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THE CYCLIC AND ORTHOCENTRIC CHARACTERISTICS OF
QUADRILATERALS

YU CHEN AND R.J. FISHER

ABSTRACT. The symbol �ABCD represents a quadrilateral with vertices A, B, C, and D
labelled consecutively. We introduce the cyclic characteristic κc and the orthocentric char-
acteristic κo of �ABCD. They determine whether �ABCD is cyclic or orthocentric. Let
Oa, Ob, Oc, and Od (resp., Na, Nb, Nc, and Nd) be the circumcenters (resp., nine-point cen-
ters) of4BCD,4CDA,4DAB, and4ABC, respectively. If�ABCD is neither cyclic nor
orthocentric, then the circumcenter quadrilateral �OaObOcOd and the nine-point cen-

ter quadrilateral �Na Nb Nc Nd are similar with Na Nb
OaOb

= 1
2

√
κo
κc

; moreover, they have the
same normalized cyclic characteristic κ̄c and normalized orthocentric characteristic κ̄o as
�ABCD.

1. INTRODUCTION

Given four points A, B, C, and D in a plane such that the line segments AB, BC, CD,
and DA intersect only at their endpoints, the quadrilateral with vertices A, B, C, and D
labelled consecutively, written �ABCD, is defined as AB ∪ BC ∪ CD ∪ DA in [5, page
30]. We say that�ABCD is cyclic if its vertices lie on a common circle and that�ABCD is
orthocentric if D is the orthocenter of4ABC. These two types of quadrilaterals have been
well studied, e.g., in [3] and [6]. A quadrilateral cannot be both cyclic and orthocentric.
By a general quadrilateral, we mean that it is neither cyclic nor orthocentric. The general
quadrilaterals are not well studied. Using the canonical vector space of geometric vec-
tors, we introduce the cyclic characteristic and orthocentric characteristic of a quadrilateral
in §3. These characteristics are used to prove Theorems 5.1 and 6.1.
The theorems of the paper are proved using the vector method. Broadly, the vector
method is the use of the canonical vector space V of geometric vectors associated to a
plane E to study problems in a geometrically natural way. By definition, the elements of
V are the equivalence classes of directed line segments defined as follows: given points
A, B, C, D ∈ E no three of which are collinear, the directed line segments [A, B] and [C, D]
are equivalent, written [A, B] ∼ [C, D], if �ABDC is a parallelogram. When A, B, C, and
D are collinear, we say that [A, B] and [C, D] are equivalent if for any directed segment
[X, Y] not lying on the line passing through A, B, C, and D, [A, B] ∼ [X, Y] if and only if
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[C, D] ∼ [X, Y]. The vector
−→
AB is taken to mean the equivalence class represented by the

directed line segment [A, B].
It is well known that V has a canonical vector addition, a canonical scalar multiplication
by real numbers, and has dimension two. If the angle between

−→
AB and

−→
CD is θ, then

following [4] the dot product of
−→
AB and

−→
CD is defined by

−→
AB · −→CD = AB · CD · cos θ.

Verifying that the dot product is symmetric, bilinear, and positive definite can be done
using purely geometric arguments. Additionally, the dot product satisfies a generaliza-
tion of the Law of Cosines: −→

AB · −→AC = AB2+AC2−BC2

2 , (1.1)
which is used multiple times in the paper.
In some sense, the use of the vector method originates with Sylvester’s characterization
of the orthocenter H of a triangle 4ABC. Sylvester proves that H is determined by the
vector equation

−→
OH =

−→
OA +

−→
OB +

−→
OC, (1.2)

where the point O is the circumcenter of4ABC; see [1] and [7, page 251].
In general, the vector method efficiently studies problems in a unified way by avoiding
the need to consider multiple cases when using purely geometric methods. In effect,
the approach extends purely geometric methods, while avoiding the use of coordinates.
The vector method is used in [2] to give a proof of the centroid locus problem posed
by N. A. Court. In §2, we illustrate the vector method by reproving three celebrated
theorems; see Theorems 2.1, 2.3, and 2.3. In addition, a technical result that characterizes
the circumcenter and the nine-point center of4ABC is established; see Lemma 2.1.
Given �ABCD, let R be the intersection point of the diagonal lines `AC and `BD . In §3,
the cyclic characteristic and orthocentric characteristic of �ABCD are defined by

κc = (
−→
RA · −→RC−−→RB · −→RD)2,

κo = (
−→
RA · −→RC +

−→
RB · −→RD)2 − 4(

−→
RA · −→RB)(

−→
RC · −→RD).

The vertices A and D are determined by the vector equations
−→
RA = −α

−→
RC and

−→
RD = −β

−→
RB,

where α, β ∈ R \ {0,−1} are unique. In terms of the pair (α, β), the cyclic characteristic
and the orthocentric characteristic are

κc = (βRB2 − αRC2)2,

κo = (βRB2 + αRC2)2 − 4αβ(
−→
RB · −→RC)2.

Proposition 3.2 proves that �ABCD is cyclic (resp. orthocentric) if and only if κc = 0
(resp. κo = 0). The close of §3 addresses the constants α and β. Let A, B, C, D ∈ E no
three of which are collinear, R be the intersection point of `AC and `BD , and

−→
RA = −α

−→
RC

and
−→
RD = −β

−→
RB, where α, β ∈ R r {−1, 0}. Lemma 3.1 proves that A, B, C, and D

determine a quadrilateral if and only if either α > 0 or β > 0.
In §4, we discuss how κc and κo determine the convexity of �ABCD. Firstly, we have

κo − κc = 4αβ[RB2 · RC2 − (
−→
RB · −→RC)2],
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where
Π = RB2 · RC2 − (

−→
RB · −→RC)2 = 4[Area(4RBC)]2. (1.3)

Note that if θ is the angle included by
−→
RB and

−→
RC, then

4[Area(4RBC)]2 = RB2 · RC2 · sin2 θ

= RB2 · RC2 · (1− cos2 θ)

= RB2 · RC2 − (RB · RC · cos θ)2

= RB2 · RC2 − (
−→
RB · −→RC)2.

