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SPECTRA IN THE ANTI-DE SITTER GEOMETRY

SIMON DAVIS

ABSTRACT. When the dimensions of string theory in anti-de Sitter space-time are defined
such there is a massless graviton in the physical spectrum, it coincides with the critical
dimension of Liouville theory if the kinetic term for the time coordinate of the string in
the embedding space is not present in the action. If it is restored, the critical dimension
is consistent with the zero-curvature limit of strings propagating in flat space-time. The
quantization of modes of various spin in a conformally related Einstein static universe
with reflective boundary conditions at a timelike infinity is sufficient to introduce spin
for fields in a locally anti-de Sitter region.

1. Introduction

The string worldsheet action in curved space

I = −T
2

∫
Σ

d2σ
√

hhαβgµν∂αXµ∂βXν (1.1)

Is invariant under worldsheet reparameterizations, Weyl scaling and isometries of the
target space-time metric. When the worldsheet admits a globally flat metric, the deriva-
tion of the equations of motion and the quantization of the string proceed according to
the calculation in flat space. The worldsheet can be curved, however, and the expansion
of the string coordinate field in a mode expansion consists of a set set of terms. Nev-
ertheless, the leading terms are equal to those on a flat worldsheet and the remaining
terms have a similar ofrm determined by the uniformizing group of the surface with
Euclidean signature, such that the derivation of the critical dimension and the normal
ordering constant in the Lorentz algebra is identical.
A similar conclusion is reached for conformally flat target space metrics. The equations
of motion for the coordinate field Xµ are equivalent, and the operatorsin the quantization
of the theory will have the same expansion. Consequently, the commutators occurring
in the Lorentz algebra will yield equal values of the dimension and normal ordering
constant. It follows that the critical dimension of a string in a conformally flat space-time
would be equal to that derived for the propagation in flat space-time. Consequently, the
critical dimension of the bosonic string would be equal in Minkowski and anti-de Sitter
space-time.
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The expected values are supported by calculations of the expectation values of massless
gravitons. It is demonstrated that the critical dimensions for these state remains 26.
A Weyl anomaly cancellation produces a result which can be explained through other
investigations of string theory in anti-de Sitter space. This dimension would be affected
by the presence of the conformal factor in the metric. There exists also a conformal
factor which interpolates flat and anti-de Sitter geometries confirming the same critical
dimensions for both space-times.

2. Expectation Values of Operators in Anti-de Sitter Space

The reparameterizations of the bosonic string action are given by

δXµ = ξα∂αXµ (2.1)

δhαβ = ξγ∂γhγβ − ∂γξβhαγ

δ(
√

h) = ∂α(ξ
α
√

h)

δS = −T
2

∫
Σ

d2σ

[
δ(
√

h)hαβgµν∂αXµ∂βXν +
√

hδ(hαβ)gµν∂αXµ∂βxν (2.2)

+
√

hhαβgµν∂α(δXµ)∂βXν +
√

hhαβgµν∂αXµ∂β(δXν)

]
= −T

2

∫
Σ

d2σ

[
− ξγ

√
h∂γhαβ ∂αXµ∂βXν − ξγ

√
hhαβgµν∂γ∂αXµ∂βXν

− ξγ
√

hhαβgµν∂αXµ∂γ∂βXν + ∂γ(ξ
γ
√

hhαβgµν∂αXµ∂βXν)

+
√

hξγ∂γhαβgµν∂αXµ∂βXν −
√

hξγ∂γhαβgµν∂αXµ∂βXν

−
√

hhαγgµν∂γξβ∂αXµ∂βXν +
√

hhαβgµν(∂αξγ)(∂γXµ)(∂βXν)

+
√

hhαβgµν(∂βξγ)(∂αXµ)(∂γXν) +
√

hhαβgµνξγ∂α∂γXµ∂βXν

+
√

hhαβgµν∂αXµξγ∂β∂γXν

]
= −T

2

∫
∂Σ

dℓγξγ
√

hhαβgµν∂αXµ∂β∂γXν.

This integral vanishes if the surface has no boundary or Xα → 0 at the boundary.
The transformation of the metric under Weyl scaling is

δhαβ = Λhαβ (2.3)
δhαβ = −Λhαβ

δ(
√

h) = −Λ
√

h
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and

δS = −T
2

∫
Σ

d2σ
√

hhαβgµν∂αXµ∂βXν −
T
2

∫
Σ

d2σ
√

h δhαβ∂αXµ∂βXν (2.4)

= −T
2

∫
Σ

d2σ (−Λ
√

h)jαβgµν∂αXµ∂βXν −
T
2

∫
Σ

d2σ
√

h Λhαβgµν∂αXµ∂βXν

= 0.

On anti-de Sitter space in d dimensions,

δXµ = Mµ
νXν (2.5)

δgµν = Mρ
µgρν + Mρ

νgµρ

δXµ = −Mµ
νXν.

