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A GEOMETRY INEQUALITY WITH ONE PARAMETER IN ACUTE TRIANGLES

JIAN LIU

ABSTRACT. With the help of Maple software, we prove a new geometry inequality with
one parameter in acute triangles. We also propose several related conjectures as open
problems after have been verified by computer.

1. INTRODUCTION AND MAIN RESULT

Let ABC be a triangle with side lengths a, b, c. Denote by R, r, s and S its circumradius,
inradius, semiperimeter and area respectively; ma, mb, mc the medians; ha, hb, hc the alti-
tudes; wa, wb, wc the angle-bisectors, ra, rb, rc the radii of excircles. In addition, we denote
∑ by cyclic sums.
We have known that some triangle inequalities can be generalized to the case with one
parameter. For example, Klamkin generalized the following inequality

∑
a

b + c − a
≥ 3 (1.1)

to

∑
a

k(b + c)− a
≥ 3, (1.2)

where k is a real number such that k ≥ 1 (see [1, p.148]). For another example, the author
recently found that the following known inequality (see [2, inequality 6.21]):

∑
1

ha − 2r
≥ 3

r
(1.3)

has the following generalization

∑
1

ha + kr
≥ 3

(k + 3)r
, (1.4)

where −2 ≤ k < 0. And the inequality reversely holds when k > 0 (we omit the proof
here).
Many years ago, with the help of the computer the author found that the following
inequality

∑
ma + ha

ra + wa
≤ 3 (1.5)
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probably holds for the acute triangle ABC. Recently, the author studied this inequality
again and found that it can be generalized to the case with one parameter. Specifically,
we have the following conclusion:

Theorem 1.1. Let ABC be an acute triangle and let k ≥ 1 be a real number. Then

∑
ma + kha

ra + kwa
≤ 3, (1.6)

with equality if and only if the acute triangle ABC is equilateral.

The main purpose of this paper is to prove the above theorem. We also propose several
related conjectures as open problems in the last section.

2. LEMMAS

In order prove Theorem 1.1, we shall use the following lemmas.

Lemma 2.1. In any triangle ABC the following inequality holds:

ma ≤
8S2 + bc(b − c)2

4aS
, (2.1)

with equality if and only if b = c or A = π/2.

Inequality is one of the equivalent form of Theorem 1.1 from [3].

Lemma 2.2. In any triangle ABC, let

N1 =(b2 + 6bc + c2)a − (b + c)(b − c)2,

N2 =(c2 + 6ca + a2)b − (c + a)(c − a)2,

N3 =(a2 + 6ab + b2)c − (a + b)(a − b)2,

M1 =(b2 + 6bc + c2)a2 − (b + c)2(b − c)2,

M2 =(c2 + 6ca + a2)b2 − (c + a)2(c − a)2,

M3 =(a2 + 6ab + b2)c2 − (a + b)2(a − b)2.

Then
wa ≥

2SN1

M1
, wb ≥

2SN2

M2
, wc ≥

2SN3

M3
, (2.2)

where Mi, Ni > 0(i = 1, 2, 3).

Proof. First, it is easy to obtain the following identity:

wa =
r

sin
A
2

+
r

cos
B − C

2

. (2.3)

So, we have
wa ≥ r +

r

sin
A
2

. (2.4)

Again, by the well-known formula

sin
A
2

=

√
(s − b)(s − c)

bc
(2.5)
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and the simplest arithmetic and geometric mean inequality, we get

2 sin
A
2

≤ a
b + c

+
(b + c)(s − b)(s − c)

abc
. (2.6)

Hence

1 +
1

sin
A
2

≥ 1 +
2abc(b + c)

bca2 + (s − b)(s − c)(b + c)2

=
4bca2 + (c + a − b)(a + b − c)(b + c)2 + 8abc(b + c)

4bca2 + (c + a − b)(a + b − c)(b + c)2 .

