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ALMOST QUASI-YAMABE SOLITON ON 3-DIMENSIONAL LORENTZIAN
PARA-KENMOTSU MANIFOLDS

JHANTU DAS, SOUMENDU ROY, KALYAN HALDER, ARINDAM BHATTACHARYYA

ABSTRACT. In this present paper, we have studied 3-dimensional Lorentzian para-Kenmotsu
manifolds admitting an almost quasi-Yamabe soliton and gradient almost quasi-Yamabe
solitons. It is shown that if a 3-dimensional Lorentzian para-Kenmotsu manifold M3 ad-
mits an almost quasi-Yamabe soliton whose soliton vector field V such that φV ̸= 0, then
the manifold M3 is of constant sectional curvature 1, but converse is not true in general
which has been proved by a concrete example. Next, it is proved that if the metric g
of a 3-dimensional Lorentzian para-Kenmotsu manifold M3 is a gradient quasi-Yamabe
soliton, then either the manifold M3 is of constant sectional curvature 1 or the almost
quasi-Yamabe gradient soliton on M3 is trivial. Finally, for an almost quasi-Yamabe soli-
ton on a 3-dimensional Lorentzian para-Kenmotsu manifold M3, we have shown that if
the soliton vector field V is pointwise collinear with timelike smooth vector field ξ, then
V is becoming a constant multiple of ξ.

1. INTRODUCTION

The concept of Yamabe flow was introduced by R. Hamilton [9] as a tool for construct-

ing metrics of constant scalar curvature in a given conformal class of Riemannian metrics

on a Riemannian manifold of dimension n(≥ 3). The Yamabe flow on a n-dimensional

Riemannian or pseudo-Riemannian manifold (M, g) is defined as the evolution equation

of the metric g = g(t) as follows

∂

∂t
(g(t)) = −r(g(t)), g(0) = g0

where r is the well-known scalar curvature of the manifold. The Yamabe flow corre-

sponds to the fast diffusion case of the plasma equation in mathematical physics.
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It is well-known that a Riemannian metric g of a complete Riemannian manifold (M, g)

of dimension n is said to be a Yamabe soliton if, for some real constant ρ, there exists a

smooth vector field V on M satisfying the equation

1
2

£V g = (r − ρ)g (1.1)

where £V indicates the Lie-derivative in the direction of V. The Yamabe soliton is said

to be shrinking, steady, or expanding according to ρ is positive, zero, or negative respec-

tively. Moreover, the Yamabe soliton is said to be trivial if the soliton vector field V of the

Yamabe soliton (g, V, ρ) is Killing. The Yamabe solitons have been investigated under

some conditions by many authors such as ([4], [5] [6], [7], [11], [13]).

In 2013, E. Barbosa and E. Ribeiro [1] introduced the concept of almost Yamabe soliton,

which is a generalization of the Yamabe soliton by setting ρ to be a smooth function on

M, i.e., ρ : M → R is a smooth function. Furthermore, T. Seko and S. Maeta in [17] com-

pletely classified almost Yamabe solitons in the context of hypersurfaces in Euclidean

spaces. The so-called Yamabe soliton becomes the gradient soliton if V = grad(h) = Dh,

for some smooth function h : M → R. In this case the Eq. (1.1) reduces to

∇2h = (r − ρ)g (1.2)

where ∇2h is the Hessian of smooth function h on M.

In 2014, G. Huang and H. Li [12] introduced the notion of quasi-Yamabe gradient soli-

ton, which is a generalization of gradient Yamabe soliton ( see [12], [14]). The quasi-

Yamabe gradient soliton equation is given by

∇2h = (r − ρ)g +
1
β

dh ⊗ dh (1.3)

where β is a positive constant and ρ is a real number. It is clear that if β → ∞, the

Eq. (1.3) recovers gradient Yamabe soliton. Huang-Li [12] proved that n-dimensional

(n ≥ 3) complete quasi Yamabe gradient solitons with vanishing Weyl curvature tensor
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and positive sectional curvature must be rotationally symmetric.