The operators Mµν are generators of the so(d − 1, 2) algebra and

δS = −T
2

∫
Σ

d2σ
√

hhαβδgµν∂αXν∂βXν (2.6)

− T
2

∫
Σ

d2σ
√

hhαβgµν∂α(δXµ)∂βXν

− T
2

∫
Σ

d2σ
√

hhαβgmuν∂αXµ∂β(δXν)

= −T
2

∫
Σ

d2σ
√

hhαβ(Mρ
µgρν + Mρνgµρ)∂αXµ∂βXν

+
T
2

∫
Σ

d2σ
√

hhαβgρν Mρ
µ∂αXµ∂βXν

+
T
2

∫
Σ

d2σ
√

hhαβgµρ∂αXµβXν

= 0.

In flat space, the functional derivatives of the action on a surface Σ with a metric hαβ are

δS
δXµ

= 0 (2.7)

δS
δ∂αXµ

= −T
√

hhαβ∂βX|u

and the equation of motion is

∆Xµ =
1√
h

∂(
√

hhαβ∂βXµ) = 0. (2.8)

Locally, the metric on the surface can be set equal to ηαβ and the Euclidean form of the
equation reduces to

∆Xµ =

(
∂2

∂σ2 +
∂2

∂τ2

)
Xµ = 0. (2.9)

which does not represent the global dynamics over a closed Riemann surface.
The Lorentzian equation is

□Xµ =

(
∂2

∂σ2 − ∂2

∂τ2

)
Xµ = 0. (2.10)
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For a light-cone diagram, the worldsheet is flat except for curvature at the interaction
points. Given that the worldsheet can be represented as the quotient of two-dimensional
Minkowski space-time by ΓLor. The solution to the wave equation then would be given
by
The solution to the wave equation on a Riemann surface would be given by the automor-
phic functions on the covering space. The sphere can be stereographically projected to
the extended complex plane and the universal covering of the torus is C with coordinates
σ+ = σ + iτ and σ− = σ − iτ. The mode expansion is

Xµ(σ, iτ) = xµ + pµ(iτ) + i ∑
n ̸=0

1
n

α
µ
ne−in(iτ)cos nσ. (2.11)

Then

Xµ(σ, iτ) =
xµ

2
+

pµ

2
(σ + iτ) +

xµ

2
+

pµ

2
(iτ − σ) + i ∑

n ̸=0

1
n

α
µ
n(cosh nτ + sinh nτ) cos nσ

(2.12)

=
xµ

2
+

pµ

2
σ+ +

xµ

2
+

pµ

2
σ− + i ∑

n ̸=0

1
n

α
µ
n [cos(inτ) + i sin(inτ)] cos(nσ)

=
xµ

2
+

pµ

2
σ+ +

xµ

2
+

pµ

2
σ− +

i
2 ∑

n ̸=0
α

µ
n [einσ+

+ einσ−
].

On the torus, this mode expansion has to be modified to be

Xµ(σ, iτ) = ∑
γ∈Γ

[
xµ +

pµ

2
(γ · σ+) +

pµ

2
(γ · σ−)

]
+

i
2 ∑

n ̸=0
α

µ
n [einγ·σ+

+ einγ·σ−
]. (2.13)

In the light-cone gauge, in flat space, X+(σ, iτ) = x+ + p+(iτ). On the torus,

X+(σ, iτ) = x+ + p+(iτ) + ∑
γ ̸=I

(x+ + p+(γ · (iτ))). (2.14)

Similarly,

X−(σ, iτ) = x− + p−(iτ) + ∑
n ̸=0

1
n

α−
n enτcos nσ (2.15)

+ ∑
γ ̸=I

[
x− + p−(γ · iτ) + i ∑

n ̸=0

1
n

α−
n enγ·τcos n(γ · σ−)

]
.

The Lorentzian mode expansions would be

X+(σ, τ) = x+ + p+τ + ∑
γLor ̸=I

(x+ + p+(γ · τ)) (2.16)

and

X−(σ, τ) = x− + p−τ + i ∑
n ̸=0

1
n

α
µ
ne−inτcos nσ (2.17)

+ ∑
γLor ̸=I

[
x− + p−(γ · τ) + i ∑

n ̸=0

1
n

α−
n e−in(γ·τ)cos(nγ · σ)

]
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where

α−
n =

1
p+

(
1
2

d−2

∑
i=1

∞

∑
n=−∞

: αI
n−mαi

m : −aδ

)
(2.18)

With a being a normal ordering constant. Since the expansion of the light-cone coor-
dinates has the Same leading terms and the remaining terms have a form determined
by the uniformizing group ΓLor, with the same coefficients α−

n , the derivation of d and
a is identical. With Jµν = ℓµν + Eµν, ℓµν = xµ pν–xν pµ and Eµν = −i ∑∞

n=1
1
n (α

µ
−nαν

n −
αν
−nα

µ
n), and the normal ordering 1

2 ∑d−2
i=1 ∑∞

n=−∞ αI
−nαI

n = 1
2 ∑n=1 d − 2 ∑∞

n=−∞ : αI
−nαi

n :
+ d−2

2 ∑∞
n=1 n = 1

2 ∑d−2
n=1 ∑∞

n=−∞ : αI
−nαi

n : − d−2
24 , it follows that [Ji−, J j−] = 1

(p+)2 ∑∞
n=1 ∆m)αi

−mα
j
m −

α
j
−mαi

m), where ∆m = m
(

26−d
2

)
+ 1

m

[
d−26

12 + 2(1 − a)
]

and ∆m = 0 if d = 26 and a = 1.