Hence, κc and κo do not vanish simultaneously. Proposition 4.1 proves that �ABCD is
convex if and only if κo > κc. That is, the sign of αβ determines the convexity of�ABCD.
Define

∆ = (
−→
RA · −→RC)(

−→
RB · −→RD)− (

−→
RA · −→RB)(

−→
RC · −→RD). (1.4)

Then ∆ = αβΠ. Proposition 4.1 leads naturally to defining “normalized” cyclic and
orthocentric characteristics of �ABCD by

κ̄c =
κc
∆ and κ̄o =

κo
∆ ;

see Definition 4.1. Then �ABCD is convex if and only if κ̄c > 0 if and only if κ̄o > 0.
Note that the “area” term Π in (1.3) appears multiple times in essential calculations in-
volving the basis {−→RB,

−→
RC}. The paper uses the notation Π since it visually simplifies

the important formulas in §5 and §6.
Given a general quadrilateral �ABCD, let Oa, Ob, Oc, and Od denote the circumcenters
of 4BCD, 4CDA, 4DAB, and 4ABC, respectively; likewise, let Na, Nb, Nc, and Nd
denote the nine-point centers. Theorem 5.1 proves that �OaObOcOd and �NaNbNcNd
are well-defined quadrilaterals with the same pair (α, β) of constants and the same nor-
malized characteristics as �ABCD.
Theorem 6.1 establishes that for any non-cyclic �ABCD, the six ratios of squared dis-

tances are
Ni N2

j

OiO2
j

= κo
4κc

, where i, j ∈ {a, b, c, d} are distinct indices. Consequently, if

�ABCD is a general quadrilateral, then �OaObOcOd ∼ �NaNbNcNd The proof is an
immediate consequence of Lemma 6.1.

2. SOLVING CERTAIN GEOMETRY PROBLEMS USING THE VECTOR METHOD

In this section, we shall apply the vector method to reprove several well-known results
in Euclidean geometry and derive two formulas in vector form for later use.
Using Sylvester’s Law (1.2) and the vector method leads to an efficient proof of the fa-
mous Nine-Point Circle Theorem. As a historical note, Brianchon and Poncelet published
a proof of the Nine-Point Circle Theorem in the paper Recherches sur la détermination d’une
hyperbole equilatere, au moyen de quatre conditions donnees, Georgonne’s Annales de Math-
ematiques, Vol XI (1820-1821), pages 205-220. Poncelet called the circle the nine-point
circle; see [3, page 299], [8], and [9, pages 337-338].

Theorem 2.1 (Nine-Point-Circle). Let O and H be the circumcenter and orthocenter of4ABC,
respectively. Let Ma, Mb, and Mc be the midpoints of BC, CA, and AB, respectively. Let Da, Db,
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and Dc be the feet of the altitudes at vertices A, B, and C, respectively. Let Ea, Eb, and Ec be the
Euler points associated to A, B, and C, respectively. Define the point N by the vector equation

−→
ON = 1

2 (
−→
OA +

−→
OB +

−→
OC).

The nine-point circleN of4ABC obtained by the dilation of the circumcircle of4ABC through
H with factor 1

2 has N as its center and the segments Ea Ma, Eb Mb, and Ec Mc as diameters; in
addition, it contains the points Da, Db, and Dc.

Show Lines

N

EcEb

Ea

Dc

Db

Da

H

Mb

Ma

Mc

O

A

B C

Figure 1. The Nine-Point-Circle of4ABC

Proof. Let r be the radius of the circumcircle of 4ABC. The radius of N is r
2 and

−→
ON =

1
2
−→
OH. Note that

−−→
NEa =

−−→
OEa −

−→
ON = 1

2 (
−→
OA +

−→
OH)− 1

2
−→
OH = 1

2
−→
OA.

and
−−→
NMa =

−−→
OMa −

−→
ON =

−−→
OMa − 1

2
−→
OH = 1

2 (
−→
OB +

−→
OC)− 1

2 (
−→
OA +

−→
OB +

−→
OC) = − 1

2
−→
OA.

Since N is the midpoint of Ea Ma and NEa = NMa =
r
2 , Ea Ma is a diameter of N .

Since `Da Ma
⊥ `DaEa

, we have
−−−→
Da Ma ·

−−→
DaEa = 0. Since

−−−→
Ea Ma =

−−−→
Da Ma −

−−→
DaEa, we get

Ea M2
a = (

−−−→
Da Ma −

−−→
DaEa) · (

−−−→
Da Ma −

−−→
DaEa) = Da M2

a + DaE2
a .

Note that −−→
NDa +

−−−→
Da Ma =

−−→
NMa = −

−−→
NEa = −(

−−→
NDa +

−−→
DaEa).

Then −−→
NDa = − 1

2 (
−−−→
Da Ma +

−−→
DaEa)

and

ND2
a = 1

4 (
−−−→
Da Ma +

−−→
DaEa) · (

−−−→
Da Ma +

−−→
DaEa)

= 1
4 (Da M2

a + DaE2
a)

= 1
4 Ea M2

a .

Since NDa =
1
2 Ea Ma =

r
2 and N is the center of N , we obtain Da ∈ N .