In 2017, the notion of gradient almost quasi-Yamabe soliton was introduced by V. Pirhadi

and A. Razavi [15]. They have proved that a necessary and sufficient condition under

which an arbitrary compact almost Yamabe soliton is necessarily gradient [15]. In 2019,

A. M. Blaga [2] studied almost quasi-Yamabe solitons on the warped product manifolds

and derived a Bochner-type formula for a gradient almost quasi-Yamabe soliton. More-

over, in 2020, X. Chen [3] studied almost quasi-Yamabe solitons on almost cosymplectic

manifolds. Currently, S. Ghosh et al. [8] have considered almost quasi-Yamabe solitons

and gradient almost quasi-Yamabe solitons in the context of Kenmotsu manifolds.

According to Chen, a Riemannian metric g defined on a Riemannian manifold (M, g)

is said to be an almost quasi-Yamabe soliton if, for some smooth function ρ : M → R,

there exist a smooth vector field V and a positive constant β on M satisfying the equation

1
2

£V g = (r − ρ)g +
1
β

Vb ⊗ Vb (1.4)

where Vb is the 1-form associated to V. The smooth vector field V is also called a

soliton vector field for the almost quasi-Yamabe soliton (g, V, ρ, β). The almost quasi-

Yamabe metric is closed if the 1-form Vb is closed and it is trivial if V is identically

zero. Furthermore, if β → ∞, the foregoing equation reduces to almost Yamabe soli-

ton. Moreover, the preceding equation gives an almost quasi-Yamabe gradient soliton

for V = grad(h) = Dh.

Motivated by the above studies, in the present manuscript we make the contribution to

investigate the almost quasi-Yamabe soliton metric on 3-dimensional Lorentzian para-

Kenmotsu manifolds.

The organization of the manuscript is as follows: Section 2 contains some preliminaries

on a Lorentzian para-Kenmotsu manifold. Section 3 deals with 3-dimensional Lorentzian

para-Kenmotsu manifolds admitting almost quasi-Yamabe solitons. Precisely we prove
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if a 3-dimensional Lorentzian para-Kenmotsu manifold admits an almost quasi-Yamabe

soliton and φV ̸= 0, then the manifold is of constant sectional curvature 1. Also, we con-

struct an example to prove the converse is not true in general. Next, we study an almost

quasi-Yamabe whose soliton vector field V is the gradient of some smooth function h on

3-dimensional Lorentzian para-Kenmotsu manifold M3. Finally, we have shown that if a

3-dimensional Lorentzian para-Kenmotsu manifold M3 admits an almost quasi-Yamabe

soliton with the soliton vector field V is pointwise collinear with the timelike vector field

ξ, then the soliton vector field V becomes a constant multiple of ξ.

2. PRELIMINARIES

A Lorentzian almost para-contact metric structure [10] on a (2n + 1)-dimensional

smooth manifold M2n+1 is a quadruplet (φ, ξ, η, g), where φ is a (1, 1) fundamental ten-

sor field, ξ a unit timelike smooth vector field, η a 1-form and a Lorentzian metric g,

satisfying

φ2(E) = E + η(E)ξ, η(ξ) = −1, (2.1)

φ(ξ) = 0, rank(φ) = 2n, η(φE) = 0, (2.2)

g(φE, φF) = g(E, F) + η(E)η(F), (2.3)

g(φE, F) = g(E, φF), (2.4)

g(E, ξ) = η(E), (2.5)

for all smooth vector fields E, F ∈ χ(M2n+1). A Lorentzian almost para-contact metric

manifold M2n+1 is called a Lorentzian para-Kenmotsu manifold [10], if it satisfies

(∇E φ)F = −g(φE, F)ξ − η(F)φE, (2.6)

where ∇ denotes the Levi-Civita connection of the metric g. From the antecedent equa-

tion, it is clear that

∇Eξ = −E − η(E)ξ, (2.7)
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which gives

(∇Eη)F = −g(E, F)− η(E)η(F), (2.8)

In a (2n + 1)-dimensional Lorentzian para-Kenmotsu manifolds ([10], [16]), we have

R(E, F)ξ = η(F)E − η(E)F, (2.9)

R(E, ξ)ξ = −E − η(E)ξ, (2.10)

R(ξ, E)F = g(E, F)ξ − η(F)E, (2.11)

S(E, ξ) = 2nη(E), (2.12)

S(ξ, ξ) = −2n, (2.13)

Qξ = 2nξ, (2.14)

where R, S and Q are the curvature tensor, the Ricci tensor and the Ricci operator defined

by g(QE, F) = S(E, F), for all smooth vector fields E, F ∈ χ(M2n+1), respectively.