And, it is easy to verify the following two identities:

4bca2 + (c + a − b)(a + b − c)(b + c)2 = M1 (2.7)

and

4bca2 + (c + a − b)(a + b − c)(b + c)2 + 8abc(b + c) = 2sN1. (2.8)

So, we have

1 +
1

sin
A
2

≥ 2sN1

M1
. (2.9)

Four similar relations are also valid. Note that (2.4) and S = rs, we immediately deduce
that

wa ≥
2SN1

M1

Similarly, one can obtain two inequalities for wb and wc. From (2.7) and (2.8), one sees
that M1 > 0 and N1 > 0. The other four similar inequalities are also valid. The proof of
Lemma 2.2 is complete. □

Lemma 2.3. In any triangle ABC the following identities hold:

∑ a2 =2s2 − 8Rr − 2r2, (2.10)

∑ a3 =2s3 − (12Rr + 6r2)s, (2.11)

∑ a4 =2s4 − 4(4R + 3r)rs2 + 2(4R + r)2r2, (2.12)

∑ a5 =2s5 − 20(R + r)rs3 + 10(2R + r)(4R + r)r2s, (2.13)

∑ a6 =2s6 − 6(4R + 5r)rs4 + 6(24R2 + 24Rr + 5r2)r2s2

− 2(4R + r)3r3, (2.14)

∑ a7 =2s7 − 14(2R + 3r)rs5 + 14(16R2 + 20Rr + 5r2)r2s3

− 14(2R + r)(4R + r)2r3s, (2.15)

∑ a8 =2s8 − 8(4R + 7r)rs6 + 20(16R2 + 24Rr + 7r2)r2s4

− 8(4R + r)(32R2 + 32Rr + 7r2)r3s2 + 2(4R + r)4r4, (2.16)
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∑ a9 =2s9 − 36(R + 2r)rs7 + 36(12R2 + 21Rr + 7r2)r2s5

− 12(160R3 + 240R2r + 105Rr2 + 14r3)r3s3

+ 18(2R + r)(4R + r)3r4s, (2.17)

∑ a10 =2s10 − 10(4R + 9r)rs8 + 140(2R + 3r)(2R + r)r2s6

− 20(160R3 + 280R2r + 140Rr2 + 21r3)r3s4

+ 10(40R2 + 40Rr + 9r2)(4R + r)2r4s2 − 2(4R + r)5r5, (2.18)

∑ a11 =2s11 − 22(2R + 5r)rs9 + 44(16R2 + 36Rr + 15r2)r2s7

− 308(2R + r)(8R2 + 12Rr + 3r2)r3s5

+ 22(4R + r)(160R3 + 240R2r + 108Rr2

+ 15r3)r4s3 − 22(2R + r)(4R + r)4r5s, (2.19)

∑ a12 =2s12 − 12(4R + 11r)rs10 + 18(48R2 + 120Rr + 55r2)r2s8

− 56(128R3 + 288R2r + 180Rr2 + 33r3)r3s6 + 6(4480R4

+ 8960R3r + 6048R2r2 + 1680Rr3 + 165r4)r4s4

− 12(48R2 + 48Rr + 11r2)(4R + r)3r5s2 + 2(4R + r)6r6, (2.20)

∑ a13 =2s13 − 52(R + 3r)rs11 + 130(8R2 + 22Rr + 11r2)r2s9

− 312(32R3 + 80R2r + 55Rr2 + 11r3)r3s7 + 26(1792R4

+ 4032R3r + 3024R2r2 + 924Rr3 + 99r4)r4s5

− 52(112R3 + 168R2r + 77Rr2 + 11r3)(4R + r)2r5s3

+ 26(2R + r)(4R + r)5r6s, (2.21)

∑ a14 =2s14 − 14(4R + 13r)rs12 + 154(8R2 + 24Rr + 13r2)r2s10

− 42(320R3 + 880R2r + 660Rr2 + 143r3)r3s8

+ 42(1792R4 + 4480R3r + 3696R2r2 + 1232Rr3

+ 143r4)r4s6 − 14(4R + r)(3584R4 + 7168R3r

+ 4928R2r2 + 1408Rr3 + 143r4)r5s4 + 14(56R2

+ 56Rr + 13r2)(4R + r)4r6s2 − 2(4R + r)7r7, (2.22)