By analogy, both Eb Mb and Ec Mc are diameters of N , and both Db and Dc lie on N . �
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The next two theorems refer to �ABCD. We say that �ABCD is cyclic if all its vertices
lie on some circle and that �ABCD is orthocentric if D is the orthocenter of 4ABC. If
�ABCD is orthocentric, then A is the orthocenter of 4BCD, B is the orthocenter of
4CDA, and C is the orthocenter of4DAB.

Theorem 2.2. If �ABCD is cyclic, then the nine-point circles of 4BCD, 4CDA, 4DAB,
and4ABC are congruent.
Let Na, Nb, Nc, and Nd denote the nine-point centers of4BCD,4CDA,4DAB, and4ABC,
respectively. Let P denote the Poncelet point of �ABCD, i.e., the point lying on the four nine-
point circles of �ABCD. Then �NaNbNcNd is a cyclic quadrilateral with circumcenter P.
Let O denote the circumcenter of �ABCD. Let S be the point that divides the segment OP
internally in the ratio PO

PS = 3. The homothety about S with factor − 1
2 maps �ABCD onto

�NaNbNcNd.

Show Objects

S

Nb

P

Nc

Na

Nd

O

A

B

C

D

Figure 2. The Nine-Point Quadrilateral of �ABCD

Proof. Since4BCD,4CDA,4DAB, and4ABC have the same circumcircle, their nine-
point circles have the same radius. So the four nine-point circles are congruent.
Note that since the Poncelet point P lies on each of the four congruent nine-point circles,
�NaNbNcNd is a cyclic quadrilateral with center P and radius equal to half the radius of
the circumcircle of �ABCD.
To prove that there is a homothety from � ABCD onto �NaNbNcNd with a factor of − 1

2 ,
it suffices to show that for all distinct i, j ∈ {a, b, c, d},

−→
I J = 2

−−→
NjNi. (2.1)

Now
−−→
ONa =

1
2 (
−→
OB +

−→
OC +

−→
OD). Hence,
−→
AD =

−→
OD−−→OA

= (2
−−→
ONa −

−→
OB−−→OC)−−→OA

= 2
−−→
ONa − 2

−−→
ONd

= 2
−−−→
NdNa.

The other cases of (2.1) are argued similarly.
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The homothetic center S is the point that is common to the lines `INi
for all i ∈ {a, b, c, d}.

Let DS denote the homothety from �ABCD onto �NaNbNcNd. Let C (resp. N ) denote
the circumcircle of �ABCD (resp. �NaNbNcNd). Then DS maps C onto N and DS(O) =
P. Hence S lies between O and P such that OS

PS = 2 or PO
PS = 3. �

Theorem 2.3. If�ABCD is orthocentric, then the nine-point circles of the four triangles4BCD,
4CDA,4DAB, and4ABC are coincident.
If N is the common nine-point center and Oa, Ob, Oc, and Od are the circumcenters of 4BCD,
4CDA, 4DAB, and 4ABC, respectively, then the rotation by 180◦ about N maps �ABCD
onto �OaObOcOd. Hence �OaObOcOd is congruent to �ABCD.

Show Action Buttons

Ob

Oa

N

Oc

D

Od

A

B C

Figure 3. The Circumcenter Quadrilateral of an Orthocentric �ABCD

Proof. Let Na, Nb, Nc, and Nd be the nine-point centers of 4BCD, 4CDA, 4DAB, and
4ABC, respectively. Applying Sylvester’s Law twice leads to

−→
AD = 1

2
−→
AD + 1

2
−→
AD

= 1
2 (
−−→
OaD−−−→Oa A) + 1

2 (
−−→
OdD−−−→Od A)

= 1
2 (−
−−→
OaB−−−→OaC) + 1

2 (
−−→
OdB +

−−→
OdC)

= 1
2 (
−−→
OdB−−−→OaB) + 1

2 (
−−→
OdC−−−→OaC)

= 1
2
−−−→
OdOa +

1
2
−−−→
OdOa

=
−−−→
OdOa.

Hence OaD = Od A so that the circumcircles of4BCD and4ABC are congruent.
Next, since

−−−→
OaOd +

−−→
Od A =

−−→
Oa A = 2

−−→
OaNa = 2

−−−→
OaOd + 2

−−−→
OdNa,

we get
−−−→
OdNa =

1
2 (
−−→
Od A +

−−−→
OdOa) =

1
2 (
−−→
Od A +

−→
AD) = 1

2
−−→
OdD =

−−−→
OdNd.

So Na = Nd. By analogy, the circumcircles of both 4CDA and 4DAB are congruent to
the circumcircle of4ABC. We also get that Na = Nb = Nc.
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Consequently, since Na = Nb = Nc = Nd and since the four circumcircles are congru-
ent, the nine-point circles of 4BCD, 4CDA, 4DAB, and 4ABC are coincident by the
definition of the nine-point circle.
Implicit in the above argument is that for any distinct i, j ∈ {a, b, c, d}, −→I J =

−−→
OjOi and

in addition, N is the midpoint of
−→
IOi for each i ∈ {a, b, c, d}. Hence the rotation by 180◦

about N maps �ABCD onto �OaObOcOd. Figure 3 illustrates the rotation. �

The next lemma illustrates how to characterize the circumcenter and the nine-point cen-
ter of4ABC by means of the vector method.

Lemma 2.1. Given4ABC, choose a point R ∈ `AC r {A, C} and write
−→
RA = −α

−→
RC with α ∈

R r {−1, 0}. Let O and N be the circumcenter and nine-point center of 4ABC, respectively.
In terms of the basis {−→RB,

−→
RC} for the vector space V ,

−→
RO = RC2[RB2−αRC2−(1−α)(

−→
RB·−→RC)]

2Π
−→
RB + (1−α)RB2·RC2−(RB2−αRC2)(

−→
RB·−→RC)

2Π
−→
RC (2.2)

and
−→
RN = RB2·RC2+αRC4+(1−α)RC2(

−→
RB·−→RC)−2(

−→
RB·−→RC)2

4Π
−→
RB

+ (1−α)RB2·RC2+(RB2−αRC2)(
−→
RB·−→RC)−2(1−α)(

−→
RB·−→RC)2

4Π
−→
RC

(2.3)

where Π = RB2 · RC2 − (
−→
RB · −→RC)2 = 4[Area (4RBC)]2; see (1.3).