It is known that the second order Ricci tensor field S of a 3-dimensional Lorentzian para-

Kenmotsu manifold M3 is given by [16]

S(E, F) = (
r
2
− 1)g(E, F) + (

r
2
− 3)η(E)η(F). (2.15)

This shows that a 3-dimensional Lorentzian para-Kenmotsu manifold is an η-Einstein

manifold.

Lemma 2.1. [16] For a 3-dimensional Lorentzian para-Kenmotsu manifold M3, the curvature

tensor R is given by

R(E, F)Z = ( r
2 − 2){g(F, Z)E − g(E, Z)F}+ ( r

2 − 3){g(F, Z)η(E)ξ

−g(E, Z)η(F)ξ + η(F)η(Z)E − η(E)η(Z)F},

(2.16)
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for any smooth vector fields E, F, Z ∈ χ(M3).

Lemma 2.2. [3] For an almost quasi-Yamabe gradient soliton (M, g, Dh, β, ρ), the curvature

tensor R is given by

R(E, F)Dh = E(r − ρ)F − F(r − ρ)E − r − ρ

β
{E(h)F − F(h)E}, (2.17)

for all smooth vector fields E, F ∈ χ(M). where D stands for the gradient operator of the metric

g.

3. ALMOST QUASI-YAMABE SOLITONS ON 3-DIMENSIONAL LORENTZIAN

PARA-KENMOTSU MANIFOLDS

This section is devoted to the study of the 3-dimensional Lorentzian para-Kenmotsu

manifold admitting an almost quasi-Yamabe soliton. Let M3 be a 3-dimensional Lorentzian

para-Kenmotsu manifold admitting a closed almost quasi-Yamabe soliton (g, V, ρ, β). In

this regards our first theorem is

Theorem 3.1. Let a 3-dimensional Lorentzian para-Kenmotsu manifold M3 admit a closed al-

most quasi-Yamabe soliton (g, V, ρ, β) and φV ̸= 0. Then the manifold M3 is of constant sec-

tional curvature 1, but the converse is not true in general.

Proof. Since Vb is closed, the Eq. (1.4) transforms to

∇FV = (r − ρ)F +
1
β

g(V, F)V. (3.1)

Executing covariant derivative of Eq. (3.1) along an arbitrary vector field E, we get

∇E∇FV = (E(r − ρ))F + (r − ρ)∇EF + 1
β{g(∇EV, F) + g(V,∇EF)}V

+ 1
β g(V, F)∇EV.

(3.2)
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Exchanging E and F in the above Eq. (3.2) gives

∇F∇EV = (F(r − ρ))E + (r − ρ)∇FE + 1
β{g(∇FV, E) + g(V,∇FE)}V

+ 1
β g(V, E)∇FV.

(3.3)

Again, replacing F = [E, F] in Eq. (3.1) yields

∇[E,F]V = (r − ρ)[E, F] +
1
β

g(V, [E, F])V. (3.4)

Using the previous three Eqs. (3.2) , (3.3) and (3.4) in the well known formula R(E, F)V =

∇E∇FV −∇F∇EV −∇[E,F]V, we infer that

R(E, F)V = (E(r − ρ))F − (F(r − ρ))E +
r − ρ

β
{g(V, F)E − g(V, E)F}. (3.5)

Executing inner product of Eq. (3.5) with timelike smooth vector field ξ yields

g(R(E, F)V, ξ) = {E(r − ρ)− r−ρ
β g(E, V)}η(F)− {F(r − ρ)

− r−ρ
β g(F, V)}η(E).

(3.6)

Again, in the view of Eq. (2.9) we obtain

g(R(E, F)V, ξ) = g(F, V)η(E)− g(E, V)η(F). (3.7)

Equating the Eq. (3.6) and Eq. (3.7), we get

{E(r − ρ)− r−ρ
β g(E, V)}η(F)− {F(r − ρ)− r−ρ

β g(F, V)}η(E)

= g(F, V)η(E)− g(E, V)η(F).