∑ a15 =2s15 − 30(2R + 7r)rs13 + 30(48R2 + 156Rr + 91r2)r2s11

− 110(160R3 + 480R2r + 390Rr2 + 91r3)r3s9

+ 90(1280R4 + 3520R3r + 3168R2r2 + 1144Rr3

+ 143r4)r4s7 − 6(64512R5 + 161280R4r + 147840R3r2

+ 63360R2r3 + 12870Rr4 + 1001r5)r5s5 + 10(896R3

+ 1344R2r + 624Rr2 + 91r3)(4R + r)3r6s3

− 30(2R + r)(4R + r)6r7s, (2.23)
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∑ a16 =2s16 − 16(4R + 15r)rs14 + 104(16R2 + 56Rr + 35r2)r2s12

− 176(128R3 + 416R2r + 364Rr2 + 91r3)r3s10

+ 132(1280R4 + 3840R3r + 3744R2r2 + 1456Rr3

+ 195r4)r4s8 − 16(43008R5 + 118272R4r + 118272R3r2

+ 54912R2r3 + 12012Rr4 + 1001r5)r5s6 + 8(10752R4

+ 21504R3r + 14976R2r2 + 4368Rr3 + 455r4)(4R + r)2r6s4

− 16(8R + 5r)(8R + 3r)(4R + r)5r7s2 + 2(4R + r)8r8. (2.24)

Proof. Identities (2.10)-(2.12) are familiar (see [1]). The proofs of identities (2.13)-(2.22)
can be found in [4] and [5]. So, we only need to prove (2.23) and (2.24) here.
It is easy to get that

∑ a15 = ∑ a7 ∑ a8 + abc ∑ b6c6 − ∑ a ∑ b7c7. (2.25)

With the help of Maple software, using ∑ a = 2s, (2.15), (2.16), (2.33) and (2.34) below
and the following known identity

abc = 4Rrs, (2.26)

we immediately obtain identity (2.23). In addition, we easily get

∑ a16 =
(
∑ a8)2 − 2

(
∑ b4c4

)2
+ 4(abc)4 ∑ a4. (2.27)

Then using identities (2.12), (2.16), (2.26) and (2.31) below, we immediately obtain (2.24).
Lemma 2.3 is proved. □

Lemma 2.4. In any triangle ABC the following identities hold:

∑ bc =s2 + 4Rr + r2, (2.28)

∑ b2c2 =s4 − 2(4R − r)rs2 + (4R + r)2r2, (2.29)

∑ b3c3 =s6 − 3(4R − r)rs4 + 3r4s2 + (4R + r)3r3, (2.30)

∑ b4c4 =s8 − 4(4R − r)rs6 + 2(16R2 − 8Rr + 3r2)r2s4

+ 4(4R + r)r5s2 + (4R + r)4r4, (2.31)

∑ b5c5 =s10 − 5(4R − r)rs8 + 10(8R2 − 4Rr + r2)r2s6

+ 10r6s4 + 5(4R + r)2r6s2 + (4R + r)5r5, (2.32)

∑ b6c6 =s12 − 6(4R − r)rs10 + 3(48R2 − 24Rr + 5r2)r2s8

− 4(32R3 − 24R2r + 12Rr2 − 5r3)r3s6

+ 3(16R + 5r)r7s4 + 6(4R + r)3r7s2 + (4R + r)6r6, (2.33)
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∑ b7c7 =s14 − 7(4R − r)rs12 + 7(32R2 − 16Rr + 3r2)r2s10

− 7(64R3 − 48R2r + 20Rr2 − 5r3)r3s8 + 35r8s6

+ 7(8R + 3r)(4R + r)r8s4 + 7(4R + r)4r8s2 + (4R + r)7r7, (2.34)

∑ b8c8 =s16 − 8(4R − r)rs14 + 4(80R2 − 40Rr + 7r2)r2s12

− 8(128R3 − 96R2r + 36Rr2 − 7r3)r3s10

+ 2(256R4 − 256R3r + 160R2r2 − 80Rr3 + 35r4)r4s8

+ 8(20R + 7r)r9s6 + 4(16R + 7r)(4R + r)2r9s4

+ 8(4R + r)5r9s2 + (4R + r)8r8 (2.35)

Proof. Both identities (2.28) and (2.29) are known (see [1]). Identities (2.30)-(2.34) have
been proved in [4] and [5]. It remains to show (2.35). Since

∑ b8c8 =
(
∑ b4c4

)2
− 2(abc)4 ∑ a4,

identity (2.35) follows easily by using (2.12), (2.26) and (2.31). Lemma 2.4 is proved. □

Lemma 2.5. In the acute triangle ABC the following inequality holds:

s2 ≥ 4R2 − Rr + 13r2 +
(R − 2r)r3

R2 , (2.36)

with equality if and only if △ABC is equilateral or isosceles.