The effect of introducing a conformally flat metric is similar. Given that gµν = Ω−2ηµν

and gµν = Ω2ηµν, the action is

S = −T
2

∫
Σ

d2σ
√

hhγδΩ−2ηµν∂γXµ∂δXν (2.19)

and
∂α

δS
δ∂αXµ

= −T∂α(
√

hhαβΩ2ηµν∂βXν) = −TΩ2ηµν∂α(
√

hhαβ∂βXν) (2.20)

Since ηµν = diag(−1, 1, ..., 1), each component separately solves the Laplace equation
∆Xµ = 0. The mode expansion, the coefficients and the operators will be identical.
By normal ordering, d = 26 and a = 1. It follows that the critical dimension will be
26 for the Minkowski space-time, anti-de Sitter space and the geometry with a smooth
interpolating factor.
Quantization in anti-de Sitter space is derived from

S(2) = − 1
2πα′

∫
dτdσ

[ d−1

∑
R=1

ηab(δxR),a(δxR),b =
m2α′2

ℓ2 δxRδxR

]
(2.21)

When the time coordinate δx0 of the string in the embedding space is not included. The
mass formula would be given by

m2α′2 = ∑
n>0

(
2n2 +

m2α′2

ℓ2

) d−1

∑
R=1

[
(aR

n )
†(aR

n ) + (aR
n )(aR

n )
† + (ãR

n )
†(ãR

n ) + (ãR
n )(ãR

n )
†
]

(L0 − 2πα′a)|ψ⟩ = (L̃0 − 2πα′a)|ψ⟩ = 0,

where the commutation relations of the annihilation and creation operators are

[aR
m, (aS

n)
†] =

α′

2
√

n2 + m2α′2

ℓ2

δmnδRS [ãR
m, (ãS

n)
†] =

α′

2
√

n2 + m2α′2

ℓ2

δmnδRS (2.22)

[aR
m, aS

n] = 0 [ãR
m, ãS

n] = 0

[(aR
m)

†, (aS
n)

†] = 0 [ãR
m)

†, (ãS
n)

†] = 0,

and, with λ = α′

ℓ2 ,
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(L0 + L̄0)|ψ⟩ =
{

π ∑
n

2(2n2 + m2α′λ)
d−1

∑
R=1

2α′
√

n2 + m2α′λ
[(αR

n )
†αR

n + (α̃)nR)†α̃R
n ] (2.23)

+ π ∑
n>0

2(2n2 + m2α′λ)
2α′

√
n2 + m2α′λ

(d − 1)
}
|ψ⟩.

= 4πα′a|ψ⟩

Setting a = m2α′,

m2α′ = (d − 1) ∑
n>0

2n2 + m2α′λ√
n2 + m2α′λ

+ ∑
n>0

2n2 + m2α′λ√
n2 + m2α′λ

d−1

∑
R=1

[(αR
n )

†αR
n + (α̃R

n )
†α̃R

n ]. (2.24)

Since αR
n |0⟩ = α̃ − nR|0⟩ = 0 for the vacuum, the expectation value of m2α′ in the spin-2

state (α̃R
1 )

†(αS
1)

†|0⟩ = |ΩRS
11 ⟩ is

⟨0|αS
1 α̃R

1 m2α′(α̃R
1 )

†(αS
1)

†|0⟩ (2.25)

= ⟨0|α2
1α̃R

1 (d − 1)
[
− 1

6
+

(m2α′2)2

4
ζ(3)λ2 − (m2α′)3

4
ζ(5)λ3 + O(λ4)

]
(α̃R

1 )
†(αS

1)
†|0⟩

∑
n>0

2n2 + m2α′λ√
n2 + m2α′λ

d−1

∑
Q=1

⟨0|αS
1 α̃R

1 [(α
Q
n )

†αQ
n + (α̃Q

n )
†α̃Q

n ](α̃
R
1 )

†(αS
1)

†|0⟩

= (d − 1)
[
− 1

6
+

(m2α′)2

4
ζ(3)λ2 − (m2α′)3

4
ζ(5)λ3 + O(λ4)

]
+ ∑

n>0

2n2 + m2α′λ√
n2 + m2α′λ

· 2δ1n

= (d − 1)
[
− 1

6
+

(m2α′)2

4
ζ(3)λ2 − (m2α′)3

4
ζ(5)λ3 + O(λ4)

]
+ 2

2 + m2α′λ√
1 + m2α′λ

and, setting the expectation value equal to zero,

−d − 1
6

+ 4 = 0 (2.26)

d = 25.