(3.8)

Replacing E by φE and F by ξ in the above Eq. (3.8) and using Eq. (2.1), Eq. (2.2) and Eq.

(2.4), we have

φD(r − ρ) = (
r − ρ

β
− 1)φV. (3.9)
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Let us consider an orthonormal basis {e1, e2, e3} of the tangent space at each point of 3-

dimensional Lorentzian para-Kenmotsu manifold M3. Contracting Eq. (3.5) over F and

making use of Eq. (2.15) entails that

{ r
2
− 1 − 2(r − ρ)

β
}V + (

r
2
− 3)η(V)ξ = −2D(r − ρ). (3.10)

Now applying φ on the both sides of the above Eq. (3.10) and using Eq. (2.2) leads

{ r
2
− 1 − 2(r − ρ)

β
}φV = −2φD(r − ρ). (3.11)

In view of the Eq. (3.9) and Eq. (3.11), we get

(
r
2
− 3)φV = 0. (3.12)

If we assume φV ̸= 0, then Eq. (3.12) gives us r = 6. Now using r = 6 in Eq. (2.16) we

get

R(E, F)Z = {g(F, Z)E − g(E, Z)F}.

Thus, the manifold M3 is of constant sectional curvature 1. But the converse is not

true in general, for example, Let us consider the 3-dimensional smooth manifold M3 =

{(u, v, w) ∈ R3 : w ̸= 0} with the standard coordinate system (u, v, w) of R3.

Let us consider the smooth vector fields E1, E2, E3 of M3 be such that

[E1, E2] = 0, [E2, E3] = −E2, [E1, E3] = −E1.

Let us define a Lorentzian metric g on M3 by

g(Ei, Ej) =


1 0 0

0 1 0

0 0 −1


and a (1, 1) tensor field φ on M3 by

φ(E1) = −E2, φ(E2) = −E1, φ(E3) = 0.
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Now considering E3 = ξ, let η be the 1-form on M3, defined by

g(X, E3) = η(X), ∀X ∈ χ(M3)

Then it can be observed that η(ξ) = −1.

Using the linearity property of φ and g we obtain

φ2X = X + η(X)ξ, g(φX, φY) = g(X, Y) + η(X)η(Y), ∀X, Y ∈ χ(M3)

Hence the structure (g, φ, ξ, η) defines a Lorentzian almost para-contact metric structure

on M3.

Let ∇ be a Riemannian connection with respect to g. Utilizing the well-known Koszul’s

formula given by

2g(∇XY, Z) = Xg(Y, Z) + Yg(Z, X)− Zg(X, Y)− g(X, [Y, Z])

−g(Y, [X, Z]) + g(Z, [X, Y]),

we calculate the following:

∇E1 E1 = −E3, ∇E1 E2 = 0, ∇E1 E3 = −E1,

∇E2 E1 = 0, ∇E2 E2 = E3, ∇E2 E3 = −E2,

∇E3 E1 = 0, ∇E3 E2 = 0, ∇E3 E3 = 0.

In view of the above results it is clear that the manifold M3 satisfies

∇Xξ = −X − η(X)ξ, ∀X ∈ χ(M3)

Hence M3(g, φ, ξ, η) is a 3-dimensional Lorentzian para-Kenmotsu manifold.

Thus from the above computations and using the well-known formula

R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z
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the non-vanishing components of the curvature tensor R as follows:

R(E1, E2)E1 = −E2, R(E2, E1)E1 = E2, R(E1, E3)E1 = −E3,

R(E3, E1)E1 = E3, R(E1, E2)E2 = E1, R(E2, E1)E2 = −E1,

R(E2, E3)E2 = −E3, R(E3, E2)E2 = E3, R(E1, E3)E3 = −E1,

R(E3, E1)E3 = E1, R(E2, E3)E3 = −E2, R(E3, E2)E3 = E2.