Inequality (2.36) was obtained by the author in [6].

3. PROOF OF THEOREM 1.1

In this section, we prove Theorem 1.1.

Proof. Since k ≥ 1, we may assume that k = 1 + t (t ≥ 0). Then inequality (1.6) becomes

∑
ma + (1 + t)ha

ra + (1 + t)wa
≤ 3. (3.1)

By Lemma 2.1 and 2.2, we have

ma + (1 + t)ha

ra + (1 + t)wa
≤

8S2 + bc(b − c)2

4aS
+ (1 + t)ha

ra + (1 + t)
2SN1

M1

.

Then using the well-known formulas:

ha =
2S
a

, (3.2)

ra =
S

s − a
, (3.3)

we obtain
ma + (1 + t)ha

ra + (1 + t)wa
≤ F1

4E1S2 , (3.4)
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where

E1 =a [M1 + 2(s − a)(1 + t)N1] ,

F1 =(s − a)
[
8(2 + t)S2 + bc(b − c)2] M1.

Similarly, we have

mb + (1 + t)hb

rb + (1 + t)wb
≤ F2

4E2S2 , (3.5)

mc + (1 + t)hc

rc + (1 + t)wc
≤ F3

4E3S2 , (3.6)

where

E2 =b [M2 + 2(s − b)(1 + t)N2] ,

F2 =(s − b)
[
8(2 + t)S2 + ca(c − a)2] M2,

E3 =c [M3 + 2(s − c)(1 + t)N3] ,

F3 =(s − c)
[
8(2 + t)S2 + ab(a − b)2] M3.

Adding (3.4), (3.5) and (3.6) gives

∑
ma + (1 + t)ha

ra + (1 + t)wa
≤ 1

4S2

(
F1

E1
+

F2

E2
+

F3

E3

)
. (3.7)

Thus, to prove inequality (3.1) we only need to prove that

Q0 ≡ 12S2E1E2E3 − (F1E2E3 + F2E3E1 + F3E1E2) ≥ 0. (3.8)

We set d = abc. With the help of software Maple, using s = (a + b + c)/2 and Heron’s
formula:

S =
√

s(s − a)(s − b)(s − c) (3.9)

we obtain the following complex identity ( which can be verified by expanding ):

4Q0 = m0x3t3 + n0x2t2 + x1t + x0, (3.10)

where

m0 =(a + b + c)(b + c − a)2(c + a − b)2(a + b − c)2,

n0 =2(b + c − a)(c + a − b)(a + b − c),

x3 =120d4 +
(
14 ∑ a ∑ a2 − 72 ∑ a3) d3

+
(

21 ∑ a6 + 35 ∑ a ∑ a5 − 40 ∑ b3c3 − 32 ∑ a2 ∑ a4
)

d2

+
(

10 ∑ a2 ∑ a7 + 12 ∑ a3 ∑ a6 − 15 ∑ a4 ∑ a5 − 7 ∑ a ∑ a8
)

d

+ ∑ a5 ∑ a7 − ∑ a3 ∑ a9 − 4 ∑ b6c6 + 2 ∑ a4 ∑ a8 − 2 ∑ a12,
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x2 =790
(
∑ a

)
d5 +

(
293 ∑ a4 − 435 ∑ a ∑ a3 + 126 ∑ b2c2

)
d4

+
(

208 ∑ a7 − 245 ∑ a4 ∑ a3 − 157 ∑ a2 ∑ a5 + 358 ∑ a ∑ a6
)

d3

+
(
192 ∑ a2 ∑ a8 + 178 ∑ a3 ∑ a7 − 154 ∑ b5c5 − 99 ∑ a ∑ a9

−159 ∑ a10 − 160 ∑ a4 ∑ a6
)

d2 +
(

58 ∑ a4 ∑ a9 − 50 ∑ a6 ∑ a7

−31 ∑ a3 ∑ a10 − 23 ∑ a2 ∑ a11 + 14 ∑ a ∑ a12 + 32 ∑ a5 ∑ a8
)