Proof. Let L be the foot of the altitude at A. Since L ∈ `BC , we write
−→
RL = (1− t)

−→
RB+ t

−→
RC

for some t ∈ R. Then
−→
AL =

−→
RL−−→RA = t(

−→
RC−−→RB) + (α

−→
RC +

−→
RB).

Since
−→
BC · −→AL = 0, we get

0 = (
−→
RC−−→RB) · −→AL

= (
−→
RC−−→RB) · (−→RC−−→RB)t + (

−→
RC−−→RB) · (α−→RC +

−→
RB)

= BC2t +
−→
BC · (−→RB + α

−→
RC)

and hence
t = −

−→
BC·(−→RB+α

−→
RC)

BC2 .

So
−→
AL =

[
1 +

−→
BC·(−→RB+α

−→
RC)

BC2

]
−→
RB +

[
α−

−→
BC·(−→RB+α

−→
RC)

BC2

]−→
RC

= BC2+
−→
BC·(−→RB+α

−→
RC)

BC2

−→
RB + αBC2−−→BC·(−→RB+α

−→
RC)

BC2

−→
RC

= (1+α)(
−→
RC·−→BC)

BC2

−→
RB− (1+α)(

−→
RB·−→BC)

BC2

−→
RC.

Continuing, since
−→
OC =

−→
RC−−→RO,

−→
OA =

−→
RA−−→RO, and OC2 = OA2, we get

RC2 − 2(
−→
RC · −→RO) + RO2 = RA2 − 2(

−→
RA · −→RO) + RO2

= α2RC2 + 2α(
−→
RC · −→RO) + RO2
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and
2(
−→
RC · −→RO) = (1− α)RC2. (2.4)

Let M be the midpoint of BC. Write
−−→
OM = s

−→
AL for some s ∈ R. Since

−−→
OM =

−→
RM−−→RO,

we get
−→
RO =

−→
RM− s

−→
AL

= 1
2 (
−→
RB +

−→
RC)− s(1+α)

BC2 [(
−→
RC · −→BC)

−→
RB− (

−→
RB · −→BC)

−→
RC]

= BC2−2s(1+α)(
−→
RC·−→BC)

2BC2

−→
RB + BC2+2s(1+α)(

−→
RB·−→BC)

2BC2

−→
RC

and

2(
−→
RC · −→RO) = 2s(1+α)[(

−→
RB·−→RC)2−RB2·RC2]+BC2·RC2+BC2(

−→
RB·−→RC)

BC2 .

Using (2.4) leads to

s = BC2(αRC2+
−→
RB·−→RC)

2(1+α)Π .

So
−→
RO = RC2[RB2−αRC2−(1−α)(

−→
RB·−→RC)]

2Π
−→
RB + (1−α)RB2·RC2−(RB2−αRC2)(

−→
RB·−→RC)

2Π
−→
RC.

Finally, since
−→
RN =

−→
ON −−→OR

= 1
2 (
−→
OA +

−→
OB +

−→
OC)−−→OR

= 1
2 (
−→
RA +

−→
RB +

−→
RC) + 1

2
−→
OR

= 1
2
−→
RB + 1−α

2
−→
RC− 1

2
−→
RO,

we get

−→
RN = RB2·RC2+αRC4+(1−α)RC2(

−→
RB·−→RC)−2(

−→
RB·−→RC)2

4Π
−→
RB

+ (1−α)RB2·RC2−(αRC2−RB2)(
−→
RB·−→RC)−2(1−α)(

−→
RB·−→RC)2

4Π
−→
RC. �

3. CYCLIC AND ORTHOCENTRIC CHARACTERISTICS OF A QUADRILATERAL

Definition 3.1. Given �ABCD, let R be the intersection point of `AC and `BD .

(1) The cyclic characteristic of �ABCD is defined by

κc = (
−→
RA · −→RC−−→RB · −→RD)2. (3.1)

(2) The orthocentric characteristic of �ABCD is defined by

κo = (
−→
RA · −→RC +

−→
RB · −→RD)2 − 4(

−→
RA · −→RB)(

−→
RC · −→RD). (3.2)

Write
−→
RA = −α

−→
RC and

−→
RD = −β

−→
RB for some α, β ∈ R \ {−1, 0}. We have

κc = (βRB2 − αRC2)2
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and

κo = (βRB2 + αRC2)2 − 4αβ(
−→
RB · −→RC)2

= (βRB2 − αRC2)2 + 4αβ[RB2 · RC2 − (
−→
RB · −→RC)2]

= κc + 4αβ[RB2 · RC2 − (
−→
RB · −→RC)2].

(3.3)

If αβ < 0, then the first equation in (3.3) implies κo > 0. On the other hand, κc > 0 by
definition. Hence if αβ > 0, then the bottom equation of (3.3) implies κo > 0. So both κc
and κo are always non-negative.

Proposition 3.1. κo = 0 if and only if βRB2 + αRC2 = 0 and
−→
RB · −→RC = 0.

Proof. ⇒) When κo = 0, we have (βRB2 + αRC2)2 = 4αβ(
−→
RB · −→RC)2. We will prove that

βRB2 + αRC2 = 0 which also implies
−→
RB · −→RC = 0.