Using the well-known formula S(X, Y) = ∑3
i=1 g(Ei, Ei)g(R(Ei, X)Y, Ei) the non-vanishing

components of the Ricci tensor S can be easily be calculated as

S(E1, E1) = 2, S(E2, E2) = 2, S(E3, E3) = −2.

Again, the scalar curvature r of the given Lorentzian para-Kenmotsu manifold can be

calculated as under:

r =
3

∑
i=1

g(Ei, Ei)S(Ei, Ei) = S(E1, E1) + S(E2, E2)− S(E3, E3) = 6.

Let X = X1E1 + X2E2 + X3E3, Y = Y1E1 + Y2E2 + Y3E3 and Z = Z1E1 + Z2E2 + Z3E3.

Then we can easily verify that

R(X, Y)Z = [g(Y, Z)X − g(X, Z)Y]

Thus, the manifold M3 is of constant sectional curvature 1.

Now if we take a soliton vector field V = V1E1 +V2E2 +V3E3 such that (V1)2 +(V2)2 ̸=

0, then we have ∇E1V = −V1E3 − V3E1 and (r − ρ)E1 +
1
β g(V, E1)V = (6 − ρ)E1 +

1
β V1(V1E1 + V2E2 + V3E3). Hence

∇E1V ̸= (r − ρ)E1 +
1
β

g(V, E1)V
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for any values of ρ, β and any choice of soliton vector field V.

Thus a 3-dimensional Lorentzian para-Kenmotsu manifold M3 can not admit an almost

quasi-Yamabe soliton although M3 is a 3-dimensional Lorentzian para-Kenmotsu mani-

fold with constant sectional curvature 1. This completes the proof. □

Furthermore, if β → ∞, the Eq. (3.9) and Eq. (3.11) reduces to

φD(r − ρ) = −φV, (3.13)

and

(
r
2
− 1)φV = −2φD(r − ρ), (3.14)

respectively. In view of Eq. (3.13), the Eq. (3.14) reduces to

(
r
2
− 3)φV = 0. (3.15)

The foregoing equation eventually implies that either r = 6 or φV = 0. Now utilizing

the value of r = 6 in the Eq. (2.16) we get R(E, F)Z = {g(F, Z)E− g(E, Z)F}. This shows

that manifold M is of constant sectional curvature 1. Again if we consider φV = 0 and

using the Eq. (2.1) one can easily obtain V = −η(V)ξ =⇒ V is pointwise collinear with

the timelike smooth vector field ξ. Thus we conclude the following:

Corollary 3.1. If a 3-dimensional Lorentzian para-Kenmotsu manifold M3 admits a closed al-

most Yamabe soliton (g, V, ρ), then either the manifold M3 is of constant sectional curvature 1

or the soliton vector field V is pointwise collinear with the timelike smooth vector field ξ.

Again, if ρ is a constant function on manifold, then closed almost quasi-Yamabe soliton

becomes closed quasi-Yamabe soliton. Thus, maintaining the same process as in the

proof of Corollary 3.2, we can state the following:

Corollary 3.2. If a 3-dimensional Lorentzian para-Kenmotsu manifold M3 admits a closed quasi-

Yamabe soliton (g, V, ρ, β), then either the manifold M3 is of constant sectional curvature 1 or

the soliton vector field V is pointwise collinear with the timelike smooth vector field ξ.
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Next, we consider a 3-dimensional Lorentzian para-Kenmotsu manifold M3 admitting

an almost quasi-Yamabe whose soliton vector field V is the gradient of some smooth

function h : M3 → R, i.e., V = grad(h) = Dh. In this regard our next theorem is

Theorem 3.2. If a 3-dimensional Lorentzian para-Kenmotsu manifold M3 admits an almost

quasi-Yamabe gradient soliton (g, Dh, ρ, β), then either the manifold M3 is of constant sectional

curvature 1 or the almost quasi-Yamabe gradient soliton on M3 is trivial.

Proof. Let us assume that M3 be a 3-dimensional Lorentzian para-Kenmotsu manifold

admitting an almost quasi-Yamabe gradient soliton (g, Dh, ρ, β) and the soliton vector

field V = grad(h) = Dh for some smooth function h : M3 → R.