d

− 7 ∑ a16 − 14 ∑ b8c8 + 2 ∑ a3 ∑ a13 − 5 ∑ a4 ∑ a12 − 2 ∑ a5 ∑ a11

+ 12 ∑ a6 ∑ a10,

x1 =− 144
(
∑ a

)
d6 +

(
1248 ∑ b2c2 − 2728 ∑ a4 + 424 ∑ a ∑ a3

)
d5

+
(

92 ∑ a3 ∑ a4 − 1428 ∑ a2 ∑ a5 + 592 ∑ a ∑ a6 + 2408 ∑ a7
)

d4

−
(

1892 ∑ a10 + 304 ∑ a ∑ a9 + 2072 ∑ b5c5 + 240 ∑ a4 ∑ a6

−880 ∑ a2 ∑ a8 − 1076 ∑ a3 ∑ a7) d3 +
(

276 ∑ a13 + 12 ∑ a ∑ a12

−608 ∑ a2 ∑ a11 + 24 ∑ a3 ∑ a10 + 1084 ∑ a4 ∑ a9 + 96 ∑ a5 ∑ a8

−732 ∑ a6 ∑ a7) d2 +
(

96 ∑ a2 ∑ a14 + 160 ∑ a6 ∑ a10

+188 ∑ a5 ∑ a11 − 64 ∑ b8c8 − 224 ∑ a4 ∑ a12 − 28 ∑ a3 ∑ a13

−132 ∑ a7 ∑ a9 − 32 ∑ a16 − 28 ∑ a ∑ a15
)

d + 60 ∑ a7 ∑ a12

− 4 ∑ a3 ∑ a16 − 16 ∑ a5 ∑ a14 + 52 ∑ a8 ∑ a11 − 48 ∑ a6 ∑ a13

− 64 ∑ a9 ∑ a10 + 20 ∑ a4 ∑ a15,

x0 =− 400
(
∑ a

)
d6 +

(
304 ∑ a ∑ a3 − 912 ∑ a4 + 304 ∑ b2c2

)
d5

+
(

48 ∑ a7 − 8 ∑ a ∑ a6 − 72 ∑ a2 ∑ a5 + 64 ∑ a3 ∑ a4
)

d4

+
(

192 ∑ a2 ∑ a8 − 72 ∑ a3 ∑ a7 − 264 ∑ a10 − 144 ∑ b5c5

+8 ∑ a4 ∑ a6 + 40 ∑ a ∑ a9
)

d3 +
(

120 ∑ a4 ∑ a9 − 8 ∑ a2 ∑ a11

−128 ∑ a6 ∑ a7 + 8 ∑ a3 ∑ a10 − 24 ∑ a ∑ a12 + 32 ∑ a5 ∑ a8
)

d2

+
(

56 ∑ a16 + 24 ∑ a2 ∑ a14 − 24 ∑ a4 ∑ a12 + 112 ∑ b8c8

−80 ∑ a7 ∑ a9 − 56 ∑ a6 ∑ a10 − 56 ∑ a3 ∑ a13 + 136 ∑ a5 ∑ a11
)

d

+ 40 ∑ a7 ∑ a12 − 16 ∑ a5 ∑ a14 + 16 ∑ a8 ∑ a11 − 16 ∑ a6 ∑ a13

− 32 ∑ a9 ∑ a10 + 8 ∑ a4 ∑ a15
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Note that t ≥ 0, m0 > 0 and n0 > 0. For proving Q0 ≥ 0, we need to prove inequalities
x3 ≥ 0, x2 ≥ 0, x1 ≥ 0 and x0 ≥ 0. Next, we shall prove these four inequalities in proper
order. In fact, both inequalities x3 ≥ 0 and x2 ≥ 0 are valid for any triangle.
We now prove that x3 ≥ 0 holds for any triangle ABC. With the help of software Maple,
using ∑ a = 2s, d = abc = 4Rrs, and related identities given in Lemma 2.3 and 2.4, we
obtain

x3 = 64r4s2K3, (3.11)

where

K3 =− s6 − (204R2 + 42Rr + 3r2)s4 + (1280R4 + 440R3r − 148R2r2

− 52Rr3 − 3r4)s2 + (16R2 + 2Rr − r2)(4R + r)3r.