However, if m2α′ = 0, a would be zero and the normal ordering would be dependent on
the state. By contrast, the value of a required for the masslessness of the graviton and
the cancellation of anomalies in Minkowski space-time is constant.
If the term −ηab(δx0),a(δx0),b is added to the action, the contribution To the expectation
value of Lo + L̄0 is −∑n+0

2n2+m2α′λ√
n2+m2α′λ

. yielding the equation − d−2
6 + 4 = 0 and d = 26.

The expectation value of m2α′ in a vector state (αR
1 )

†|0⟩ = |ΩR
1 ⟩ in the initial theory

without the time coordinate would be
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⟨0|αR
1 m2α′(αR

1 )
†|0⟩ (2.27)

= ⟨0|αR
1 (d − 1)

[
− 1

6
+

(m2α′)2

4
ζ(3)λ2 − (m2α′)3

4
ζ(5)λ3 + O(λ4)

]
(αR

1 )
†|0⟩

+ ∑
n>0

2n2 + m2α′λ√
n2 + m2α′λ

|0|αR
1 [(α

Q
n )

†αQ
n + (α̃Q

n )
†α̃Q

n ](α̃
R
n )

†
]
|0⟩

= (d − 1)
[
− 1

6
+

(m2α′)2

4
ζ(3)λ2 − (m2α′)2

4
ζ(5)λ3 + O(λ4)

]
+

2 + m2α′λ√
1 + m2α′λ

.

Then the condition for vanishing of the expectation value is

−d − 1
6

+ 2 = 0 (2.28)

d = 13.

When the time coordinate is included, the expectation value of the square mass vanishes
if − d−2

6 + 2 = 0 or d = 14. A massless vector field is likely to arise in a super-Yang-Mills
theory, and therefore, it could be included in a superstring theory. There is a difference,
however, between this dimension and the critical dimension for the formulation of the
path integral of the superstring in anti-de Sitter space. The added dimensions will be
explained in §4,

3. The Liouville Theory

Consider the partition function of string theory

Z ∼ ∑
topologies

∫
Dh; DXe−S (3.1)

Gauge fixing the worldsheet metric to be hαβ = eϕδαβ, ϕ is a Liouville field. Then

Z =
∫
[dτ]DhϕDh(gh.)DhX e−Sµ−Sgh−

µg
2π

∫
d2ξ

√
h (3.2)

=
∫
[dτ]J(, ĥ)DĥDĥ(gh.)Dh(X)e−Sµ–Sgh.−

µg
2π

∫
d2ξ

√
h.

The Jacobian has the form

J(ϕ, ĥ) = e−
∫

d2ξ
√

h(ãh̃ab∂aϕ∂bϕ+b̃R̂ϕ+µec̃ϕ). (3.3)

Under the variations δĥ = ϵ(ξ)ĥ and δϕ = −ϵ(ξ), the variation produces the term(
d−25
48π + b̃

) ∫
d2ξR̂ξ And (2ã − b)

∫
d2ξ

√
ĥ ϵ□ϕ and invariance requires ã − 1

2 b̃ and b̃ =

25−d
48π . When d = 25, the Jacobian is reduced to e−µ

∫
d2ξ

√
hec̃ϕ

. However, it is not necessary
for the dimension to be 25, and the above coefficients yield

J(ϕ, ĥ) = e−
25−D
48π

∫
d2ξ

√
h( 1

2 h̃ab∂aϕ∂bϕ+R̃ϕ)−µ
∫

d2ξ
√

h ec̃ϕ

(3.4)
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When these considerations are extended to the supersymmetric Liouville model, the su-
perspace integral arising from the transformation of the metric in the partition function
introduces the factor

J(Φ, H) = e−
d−9
32π

∫
d2xd2θ (sdet H)

1
2 ( 1

2 DαΦDαΦ+R̂Φ)+2iµ
∫

d2xd2θ (sdet H)
1
2 e

Φ
2 (3.5)

Again, the Jacobian is a numerical factor in the d = 9, which is one less than the criti-
cal dimension of the superstring. Invariance of the Jaoobian under transformations of
the metric on the super-Riemann surface, H, and the scalar superfield Φ, also may be
achieved in dimensions other than 9.
The Liouville model is constructed with the two-dimensional metrics restricted to be
conformally flat, and this restriction generates the Jacobian in the path integral. All sur-
faces have a locally conformally flat metric. However, the field must not be defined
globally on the surface, and the dynamics are no longer directly connected to the path
integral of string theory. Therefore, reduction of the critical dimension by one in the
Liouville field theory does not immediately reflect the conditions for a consistent quan-
tization of strings.
It may be demonstrated that the bosonic string action in three dimensional anti-de Sitter
space is equivalent to a Liouville action [14]. The embedding of the string worldsheets in
the conformally flat space-time allows the introduction of a global scalar field determin-
ing the dynamics of the string. However, a set of scalar fields representing coordinates
of the string is not defined, and therefore, the invariances of the path integral will not de-
termine a parameter representing the dimension of the embedding space-time. Instead,
the model can be quantized consistently in three dimensions.
Furthermore, In the critical dimension of string theory, there is a decoupling of the Weyl
field from the other fields in the Liouville action. The role of this field is similar to the
conformal factor in Euclidean gravity. The decoupling allows the formulation of the
path integral which would be free from divergences arising from the integration over
this variable.