Taking inner product both sides of the Eq. (2.17) with timelike smooth vector field ξ, we

get

g(R(E, F)Dh, ξ) = E(r − ρ)η(F)− F(r − ρ)η(E)

− r−ρ
β {E(h)η(F)− F(h)η(E)}.

(3.16)

Again recalling the Eq. (2.9) and taking inner product both sides with Dh yields

g(R(E, F)Dh, ξ) = F(h)η(E)− E(h)η(F). (3.17)

Comparing the Eq. (3.16) and Eq. (3.17) we get

E(r − ρ)η(F)− F(r − ρ)η(E)− r−ρ
β {E(h)η(F)− F(h)η(E)}

= F(h)η(E)− E(h)η(F)

. (3.18)

Replacing E and F by φE and ξ respectively in the above Eq. (3.18) and taking reference

of the Eq.(2.1), Eq. (2.2) and Eq. (2.4) entails that

(
r − ρ

β
− 1)(φE)(h) = (φE)(r − ρ). (3.19)

Let {e1, e2, e3} be an orthonormal basis of the tangent space at each point of 3-dimensional

para-Kenmotsu manifold M3. Then contracting Eq. (2.17) over the vector field F and
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making use of Eq. (2.15), we obtain

{ r
2
− 1 − 2(r − ρ)

β
}E(h) + (

r
2
− 3)η(E)ξ(h) = −2E(r − ρ). (3.20)

Now replacing E by φE in the above Eq. (3.20) and making use of Eq. (2.2) we get

{ r
2
− 1 − 2(r − ρ)

β
}(φE)(h) = −2(φE)(r − ρ). (3.21)

Now comparing the Eq. (3.19) and Eq. (3.21), we have

(
r
2
− 3)(φE)(h) = 0. (3.22)

It follows that, either r = 6 or (φE)(h) = 0

Case (I): If r = 6, then the Eq. (2.16) reduces to

R(E, F)Z = {g(F, Z)E − g(E, Z)F},

which implies that the manifold M3 is of constant sectional curvature 1.

Case (II): If (φE)(h) = 0, then operating φ on both sides and making use of Eq. (2.1)

we get

Dh = −ξ(h)ξ. (3.23)

Taking covariant derivative of Eq. (3.23) along an arbitrary vector field E and taking

reference of Eq. (3.1) and Eq. (2.7), we have

(r − ρ)E +
1
β

g(E, Dh)Dh = −E(ξ(h))ξ + ξ(h)(E + η(E)ξ). (3.24)

Using Eq. (3.23) in Eq. (3.24), we get

(r − ρ)E +
1
β
(ξ(h))2η(E)ξ = −E(ξ(h))ξ + ξ(h)(E + η(E)ξ). (3.25)
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Setting E = ξ in Eq. (3.25) yields

(r − ρ)− 1
β
(ξ(h))2 = −ξ(ξ(h)). (3.26)

Now choosing the local orthonormal frame {e1, e2, e3} on a 3-dimensional Lorentzian

para-Kenmotsu manifold M3. Contracting Eq. (3.25), we obtain

3(r − ρ)− 1
β
(ξ(h))2 = −ξ(ξ(h)) + 2ξ(h). (3.27)

By virtue of Eq. (3.26) and Eq. (3.27), we have

ξ(h) = (r − ρ), (3.28)

which is equivalent to

dh = (ρ − r)η, (3.29)

where d stands for the exterior derivative.

Executing exterior derivative of Eq. (3.29) and using Poincare lemma: d2 ≡ 0, we get

(ρ − r)dη + (dρ)η − (dr)η = 0. (3.30)

Taking wedge product operator both sides of Eq. (3.30) with η, we get

(ρ − r)η ∧ dη = 0, (3.31)

which becomes

(ρ − r) = 0, (3.32)

since η ∧ dη ̸= 0, in a Lorentzian para-Kenmotsu manifold.