To prove x3 ≥ 0 we have to prove K3 ≥ 0.
We now recall that for any triangle ABC we have Euler’s inequality

R ≥ 2r (3.12)

and the following fundamental triangle inequality (cf. [1] and [7]):

t0 ≡ −s4 + (4R2 + 20Rr − 2r2)s2 − r(4R + r)3 ≥ 0, (3.13)

with equality if and only if triangleABC is isosceles. We also have the following two
Gerretsen inequalities:

g1 ≡ s2 − 16Rr + 5r2 ≥ 0, (3.14)

g2 ≡ 4R2 + 4Rr + 3r2 − s2 ≥ 0, (3.15)

Based on the above four inequalities, after analysis we rewrite inequality K3 ≥ 0 as
follows:

K3 ≡(s2 + 208R2 + 62Rr + r2)t0 + 32R(7R + 2r)
[
(2R2 + r2)g1 + 18Rrg2

+2r(4R + r)(3R + r)(R − 2r)] ≥ 0. (3.16)

Then by (3.12)-(3.15) we deduce that K3 ≥ 0 holds for any triangle ABC.
Now, We show that inequality x2 ≥ 0 holds for any triangle ABC. With the help of
Maple, using ∑ a = 2s, abc = 4Rrs, Lemma 2.4 and 2.5, simplifying gives

x2 = 256s2r5K2, (3.17)

where

K2 =(24R − 7r)s8 − (1408R3 + 1736R2r + 248Rr2 + 20r3)s6

+ (8704R5 + 3408R4r − 920R2r3 − 288Rr4 − 18r5)s4

+ 4(504R4 + 416R3r + 138R2r2 + 10Rr3 − r4)(4R + r)2rs2

+ (8R2 + 4Rr + r2)(4R + r)5r2.

So we have to show K2 ≥ 0. After analysis, we obtain the following identity:

K2 = t0A1 + g2
1 A2 + 4r(A3 + A4), (3.18)
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where

A1 =7rs4 + (1408R3 + 1764R2r + 388Rr2 + 6r3)s2

+ 8(3976R2 + 4196Rr + 605r2)R2r,

A2 =24Rg2
1 + 96(16R − 5r)Rrg1 + (3072R5 + 36864R3r2

− 23040R2r3 + 4052Rr4 + r5),

A3 =5R2(4672R4 + 7343r4)g1 + (144480R5 + 20832R4r

+ 87500R3r2 + 4005Rr4 + 2r5)rg2,

A4 =(R − 2r)(110208R6 + 487616R5r − 511888R4r2

+ 206304R3r3 + 24672R2r4 + 13029Rr5 + 6r6)r.

By Euler’s inequality and Gerretsen’s inequalities (3.14) and (3.15), we have A2 > 0, A3 ≥
0 and A4 ≥ 0. Thus inequality K2 ≥ 0 follows from identity (3.18) and inequality (3.13).
So, we proved that inequality x2 ≥ 0 is valid for any triangle.
Next, we shall prove that x1 ≥ 0 holds for the acute triangle ABC. With the help of Maple
software, using ∑ a = 2s, Lemma 2.3 and 2.4, we easily obtain the following identity:

x1 = 8192s3r6K1, (3.19)

where

K1 =− s10 − (12R2 − 16Rr + 7r2)s8 + (608R4 − 528R3r

− 812R2r2 − 112Rr3 − 14r4)s6 − (1024R6 − 256R5r

+ 3584R4r2 + 2368R3r3 + 620R2r4 + 120Rr5 + 10r6)s4

+ (128R5 + 1472R4r + 1136R3r2 + 380R2r3 + 40Rr4

− r5)(4R + r)2rs2 + (8R2 + 4Rr + r2)(4R + r)5r3.