4. A Resolution to the Problem of the Dimension of
String Propagation in Anti-de Sitter Space

The theoretical derivation of the dimension of a consistent quantum theory of strings
in anti-de Sitters pace may be given in terms of the path integral. The conformal factor
yields a coefficient multiplying the Liouville action in the path integral which vanishes
in a critical dimension. However, this factor will be altered in anti-de Sitters space, and
it is zero in another dimension.
The partition function for the bosonic string in anti-de Sitter space is

Z =
∫

DhDXDy e−S (4.1)

S =
R2

4π

∫
d2ξ

√
hhab ∂aX I∂bXi

y2 +
R2

4π

∫
d2ξ

√
hhab ∂ay∂by

y2 .
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in conformally flat coordinates with the line element

ds2 =
R2

y2

(
dy2 +

d

∑
i=1

(dXi)2

)
(4.2)

Then

Z =
∫

Dϕ
∫

D f e
− d+2

8π

∫
d2ξ

[
f
(

1−ln
(

f
Λ2

)
+ϕ
)
− 1

2 (∂aϕ)2+λeϕ

]
Det

1
2
FP (4.3)

=
∫

Dϕ ed−2496π
∫

d2ξ[(∂aξ)2+λeϕ]
∫

D f e−
d+2
8π

∫
d2ξ f

(
1−ln

(
f

Λ2

)
+ϕ
)
,

where y(ξ) = eχ(ξ) and f (ξ) = hab∂aχ∂bχ+∆χ and hab = eϕδab [7]. A diagrammatic eval-
uation of the series expansion of the integral over f yields a formula for the coefficient
multiplying the Liouville action

C =
dc − 24

96π
+

1
24π

− 0.003 + ... (4.4)

which tends to zero as dc → 21 or dc + 1 → 22. The propagation of the string a decou-
pling of the conformal ode would be valid in 22 dimensions.
The difference between theis valud and that found through the presence of a massless
graviton In the physical spectrum can be explained through the physical effect of flat-
tening the space-time Through which a string propagates in a maximally curved space-
time. It may be concluded that the Hamiltonian of a shift in the four-dimensional mass
and momentum scales in the bosonic string Hamiltonian in anti-de Sitter space is can-
celled by a ground state contribution, and it follows that propagation of the string in the
four dimensions can be regarded as being equivalent to that of flat Space [8]. Consider
adding four coordinates representing anti-de Sitter space. The dynamics of the string
in the space spanned by these coordinates would be equivalent to that of flat space. Re-
moval of the time coordinate, with a restriction to the three-dimensional conformally flat
subspace, and the union with the 22 coordinates of the initial anti-de Sitter space yields
25 dimensions. When the time coordinate is preserved, together with a Wick rotation to
ensure that the entire space-time has a Lorentz metric, the sum of the dimensions equals
26. The mass of the graviton would be zero in these extra dimensions, and therefore,
consistency of the physical spectrum with the vanishing of the conformal anomaly is re-
stored. This method may be used only to remove four anti-de Sitter coordinates, and it
cannot be iterated, since the flattening effect resulting from the cancellation in the effect
of the curvature on the Hamiltonian energy and the zero-point of the mass scale cancel
in four dimensions.
The algebra of the annihilation and creation of string and the existence yields a massless
vector in the physical spectrum in 14 dimension, with the time coordinate of the string in
the embedding space-time In the worldsheet action, and a reduction by four dimensions
would give the 10 dimensions of superstring theory. It is the critical dimension in flat
space, and quantum consistency of superstring in AdS5 × S5 may be established through
other method [2]. These Techniques include the formulatuion of a Green-Schwarz action
with manifest space-time supersymmetry, The κ-symmetry of this action is equivalent
to the classical BRST invariance of a pure spinor action that differs by an integral of a
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BRST variation. It is claimed that classical BRST invariance of the pure spinor produces
equations that are sufficient to prove cancellation of the Weyl anomaly and conformal
invariance at one loop [4]. However, an extra term 1

2πα′
∫

d2z 1
2 α′Φ(Z) is necessary at

the quantum level, and the relation with κ-symmetry of the Green-Schwarz action and
classical BRST invariance of the pure spinor action cannot be proven directly. The AdS5 ×
S5 pure spinor action without worldsheet curvature term

SAdS5×S5 = SGS + Sgh +
∫

d2z
(

dα L̄α + dα̇Lα̇ − 1
2

dαd̄β̇Fαβ̇

)
(4.5)

SGS =
∫

d2z
[

1
2

ηmnLm L̄n +
∫

dy ϵI JK(γmαβLm
I Lα

J Lβ
K + γmα̇β̇Lm

I Lα̇
J Lβ̇

K

]
Sgh =

∫
d2z

[
L f ree

gh +
1
2

Nmn L̄mn +
1
2

N̂mnLmn +
1
4

NmnN̂pqRmnpq
]

Fαβ̇ =
1

120
Fm1. . . m5(γm1. . . m5)

αβ̇

Rmnpq(γpq)α
β = γm

αγFγδ̇γn
δ̇κ Fβκ − γn

αγFγδ̇γm
δ̇κ Fβκ

is classically invariant because ∂̄(λαdα) = p̄artial(λ̂α̇dα̇) = 0 and {QBRST, QBRST}
= {Q̂BRST, Q̂BRST} = {QBRST, Q̂BRST} = 0. However, this invariance Is no longer proven
similarly when the worldsheet curvature term is included.