Using Eq. (3.32) in Eq. (3.29) gives us dh = 0 =⇒ h = constant. This means almost

quasi-Yamabe gradient soliton is trivial. This completes the proof. □

Now recalling the Eqs. (3.26), (3.27) and (3.32), one can easily obtain that

ξ(ξ(h)) =
1
β
(ξ(h))2. (3.33)
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If ξ = ∂
∂x , then Eq. (3.33) transforms to

∂2 f
∂x2 =

1
β
(

∂ f
∂x

)2. (3.34)

Then it is easy to observe that h = −βlnx, x > 0 is satisfies the above partial differential

equation (3.34).

Thus we state the following:

Corollary 3.3. If a 3-dimensional Lorentzian para-Kenmotsu manifold M3 admits an almost

quasi-Yamabe gradient soliton (g, Dh, ρ, β), then the manifold M3 is of scalar curvature r = ρ.

Corollary 3.4. A 3-dimensional Lorentzian para-Kenmotsu manifold M3 admitting an almost

quasi-Yamabe gradient soliton (g, Dh, ρ, β) satisfies the differential equation ∂2h
∂x2 = 1

β (
∂h
∂x )

2 and

the soliton function h is given by h = −βlnx, x > 0.

In the last part of this section, we consider a 3-dimensional Lorentzian para-Kenmotsu

manifold M3 admitting an almost quasi-Yamabe whose soliton vector field V is point-

wise collinear with the timelike smooth vector field ξ. In this regard our next theorem

is

Theorem 3.3. If a 3-dimensional Lorentzian para-Kenmotsu manifold M3 admits an almost

quasi-Yamabe soliton (g, V, ρ, β) with the soliton vector field V is pointwise collinear with the

timelike vector field ξ, then the soliton vector field V becomes a constant multiple of ξ.

Proof. Let M3 be a 3-dimensional Lorentzian para-Kenmotsu manifold admitting an al-

most quasi-Yamabe soliton (g, V, ρ, β) such that the vector field V is pointwise collinear

with ξ, then there exists a non-vanishing smooth function ω : M3 → R such that V = ωξ.

Then from Eq. (1.4) we derive

g(∇Eωξ, F) + g(E,∇Fωξ) = 2(r − ρ)g(E, F) +
2ω2

β
η(E)η(F), (3.35)
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for all smooth vector fields E, nχ(M3).

which becomes

ω{g(∇Eξ, F) + g(E,∇Fξ)}+ E(ω)η(F) + F(ω)η(E)

= 2(r − ρ)g(E, F) + 2ω2

β η(E)η(F).

(3.36)

Using Eq. (2.7) in Eq. (3.36) we get

−2ω{g(E, F) + η(E)η(F)}+ E(ω)η(F) + F(ω)η(E)

= 2(r − ρ)g(E, F) + 2ω2

β η(E)η(F).

(3.37)

Now taking F = ξ in Eq. (3.37) and using Eq. (2.1) we lead

E(ω) = {ξ(ω)− 2(r − ρ − ω2

β
)}η(E). (3.38)

Again putting E = ξ in the above Eq. (3.38) and using (2.1) yields

ξ(ω) = (r − ρ − ω2

β
). (3.39)

Next, we shall consider a local orthonormal basis {ei : i = 1, 2, 3} of the tangent space at

each point of M3. The contraction of the above Eq. (3.37) over F gives

ξ(ω) = 2(r − ρ + ω) + (r − ρ − ω2

β
). (3.40)

Comparing Eq. (3.39) with Eq. (3.40) we get

ω = −(r − ρ). (3.41)

Now recalling the Eqs. (3.38), (3.39) and (3.41), one can easily find that

E(ω) = (ω +
ω2

β
)η(E) ⇐⇒ dω = (ω +

ω2

β
)η (3.42)
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Taking exterior derivative of both sides of Eq. (3.42) and using Poincare lemma: d2 ≡ 0

yields

(ω +
ω2

β
)dη + d(ω +

ω2

β
)η = 0. (3.43)

Taking wedge product operator both sides of Eq. (3.43) with η, we get

(ω +
ω2

β
)η ∧ dη = 0. (3.44)

Since η ∧ dη ̸= 0, we immediately have ω + ω2

β = 0 =⇒ ω = −β, since ω is non-

vanishing function. Thus we conclude that ω is a constant function on M3. Therefore, the

soliton vector field V is constant multiple of the timelike vector field ξ. This completes

the proof. □
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