Suppose that βRB2 + αRC2 6= 0. Then 4αβ(
−→
RB · −→RC)2 = (βRB2 + αRC2)2 > 0, so αβ > 0.

Since (βRB2 + αRC2)2 − 4αβRB2 · RC2 = (βRB2 − αRC2)2 > 0, we have

(βRB2 + αRC2)2 > 4αβRB2 · RC2.

By the Cauchy-Schwartz inequality,

4αβRB2 · RC2 6 (βRB2 + αRC2)2 = 4αβ(
−→
RB · −→RC)2 6 4αβRB2 · RC2.

This leads to |−→RB · −→RC| = RB · RC, or equivalently,
−→
RB and

−→
RC are collinear. Since B, R,

and C are collinear and A, R, and C are collinear, A, B, and C are collinear, a contradic-
tion. So βRB2 + αRC2 = 0.
⇐) The converse follows from the definition of κo. �

Proposition 3.2. �ABCD is cyclic (resp. orthocentric) if and only if κc = 0 (resp. κo = 0).

Proof. Denote the circumcenter of4ABC by O. By equation (2.2) in Lemma 2.1, we have
2
−→
RB · −→RO = RB2 − αRC2 and 2

−→
RC · −→RO = (1− α)RC2. By definition, �ABCD is cyclic

(resp. orthocentric) if and only if OB = OD (resp.
−→
OD =

−→
OA +

−→
OB +

−→
OC).

(1) Note that
−→
OB =

−→
RB−−→RO and

−→
OD =

−→
RD−−→RO = −β

−→
RB−−→RO. Then

OB = OD ⇐⇒ (1− β)RB2 = 2
−→
RB · −→RO

⇐⇒ (1− β)RB2 = RB2 − αRC2

⇐⇒ βRB2 − αRC2 = 0
⇐⇒ κc = 0.
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(2) Note that {−→RB,
−→
RC} is a basis for V .

−→
OD =

−→
OA +

−→
OB +

−→
OC ⇐⇒ −→

RD =
−→
RA +

−→
RB +

−→
RC− 2

−→
RO

⇐⇒ (1 + β)
−→
RB + (1− α)

−→
RC = 2

−→
RO

⇐⇒
{

[(1 + β)
−→
RB + (1− α)

−→
RC] · −→RB = 2

−→
RO · −→RB

[(1 + β)
−→
RB + (1− α)

−→
RC] · −→RC = 2

−→
RO · −→RC

⇐⇒
{

βRB2 + αRC2 = (1− α)(
−→
RB · −→RC)

(1 + β)(
−→
RB · −→RC) = 0

⇐⇒
{

βRB2 + αRC2 = 0
−→
RB · −→RC = 0

By Proposition 3.1, �ABCD is orthocentric if and only if κo = 0. �

The following lemma is used in the proof of Theorem 5.1.

Lemma 3.1. Let A, B, C, and D be points in a plane with the following properties:

(1) no three of these points are collinear.
(2) `AC and `BD intersect at a point R.
(3)
−→
RA = −α

−→
RC and

−→
RD = −β

−→
RB for some α, β ∈ R r {−1, 0}.

Then A, B, C, and D determine a quadrilateral if and only if either α > 0 or β > 0.

Proof. By definition, A, B, C, and D do not determine a quadrilateral if and only if either
AB∩CD 6= ∅ or AD∩ BC 6= ∅. Note that `AB ∩ `CD 6= ∅ if and only if there exist s, t ∈ R

satisfying

(1− s)
−→
RA + s

−→
RB = (1− t)

−→
RC + t

−→
RD

⇐⇒ s
−→
RB− α(1− s)

−→
RC = −βt

−→
RB + (1− t)

−→
RC

⇐⇒ s = −βt and − α(1− s) = 1− t

⇐⇒
(

1 β
α 1

)(
s
t

)
=

(
0

1 + α

)
⇐⇒ αβ 6= 1, s = −(1+α)β

1−αβ , and t = 1+α
1−αβ .

Then

AB ∩ CD 6= ∅ ⇐⇒ αβ 6= 1, 0 < −(1+α)β
1−αβ < 1, and 0 < 1+α

1−αβ < 1

⇐⇒ either (−1 < α < 0 and − 1 < β < 0) or (α < −1 and β < −1).
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Note that `AD ∩ `BC 6= ∅ if and only if there are s, t ∈ R satisfying

(1− s)
−→
RA + s

−→
RD = (1− t)

−→
RB + t

−→
RC

⇐⇒ −βs
−→
RB− α(1− s)

−→
RC = t

−→
RB + (1− t)

−→
RC

⇐⇒ −βs = 1− t and − α(1− s) = t

⇐⇒
(
−β 1
α −1

)(
s
t

)
=

(
1
α

)
⇐⇒ α 6= β, s = α+1

α−β , and t = α+αβ
α−β .

Then

AD ∩ BC 6= ∅ ⇐⇒ α 6= β, 0 < α+1
α−β < 1, and 0 < α+αβ

α−β < 1

⇐⇒ either (−1 < α < 0 and β < −1) or (α < −1 and − 1 < β < 0).

So A, B, C, and D do not determine a quadrilateral if and only if both α < 0 and β <
0. �

Remark 3.1. A purely geometric proof of Lemma 3.1 can be obtained using the Crossbar
Theorem. A thorough discussion of the Crossbar Theorem is given in [5].

4. CONVEX AND NON-CONVEX QUADRILATERALS

We say that �ABCD is convex if the region enclosed by �ABCD is a convex set, that is,
given any two points X, Y in the enclosed region, the line segment XY lies in the region.
Given �ABCD, denote the intersection point of `AC and `BD by R. Write

−→
RA = −α

−→
RC

and
−→
RD = −β

−→
RB, where α, β ∈ R r {−1, 0}.