5. Finite-Volume Corrections to the Masses

There exists a curvature expansion of the kinetic and Wess-Zumino terms in the Green-
Schwarz action of a superstring on AdS5 × S5. The energy levels can be evaluated by
calculating the expectation values of each of the bosonic and fermionic contributions to
the Hamiltonian [15]. The terms in the expansion of the energy in powers of 1

R , where
R is the radius of curvature, would generate fine structure for sufficiently large R. A
truncated series reduces the symmetry from the conformal group SO(4, 2) to the anti-de
Sitter group SO(3, 2), and the corrections do not represent the energy levels of an N = 4
super-Yang-Mills theory precisely. Finite-volume corrections to the mass of a stable state

are proportional to e−
√

3
2 m̄L, where m̄ is the mass gap and L is the linear extent, with the

proportionality constant being given by the forward scattering amplitude of the lightest
particles in the infinite-volume limit, such that mass splitting provides information about
the phase shifts in an infinite volume and the width of the resonance because unstable
particles can mix with the scattering states of their decay products in a finite volume [13].
Finite-volume effects would be reduced exponentially as L → ∞.
Analyticity of Schwinger functions in the coupling depends on the finiteness of ϵ

m2
0
,

which is necessary for the cluster expansion [5]. The cluster expansion is used in the
proof of the existence of the infinite-volume limit [11]. With the mass gap, certain Schwarz
distributions can be shown to decrease rapidly. In Wightman theory with a mass M > 0,
the support of the Wightman function WT(p1, ..., pn) is contained in ∑n

ℓ=0 pℓ]inVn
+,∑n

ℓ=1 pℓ =
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0, Inequalities such as ∥ d
dt ∏n

i=1 A∗( fi, t)|0]⟩ ∥< CN(1+ |t|)6−N, CN < 0, for a nonover-
lapping set of functions { f̃1, . . . f̃n}, f̃ j ∈ S(Gm) require a positive mass, since | f̃1, ..., f̃ ex

n ⟩
may be approximated by ∏j = 1m A∗( f j, t)|0⟩. The existence of a Poincare-invariant
vacuum and generalized physical states,

|p1α1 , . . . , pFαF ; q1ρ1, ..., qnρn⟩ = b∗(ϵ1)
λFζF

(p1)...b
∗(ϵF
λFζF

(pF)a∗ρ1
(q1)...a∗ρn

(qn)|0⟩ (5.1)

αi = {λi, ζi, ϵi}, ϵi = 1,

depends on positive masses and energies [?]. The cluster expansion, which is necessary
for the infinite-volume limit, requires the analyticity of the Schwinger function with a
finite mas gap. If there is no mass gap, the validity of the cluster expansion at finite
volumes is unproven.
Finiteness conditions for the integral of the stochastic measure generate inequalities re-
quired for a non-zero probability of an interaction. The extension to Yang-Mills theories
follows from the existence of a stochastic measure analogous to a scalar field theory.
Given that a similar constraint follows in a Yang-Mills theory, the finiteness of the inter-
action region may be explained. The integrals in the Kallen representation would give
infinite energies for black body radiation even if the energies are quantized. Therefore,
is physically viable to use finite volumes.
Quantum field theory in a finite expanding space-time would introduce particles with
a positive mass. The method of generating bound states through local anti-de Sitter
regions would yield a spectrum beginning with an infimum bounded away from zero.
If the radius of curvature R in the AdS5 × S5 solution is allowed to decrease, the series
for the energy does not converge rapidly and the entire formula for the Hamiltonian is
necessary. An analysis of the energy spectrum may be used to establish the most accurate
match with the data. The existence of a gap between the ground state energy and zero
does not follow from supersymmetry, but it is a consequence of the finite size of the
interaction region. The existence of a mass gap in Yang-Mills theories refers to an infinite-
volume limit and not the vanishing of the Luscher effect when L → ∞. In the present
model, however, the finite-size region could be viewed as a conformal compactification
of AdS5 × S5. Timelike infinity is related conformally to Minkowski space-time, and
this model may be sufficient to provide a further description of the phenomenology of
Yang-Mills theories.
Reflecting boundary conditions at I in conformally compactified four-dimensional anti-
de Sitter space are sufficient to define the hyperbolic problem of determining the time-
development of Cauchy data on a spacelike surface in anti-de Sitter space [3]. The ener-
gies then would be quantized for a conformally coupled spin-s in the D(s + 1, s) repre-
sentation: ω = n + ℓ+ 1, n = 0, 1, 2, . . . , ℓ = s, s + 1, s + 2, . . . ,
Therefore, the compactness of the conformally related space-time in the embedding
space would cause the masses to be non-zero, although a singularity in the transfor-
mation signals a phase transition. The generators of the anti-de Sitter group include
the angular momentum, and the phase transition could describe the transitions from
non-spinning to spinning states. The conformally coupled Scalar modes in anti-de Sit-
ter space are given by the product of Ω−1 = cos ρ and the modes of the Einstein static
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universe