Thus we only need to show that K1 ≥ 0. According to Lemma 2.5 and Euler’s inequality,
for acute triangle ABC we have

v0 ≡ s2 − 4R2 + Rr − 13r2 ≥ 0. (3.20)

Based on (3.12), (3.13) and (3.20), after analysis we obtain the following identity:

K1 = t0B1 + g2B2 + B3v2
0 + B4v0 + B5, (3.21)

where

B1 =s6 + (16R2 + 4Rr + 5r2)s4 + (800R3 + 832R2r + 192Rr2 + 3r3)rs2

+ 8(128R4 + 240R3r + 2736R2r2 + 2184Rr3 + 313r4)R2,

B2 =4096R8 + 26112R7r + 48128R6r2 + 382080R5r3 + 237216R4r4

− 9872R3r5 − 8972R2r6 − 260Rr7 − 2r8,

B3 =544R4v0 + 6528R6 − 1632R5r + 21216R4r2 + 268Rr5 + r6,
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B4 =2(4R2 − Rr + 13r2)(3264R6 − 816R5r + 10608R4r2

+ 268Rr5 + r6),

B5 =(R − 2r)(18432R9 − 44544R8r + 119680R7r2 − 216608R6r3

+ 276896R5r4 − 498592R4r5 − 83552R3r6 − 23468R2r7

− 23083Rr8 − 88r9).

It follows from Euler’s inequality and inequality (3.20) that B2 > 0 and B3 > 0. Since
t0 ≥ 0 and g2 ≥ 0, to prove K1 ≥ 0 it remains to show that

B4v0 + B5 ≥ 0. (3.22)

It is clear that B4 > 0. Thus, by Lemma 2.5, to prove the above inequality we require the
following inequality to be proved:

B4
(R − 2r)r3

R2 + B5 ≥ 0. (3.23)

Simplifying gives
R − 2r

R2 B6 ≥ 0, (3.24)

where

B6 =18432R11 − 44544R10r + 119680R9r2 − 190496R8r3

+ 263840R7r4 − 327232R6r5 − 125984R5r6 + 252340R4r7

− 20939R3r8 − 616R2r9 + 6966Rr10 + 26r11.

Putting e = R − 2r, then e ≥ 0 since we have Euler’s inequality. Substituting R = 2r + e
into B6 and expanding gives

B6 =18432e11 + 360960e10r + 3283840e9r2 + 18276064e8r3

+ 69008544e7r4 + 185286784e6r5 + 359837024e5r6

+ 502324340e4r7 + 488754389e3r8 + 310630838e2r9

+ 113348754er10 + 17323470r11,

so that B6 > 0 and hence inequality (3.24) is proved. We therefore proved that x1 ≥ 0
holds for the acute triangle ABC.
Finally, we prove that x0 ≥ 0 holds for acute triangles. Firstly, with the help of soft ware
Maple, it is not difficult to obtain the following identity:

x0 = 4096s3r6K0, (3.25)

where

K0 =− 3s10 − (64R2 + 11r2)s8 + (944R4 + 960R3r + 280R2r2

− 8Rr3 − 14r4)s6 − (2560R6 + 5632R5r + 7408R4r2

+ 3264R3r3 + 408R2r4 − 8Rr5 + 6r6)s4 + (256R5 + 1056R4r

+ 736R3r2 + 248R2r3 + 32Rr4 + r5)(4R + r)2rs2

+ (8R2 + 4Rr + r2)(4R + r)5r3.
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Then we need to prove K0 ≥ 0. We easily obtain the following identity:

K0 = t0C1s2 + C2, (3.26)

where

C1 =3s4 + (76R2 + 60Rr + 5r2)s2 + (608R3 + 644R2r + r3)r,

C2 =16R(40R3 + 3r3)s6 − (2560R6 + 10816R3r3 − 1912R2r4

+ 14656R4r2 + 3200R5r − 108Rr5 − r6)s4 + 2r(128R5 + 1744R4r

+ 1960R3r2 + 446R2r3 + 18Rr4 + r5)(4R + r)2s2

+ (8R2 + 4Rr + r2)(4R + r)5r3.