Note that AB ∩ CD = ∅ and AD ∩ BC = ∅. If α > 0 and β > 0, then �ABCD is convex.
If αβ < 0, then �ABCD is non-convex; more precisely, we have

α β Non-Convexity of � ABCD
α > 0 −1 < β < 0 D is an interior point of4ABC.
α > 0 β < −1 B is an interior point of4ACD.

−1 < α < 0 β > 0 A is an interior point of4BCD.
α < −1 β > 0 C is an interior point of4ABD.

The five figures shown in Figure 4 illustrate the above table.

α < -1, β > 0

-1 < α < 0, β > 0

α > 0, β < -1

α > 0, -1 < β < 0
α, β > 0

R

A

B C

D

B D

A

D

B

A

C

A

B

A

C

B

R

C

R

C

R

D

R D

Figure 4. Five Cases of Quadrilaterals
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The following proposition characterizes the convexity of �ABCD in terms of the cyclic
and orthocentric characteristics; see Definition 3.1.

Proposition 4.1. A quadrilateral �ABCD is convex if κo > κc or non-convex if κo < κc.

Proof. By the definitions of κo and κc, we have

κo − κc = (βRB2 + αRC2)2 − 4αβ(
−→
RB · −→RC)2 − (βRB2 − αRC2)2

= 4αβ[RB2 · RC2 − (
−→
RB · −→RC)2]

= 16αβ[Area(4RBC)]2

6= 0

(4.1)

Hence κc and κo cannot vanish simultaneously.
(1) If κo > κc, then αβ > 0, i.e., α > 0 and β > 0, so �ABCD is convex.
(2) If κo < κc, then αβ < 0, so �ABCD is non-convex. �

Remark 4.1. As observed by equation (4.1) in the proof of Proposition 4.1, κo and κc do
not vanish simultaneously. Hence 0 6 κo

4κc
6 ∞. The orthocentric and cyclic quadrilat-

erals are the limiting cases of the ratio with the general quadrilateral satisfying the strict
inequality 0 < κo

4κc
< ∞.

Definition 4.1. Following (1.4), set ∆ = (
−→
RA · −→RC)(

−→
RB · −→RD)− (

−→
RA · −→RB)(

−→
RC · −→RD).

(1) The normalized cyclic characteristic of �ABCD is defined by

κ̄c =
κc
∆ . (4.2)

(2) The normalized orthocentric characteristic of �ABCD is defined by

κ̄o =
κo
∆ . (4.3)

Note that κ̄c =
κc

αβΠ and κ̄o =
κo

αβΠ ; see (1.3). Then κ̄o = κ̄c + 4 by equation (3.3). Note that
the sign of each normalized characteristic is the sign of αβ. Moreover,�ABCD is convex
if and only if κ̄c > 0 if and only if κ̄o > 0.

5. CIRCUMCENTER AND NINE-POINT CENTER QUADRILATERALS

The four lemmas in this section are used to prove Theorem 5.1. All of them depend
upon Lemma 2.1 in §2. Together, these four lemmas and Lemma 6.1 form the proof of
Theorem 6.1.
First, we use Lemma 2.1 to express the eight vectors

−−→
ROa,

−−→
ROb,

−−→
ROc,

−−→
ROd;

−−→
RNa,

−−→
RNb,

−−→
RNc,

−−→
RNd

in terms of the basis {−→RB,
−→
RC} for V . The details are given below for two of the eight

vectors. The proofs for the remaining six vectors are similar. All eight are summarized
in Lemma 5.1 just ahead.
To begin, recall from (1.3) the notation Π = RB2 · RC2 − (

−→
RB · −→RC)2 as well as x =

−→
RB · −→RC. Consider4BCD, where R ∈ `BD . By Lemma 2.1, the

−→
RC-coefficient of

−−→
ROa (see

(2.2)) is
RB2[RC2−βRB2+(β−1)x]

2Π .
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On the other hand, because
−→
RD = −β

−→
RB, the

−→
RB-coefficient of

−−→
ROa is

(1−β)RB2·RC2+(βRB2−RC2)x]
2Π .

Next, apply Lemma 2.1 to4CDA, where R ∈ `AC , i.e., setting C = A, D = B, and A = C.
So α is replaced by 1

α , i.e.,
−→
RC = − 1

α

−→
RA. Since

−→
RD = −β

−→
RB, we get RD2 = β2RB2 and

−→
RD · −→RA = αβ(

−→
RB · −→RC). Then the

−→
RD = −β

−→
RB summand of

−−→
ROb is

RA2[RD2− 1
α RA2−(1− 1

α )(
−→
RD·−→RA)]

2[RD2·RA2−(−→RD·−→RA)2]

−→
RD = −βα2RC2[β2RB2−αRC2−β(α−1)(

−→
RB·−→RC)]

2α2β2Π
−→
RB

= RC2[αRC2−β2RB2+β(α−1)x]
2βΠ

−→
RB.

Similarly, the
−→
RC-summand of

−−→
ROb is

(β2RB2−αRC2)x−β(α−1)RB2·RC2

2βΠ
−→
RC.

The vector
−−→
RNa is determined in terms of

−→
RB and

−→
RC using equation (2.3) in Lemma 2.1.

In summary, the four circumcenters and four nine-point centers are given by the vector
equations listed below.