ϕAdS
ωℓm = cos ρ ϕE

ωℓm (5.2)

ϕE
ωℓm = Nωℓe−iωt(sin ρ)ℓF

(
1
2
(ℓ+ 1 − ω),

1
2
(ℓ+ 1 + ω); ℓ+

3
2

; sin2ρ

)
Yℓm(θ, ϕ)

in the coordinates (t, ρ, θ, ϕ) such that the line element is ds2
AdS = 1

cos2ρ
ds2

E = a2

cos2ρ
(dt2 −

dρ2 − sin2ρ(dθ2 + sin2θ dϕ2)) [6]. Then the radial derivative of this scalar mode is

− sin ρ ϕE
ωℓm + cos ρ

d
dρ

ϕE
ωℓm = Nωℓe−iωtYℓm(θ, ϕ) (5.3)[

− (sin ρ)ℓ+1F
(

1
2
(ℓ+ 1 − ω);

1
2
(ℓ+ 1 + ω); ℓ+

3
2

; sin2ρ

)
+ ℓ(sin ρ)ℓ−1(cos ρ)2F

(
1
2
(ℓ+ 1 − ω),

1
2
(ℓ+ 1 + ω); ℓ+

3
2

; sin2ρ

)
+ (sin ρ)ℓcos ρ

d
dρ

F
(

1
2
(ℓ+ 1 − ω),

1
2
(ℓ+ 1 + ω); ℓ+

3
2

; sin2ρ

) ]
−→

ρ → π
2

Nωℓe−iωtYℓm(θ, ϕ)

[
− (sin ρ)ℓ+1F

(
1
2
(ℓ+ 1 − ω),

1
2
(ℓ+ 1 + ω); ℓ+

3
2

; sin2ρ

)
+ 2(sin ρ)ℓ+1(cos ρ)2 d

dz
F
(

1
2
(ℓ+ 1 − ω),

1
2
(ℓ+ 1 + ω); ℓ+

3
2

; z
) ∣∣∣∣

z=sin2ρ

]
= Nωℓe−iωtYℓm(θ, ϕ)

[
− (sin ρ)ℓ+1F

(
1
2
(ℓ+ 1 − ω),

1
2
(ℓ+ 1 + ω), ℓ+

3
2

; sin2ρ

)
+

1
2
(sin ρ)ℓ+1(cos ρ)2 (ℓ+ 1)2 − ω2

ℓ+ 3
2

F
(

1
2
(ℓ+ 3 − ω),

1
2
(ℓ+ 1 + ω); ℓ+

5
2

; sin2ρ

) ]
.

By the identities

(a − b)c F(a, b; c; z)− a(c − b) F(a + 1, b, c + 1; z) + (c − a)b F(a, b + 1; c + 1; z) = 0

(a − c)F(a − 1; b; c; z)− a(z − 1)F(a + 1, b; c; z) + (c − 2a + (a − b)z)F(a, b; c; z) = 0

(b − c)F(a, b − 1; c; z)− b(z − 1)F(a, b + 1; c; z) + (c − 2b + (b − a)z)F(a, b; c; z) = 0,

it follows that the radial derivative tends to

− Nωℓe−iωtYℓm(θ, ϕ)(sin ρ)ℓ+1
(
ℓ+

3
2
− 1

2
(ℓ+ 1 − ω)− 1

2
(ℓ+ 1 + ω)

)
(5.4)

F
(

1
2
(ℓ+ 3 − ω)),

1
2
(ℓ+ 3 + ω) + ℓ+

5
2

; sin2ρ

)
.

= −1
2

Nωℓe−iωtYℓm(θ, ϕ)(sin ρ)ℓ+1F
(

1
2
(ℓ+ 3 − ω)),

1
2
(ℓ+ 3 + ω) + ℓ+

5
2

; sin2ρ

)
as ρ → π

2 , and there is an increase in the exponent of (sin ρ) and the argument in the
hypergeometric function corresponding to ∆ℓ = 1. The transition from anti-de Sitter
space to the Einstein static universe and the negative scalar flux at timelike infinity I can
introduce spin. This result is consistent with the existence of a mass gap in membrane
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theories related to the minimum eigenvalue of an inertia matrix with respect to the centre
of massrepresenting rotational energy [10].
The linear extent of the interaction region differs from the radius of curvature of AdS5 ×
S5. The sum of the energies of the Hamiltonian derived from the Green-Schwarz La-
grangian, the Luscher Effect and the quantized frequencies in the conformally compact-
ified space-time is

E = E1 + E2 + E3 (5.5)

E2 = −b e−
√

3
2 (E1 ground state+E3)

E3 = c
s + 1

R
.