Since we have inequality (3.13), it remains to show that C2 ≥ 0. Noting that the following
known inequality (see [2, inequality 5.5]):

(4R + r)2 ≥ 3s2, (3.27)

we only need to prove

16R(40R3 + 3r3)s4 − (2560R6 + 10816R3r3 − 1912R2r4

+ 14656R4r2 + 3200R5r − 108Rr5 − r6)s2 + 2r(128R5 + 1744R4r

+ 1960R3r2 + 446R2r3 + 18Rr4 + r5)(4R + r)2

+ 3(8R2 + 4Rr + r2)(4R + r)3r3 ≥ 0,

i.e.,

P0 ≡16R(40R3 + 3r3)s4 − (2560R6 + 10816R3r3 − 1912R2r4

+ 14656R4r2 + 3200R5r − 108Rr5 − r6)s2 + r(256R5 + 3488R4r

+ 4016R3r2 + 964R2r3 + 60Rr4 + 5r5)(4R + r)2 ≥ 0. (3.28)

We can write the above inequality as follows:

P0 ≡ P1 + P2 + p0s2 + q0 ≥ 0, (3.29)

where

P1 =16R(40R3 + 3r3)(s2 − 4R2 + Rr − 13r2)2,

P2 =10432R3r3(4R2 + 4Rr + 3r2 − s2),

p0 =2560R6 − 4480R5r + 1984R4r2 + 1816R2r4 + 1356Rr5 + r6,

q0 =− 10240R8 + 9216R7r − 9344R6r2 + 66560R5r3 − 98464R4r4

− 23648R3r5 + 2772R2r6 − 8012Rr7 + 5r8.

Since P1 ≥ 0 and P2 ≥ 0 which follows from (3.15). It remains to prove that the following
inequality

p0s2 + q0 ≥ 0 (3.30)
holds for the acute triangle ABC.
We shall consider the following two cases to finish the proof of inequality (3.30).
Case 1 R and r satisfy 5R − 12r ≥ 0.
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We set u0 = s2 − (2R + r)2. By the Ciamberlini’s acute triangle inequality (see [8]):

s ≥ 2R + r (3.31)

we have u0 ≥ 0. It is easy to verify the following identity:

78125(p0s2 + q0)

= 78125p0u0 + 424038078r8 + 2(5R − 12r)
[
5(R − 2r)m1 + 2535736082r6] r, (3.32)

where

m1 =2400000R5 − 15640000R4r + 29064000R3r2 + 63553600R2r3

+ 123003640Rr4 + 251808736r5.

Euler’s inequality shows that p0 > 0. Again, note that

2400000R5 − 15640000R4r + 29064000R3r2

= 8000R3(300R2 − 1955Rr + 3633r2) > 0.

Consequently, from (3.32) we deduce that the strict inequality p0s2 + q0 > 0 holds for the
acute triangle ABC under Case 1.
Case 2 R and r satisfy 5R − 12r < 0.
In this case, we shall apply the acute triangle inequality (3.20). We set e = R − 2r and
v0 = s2 − 4R2 + Rr − 13r2, then it is easily verified that

15625(p0s2 + q0) = 15625p0v0 + er(12r − 5R)m2 + 212019039er7, (3.33)

where

m2 =35200000e5 + 393280000e4r + 1731112000e3r2

+ 3738844800e2r3 + 3937362920er4 + 1584482668r5.

Note that p0 > 0, e ≥ 0 and the previous inequality (3.20), we conclude from (3.33) that
p0s2 + q0 ≥ 0 holds under Case 2.
Combining the discussions of the above two cases, we deduce that inequality (3.30) holds
for all acute triangles. Therefore, we finished the proofs of inequalities x0 ≥ 0 and in-
equality (1.6). In addition, it is easy to determine that equality in (1.6) holds if and only
triangle ABC is equilateral. This completes the proof of Theorem 1.1. □

4. OPEN PROBLEMS

In this section, we give several conjectures related to inequality (1.6) as open problems.

Conjecture 4.1. If k ≥ 2, then for any triangle ABC the following inequality holds:

∑
ma + kha

ra + kwa
≤ ∑

ma + ha

ra + wa
. (4.1)

Conjecture 4.2. If k ≥ 3
2

, then for the acute triangle ABC the following inequality holds:

∑
ma + kha

ra + kwa
≤ 4

3

(
∑ sin

A
2

)2

. (4.2)
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Conjecture 4.3. If 0 < k ≤ 3
4

, then for any triangle ABC the following inequality holds:

∑
ma + kha

ra + kwa
≥ 3. (4.3)

Conjecture 4.4. Let ABC be an acute triangle. If k ≥ 1.72, then following inequality holds:

∑
(

ma + kha

ra + kwa

)2

≤ 3. (4.4)

If 0 < k ≤ 1.29, then the inequality reversely holds.
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