Lemma 5.1. Let x =
−→
RB · −→RC. The four circumcenters of �ABCD are given by

−−→
ROa =

(1−β)RB2·RC2+(βRB2−RC2)x
2Π

−→
RB + RB2[RC2−βRB2−(1−β)x]

2Π
−→
RC,

−−→
ROb =

RC2[β(α−1)x+αRC2−β2RB2]
2βΠ

−→
RB + (β2RB2−αRC2)x−β(α−1)RB2·RC2

2βΠ
−→
RC,

−−→
ROc =

(α2RC2−βRB2)x−α(β−1)RB2·RC2

2αΠ
−→
RB + RB2[α(β−1)x+βRB2−α2RC2]

2αΠ
−→
RC,

−−→
ROd = RC2[RB2−αRC2−(1−α)x]

2Π
−→
RB + (1−α)RB2·RC2+(αRC2−RB2)x

2Π
−→
RC.

Additionally, the four nine-point centers are given by
−−→
RNa =

−2(1−β)x2−(βRB2−RC2)x+(1−β)RB2·RC2

4Π
−→
RB

+ −2x2+(1−β)RB2x+RB2·RC2+βRB4

4Π
−→
RC,

−−→
RNb =

2β2x2+β(1−α)RC2x−β2RB2·RC2−αRC4

4βΠ
−→
RB

+ 2β(α−1)x2+(αRC2−β2RB2)x+β(1−α)RB2·RC2

4βΠ
−→
RC,

−−→
RNc =

2α(β−1)x2+(βRB2−α2RC2)x+α(1−β)RB2·RC2

4αΠ
−→
RB

+ 2α2x2+α(1−β)RB2x−α2RB2·RC2−βRB4

4αΠ
−→
RC,

−−→
RNd = −2x2+(1−α)RC2x+RB2·RC2+αRC4

4Π
−→
RB

+ −2(1−α)x2−(αRC2−RB2)x+(1−α)RB2·RC2

4Π
−→
RC.

Using Lemma 5.1, the vectors between the circumcenters as well as the vectors between
the nine-point centers are expressed in terms of the basis {−→RB,

−→
RC} as follows:
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Lemma 5.2. Let x =
−→
RB · −→RC and Π = RB2 · RC2 − x2. The six circumcenter vectors are

−−→
OaOb =

−(βRB2−αRC2)[RC2+βx]
2βΠ

−→
RB + (βRB2−αRC2)[βRB2+x]

2βΠ
−→
RC,

−−→
OaOc =

−(1+α)(βRB2−αRC2)x
2αΠ

−→
RB + (1+α)(βRB2−αRC2)RB2

2αΠ
−→
RC,

−−−→
OaOd = (βRB2−αRC2)[RC2−x]

2Π
−→
RB + (βRB2−αRC2)[RB2−x]

2Π
−→
RC,

−−→
ObOc =

(βRB2−αRC2)[αRC2−βx]
2αβΠ

−→
RB + (βRB2−αRC2)[βRB2−αx]

2αβΠ
−→
RC,

−−−→
ObOd = (1+β)(βRB2−αRC2)RC2

2βΠ
−→
RB + −(1+β)(βRB2−αRC2)x

2βΠ
−→
RC,

−−→
OcOd = (βRB2−αRC2)[αRC2+x]

2αΠ
−→
RB + −(βRB2−αRC2)[RB2+αx]

2αΠ
−→
RC.

Additionally, the six nine-point center vectors are

−−−→
NaNb =

2βx2+β(βRB2−αRC2)x−(βRB2+αRC2)RC2

4βΠ
−→
RB

+ 2αβx2−(βRB2−αRC2)x−β(βRB2+αRC2)RB2

4βΠ
−→
RC,

−−→
NaNc =

(1+α)(βRB2−αRC2)x
4αΠ

−→
RB

+ (1+α)[2αx2−(βRB2+αRC2)RB2]
4αΠ

−→
RC,

−−−→
NaNd = −2βx2+(βRB2−αRC2)x+(βRB2+αRC2)RC2

4Π
−→
RB

+ 2αx2+(βRB2−αRC2)x−(βRB2+αRC2)RB2

4Π
−→
RC,

−−→
NbNc =

−2αβx2+β(βRB2−αRC2)x+α(βRB2+αRC2)RC2

4αβΠ
−→
RB

+ 2αβx2+α(βRB2−αRC2)x−β(βRB2+αRC2)RB2

4αβΠ
−→
RC,

−−−→
NbNd = (1+β)[−2βx2+(βRB2+αRC2)RC2]

4βΠ
−→
RB

+ (1+β)(βRB2−αRC2)x
4βΠ

−→
RC,

−−−→
NcNd = −2αβx2−(βRB2−αRC2)x+α(βRB2+αRC2)RC2

4αΠ
−→
RB

+ −2αx2+α(βRB2−αRC2)x+(βRB2+αRC2)RB2

4αΠ
−→
RC.

Lemma 5.3. Assume that �ABCD is not cyclic. Let Ro be the intersection point of `OaOc
and

`ObOd
. Then

−−→
RoOa = − α

−−→
RoOc,

−−→
RoOd = − β

−−→
RoOb,

RoO2
b = α

β ·
κ̄cRC2

4 , RoO2
c = β

α ·
κ̄cRB2

4 ,
−−→
RoOb ·

−−→
RoOc = κ̄c

4 (
−→
RB · −→RC),

−−→
RoOb·

−−→
RoOc

RoOb·RoOc
= sgn (αβ)

−→
RB·−→RC
RB·RC .

Consequently, if κ̄′c and κ̄′o are the normalized cyclic and normalized orthocentric characteristics
of �OaObOcOd, respectively, then κ̄′c = κ̄c and κ̄′o = κ̄o.

171



Yu Chen and R.J. Fisher

Proof. Choose a point R′ on `OaOc
such that

−−→
R′Oa = −α

−−→
R′Oc, i.e.,

−→
RR′ = 1

1+α

−−→
ROa +

α
1+α

−−→
ROc

= (1−β)RB2·RC2−(1−α)RC2x
2Π

−→
RB + (1−α)RB2·RC2−(1−β)RB2x

2Π
−→
RC.