The energies derived from the string Hamiltonian is expected to have a minimum equal
to zero, and the higher-order terms in the series for E1 must vanish in this state or the
symmetry would be reduced. Then

Eground state = E2 + E3 = −b e−
√

3
2

c(s+1)
R L +

c(s + 1)
R

(5.6)

and
dEground state

dR
= b

(√
3

2
c(s + 1)

R
L

)
e−

√
3

2
c(s+1)

R L − c(s + 1)
R2 = 0. (5.7)

This transcendental equations can be solved algorithmically through the recursion Rn+1 =

Rn − f (Rn)
f ′(Rn)

where

f (R) = e
√

3
2 L c(s+1)

R −
√

3
2

bLR (5.8)

and

R0 =
2√
3bL

[
1 +

(
1 + 3bc(s + 1)L2) 1

2

]
. (5.9)

Then limn→∞E(Rn) will be the minimized energy of a configuration representing a par-
ticle state with spin s.
This model can be extended to include singleton representations of SO(3,2), designated
D
(
s + 1

2 , s
)
, do not have a classical limit in Minkowski space-time. The energies

Esingleton = −b e−
√

3
2

c(s+ 1
2 )

R L +
c
(
s + 1

2

)
R

, (5.10)

which would be minimized at the solution to

fs(R) = e
√

3
2 L

c(s+ 1
2 )

R −
√

3
2

blR = 0 (5.11)

given by limn→∞Rsn, where Rs,n+1 = Rsn − fs(Rsn)
f ′s(Rsn)

, with

Rs0 =
2√
3bL

[
1 +

(
1 + 3bL2c

(
s +

1
2

)) 1
2
]

, (5.12)

would characterize metastable states with spin s in a locally anti-de Sitter geometry.
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6. Conclusion

The quantization of the worldsheet action in anti-de Sitter space requires physical states
which satisfy modified Virasoro constraints with extra terms proportional to the normal
ordering constant. The expectation value of L0 + L̄0 between spin-two states in a vacuum
with ⟨m2α′⟩ = 0 yields the critical dimension 25. It is well known that this constant is
non-zero by Lorentz invariance for strings propagating in ten-dimensional space-time.
Nevertheless, the expectation value of the gravitino mass would be zero from the spec-
trum of strin states. Consistency in the zero-curvature limit is restored by identifying an
additional contribution to the expectation valu if the term dependent on the time coor-
dinate δx0 is included in the worldsheet action. Furthermore, it is established that the
masslessness of the graviton may be established in an anti-de Sitter space-time of the
same number of dimensions necessary for the vanishing of the conformal anomaly.
The selection of the anti-de Sitter background for the string theory also induces correc-
tions to the masses as a result of the Luscher effect in finite-size regions. The geometry
may be transformed to a compactified space-time for conformally invariant theories with
a quantization of energies derived from reflective boundary conditions for the fields.
The energy spectrum of conformally coupled scalar modes in the compactified space-
time begins at begins at a positive value, which is equivalent to the positivity of the
squared mass of these modes relative to an overall negative shift of the eigenvalues of
the Casimir operator in anti-de Sitter space. The interpretation of the energy of a con-
formally coupled mode differs from that of the expectation of the squared mass of the
string, because the latter requires all of the vibrational modes and zeta function regular-
ization in a complete sum of states to determine the dimension. The eigenvalues of the
energy operator have an angular momentum ℓ ≥ s which is positive only for non-zero
momentum. This momentum generally would contribute to the Hamiltonian separate
from the expectation value of the squared mass except when ℓ = s, which is the intrin-
sic spin. The higher ℓ modes occur in a momentum space expansion of the spin-s field.
Therefore, the expectation value of the energy of a spin-s field at rest can be evaluated
in a linearized supergravity theory with N supersymmetries through a summation over
the eigenvalue spectrum. The vanishing of the vacuum energy for N ≥ 5 [1] is consistent
with zero expectation value of the squared mass in the superstring effective field actions
reduced from ten to four dimensions.
The finiteness of the scattering region in the quantum theory, which may be deduced
from the nonvanishing of the probability of an interaction [9] and the finite range of the
coordinates in the Einstein static universe representing a single copy of the compactified
anti-de Sitter space, requires the existence of a mass gap, independent of exponentially
decreasing terms and necessary for cluster decomposition to be valid in the infinite-
volume limit. It is demonstrated that spin is introduced by enclosing the particles within
a local anti-de Sitter region, removing the reflecting wall in the Einstein static universe
and then translating in the conformally related Minkowski space-time. Extremization of
the energy of the Green-Schwarz superstring and the Luscher term in anti-de Sitter space
yields a value for the radius of the interaction region which provides the a non-zero mass
of the particle state independent of the infinite-volume limit.
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