates of A2 and the other remaining vertices are obtained.
Finally, we have:

A1

(
0, sin

(
C +

π

3

)
,− sin

(
B − π

3

))
, A2

(
0,− sin

(
C − π

3

)
, sin

(
B +

π

3

))
,

B1

(
− sin

(
C − π

3

)
, 0, sin

(
A +

π

3

))
, B2

(
sin
(

C +
π

3

)
, 0,− sin

(
A − π

3

))
,

C1

(
sin
(

B +
π

3

)
,− sin

(
A − π

3

)
, 0
)

, C2

(
− sin

(
B − π

3

)
, sin

(
A +

π

3

)
, 0
)

.

Now, the equations of the lines A1Oa, B1Ob, C1Oc are given by

(A1Oa) − α sin A + β sin
(

B − π

3

)
+ γ sin

(
C +

π

3

)
= 0,

(B1Ob) α sin
(

A +
π

3

)
− β sin B + γ sin

(
C − π

3

)
= 0,

(C1Oc) α sin
(

A − π

3

)
+ β sin

(
B +

π

3

)
− γ sin C = 0.
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Similarly, the lines A2Oa, B2Ob, C2Oc have the equations:

(A2Oa) − α sin A + β sin
(

B +
π

3

)
+ γ sin

(
C − π

3

)
= 0,

(B2Ob) α sin
(

A − π

3

)
− β sin B + γ sin

(
C +

π

3

)
= 0,

(C2Oc) α sin
(

A +
π

3

)
+ β sin

(
B − π

3

)
− γ sin C = 0.

Remark 6.1. Using trilinear coordinates, the proof of Propositions 2.2 and 3.2 returns to a
routine calculation.

Proposition 6.1. The points H+ and H− have the following trilinear coordinates:

H+

(
cos

(
B − C − π

6

)
, cos

(
C − A − π

6

)
, cos

(
A − B − π

6

))
,

H−
(

cos
(

B − C +
π

6

)
, cos

(
C − A +

π

6

)
, cos

(
A − B +

π

6

))
.

Proof. Taking into account that H+ = A1Oa ∩ B1Ob, the trilinear coordinates of H1 are
the second-order minors of the matrix[

− sin A sin
(

B − π
3

)
sin
(
C + π

3

)
sin
(

A + π
3

)
− sin B sin

(
C − π

3

)] ,

that is

H+

(∣∣∣∣ sin
(

B − π
3

)
sin
(
C + π

3

)
− sin B sin

(
C − π

3

) ∣∣∣∣ ,
∣∣∣∣ sin

(
C + π

3

)
− sin A

sin
(
C − π

3

)
sin
(

A + π
3

) ∣∣∣∣ ,

∣∣∣∣ − sin A sin
(

B − π
3

)
sin
(

A + π
3

)
− sin B

∣∣∣∣) .

Using the formula 2 sin x sin y = cos (x − y) − cos (x + y), we finally get the required
result.
The trilinear coordinates of H− are calculated similarly. □

Remark 6.2. The trilinear coordinates of the points H+ and H− can be written in the form

H+

(
sin
(

B − C +
π

3

)
, sin

(
C − A +

π

3

)
, sin

(
A − B +

π

3

))
,

H−
(

sin
(

B − C − π

3

)
, sin

(
C − A − π

3

)
, sin

(
A − B − π

3

))
.

Remark 6.3. H+ and H− are central points which apparently does not appear in Kimberling’s
list [9]. A decision in this regard is necessary.

Proposition 6.2. The line H+H− has the equation

α sin 3A + β sin 3B + γ sin 3C = 0.

Proof. By direct calculation. □
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