(5.1)

Using Lemma 5.1 along with
−−→
R′Oa =

−−→
ROa −

−→
RR′, etc., we get

−−→
R′Oa =

βRB2−αRC2

2Π (x
−→
RB− RB2−→RC),

−−→
R′Ob =

βRB2−αRC2

2βΠ (−RC2−→RB + x
−→
RC),

−−→
R′Oc =

βRB2−αRC2

2αΠ (−x
−→
RB + RB2−→RC),

−−→
R′Od = βRB2−αRC2

2Π (RC2−→RB− x
−→
RC).

(5.2)

Consequently,
−−→
R′Od = −β

−−→
R′Ob and hence R′ is the intersection point of `OaOc

and `ObOd
,

i.e., Ro = R′. So
−−→
RoOa = −α

−−→
RoOc,

−−→
RoOd = −β

−−→
RoOb. Then, we have

RoO2
b = RC2(β2RB2−αRC2)2

4β2Π = α
β ·

κ̄cRC2

4 , (5.3)

RoO2
c = RB2(β2RB2−αRC2)2

4α2Π = β
α ·

κ̄cRB2

4 , (5.4)
−−→
RoOb ·

−−→
RoOc =

(
−→
RB·−→RC)(βRB2−αRC2)2

4αβΠ = κ̄c(
−→
RB·−→RC)

4 , (5.5)

and
−−→
RoOb·

−−→
RoOc

RoOb·RoOc
= sgn (αβ)

−→
RB·−→RC
RB·RC .

Finally, using (5.3), (5.4), and (5.5), the normalized cyclic characteristic is

κ̄′c =
(βRoO2

b−αRoO2
c )

2

αβ[RoO2
b ·RoO2

c−(
−−→
RoOb·

−−→
RoOc)2]

=
[ κ̄c

4 (αRC2−βRB2)]2

αβ{ κ̄2
c

16 [RB2·RC2−(−→RB·−→RC)2]}

= κ̄c.

In the same way, we show κ̄′o = κ̄o. �

Lemma 5.4. Assume that �ABCD is not orthocentric. Let Rn be the intersection point of `Na Nc
and `Nb Nd

. Then

−−−→
RnNa = − α

−−→
RnNc,

−−−→
RnNd = − β

−−−→
RnNb,

RnN2
b = α

β ·
κ̄o RC2

16 , RnN2
c = β

α ·
κ̄o RB2

16 ,
−−−→
RnNb ·

−−→
RnNc = κ̄o

16 (
−→
RB · −→RC),

−−−→
Rn Nb·

−−−→
Rn Nc

Rn Nb·Rn Nc
= sgn (αβ)

−→
RB·−→RC
RB·RC .

Consequently, if κ̄′′c and κ̄′′o are the normalized cyclic and normalized orthocentric characteristics
of �NaNbNcNd, respectively, then κ̄′′c = κ̄c and κ̄′′o = κ̄o.
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Proof. Choose a point S′ on `Na Nc
such that

−−→
S′Na = −α

−−→
S′′Nc, i.e.,

−→
RS′ = 1

1+α

−−→
RNa +

α
1+α

−−→
RNc

= (1−β)RB2·RC2+(1−α)RC2x−2(1−β)x2

4Π
−→
RB + (1−α)RB2·RC2+(1−β)RB2x−2(1−α)x2

4Π
−→
RC.

(5.6)

Using Lemma 5.1 along with
−−→
S′Na =

−−→
RNa −

−→
RS′, etc., we get

−−→
S′Na =

−(βRB2−αRC2)x
4Π

−→
RB + [(βRB2+αRC2)RB2−2αx2]

4Π
−→
RC,

−−→
S′Nb =

[−(βRB2+αRC2)RC2+2βx2]
4βΠ

−→
RB + −(βRB2−αRC2)x

4βΠ
−→
RC,

−−→
S′Nc =

(βRB2−αRC2)x
4αΠ

−→
RB + [−(βRB2+αRC2)RB2+2αx2]

4αΠ
−→
RC,

−−→
S′Nd = [(βRB2+αRC2)RC2−2βx2]

4Π
−→
RB + (βRB2−αRC2)x

4Π
−→
RC.

Consequently,
−−→
S′Nd = −β

−−→
S′Nb, and hence S′ is the intersection point of the lines `Na Nc

and `Nb Nd
, i.e., Rn = S′. So

−−−→
RnNa = −α

−−→
RnNc and

−−−→
RnNd = −β

−−−→
RnNb. Moreover, we have

RnN2
b = RC2[(β2RB2+αRC2)2−4αβx2]

16β2Π = α
β ·

κ̄o RC2

16 , (5.7)

RnN2
c = RB2[(β2RB2+αRC2)2−4αβx2]

16α2Π = β
α ·

κ̄o RB2

16 , (5.8)
−−−→
RnNb ·

−−→
RnNc =

(
−→
RB·−→RC)[(β2RB2+αRC2)2−4αβ(

−→
RB·−→RC)2]

16αβΠ = κ̄o
16 (
−→
RB · −→RC), (5.9)

and
−−−→
Rn Nb·

−−−→
Rn Nc

Rn Nb·Rn Nc
= sgn (αβ)

−→
RB·−→RC
RB·RC .

Finally, using the (5.7), (5.8), and (5.9) equations κ̄′′c = κ̄c and κ̄′′o = κ̄o follow routinely.
�

In summary, Lemmas 3.1, 5.3, 5.4, and Definition 4.1 prove the following theorem.

Theorem 5.1. (1) If �ABCD is not cyclic, then �OaObOcOd is a well-defined quadrilat-
eral and its normalized cyclic and normalized orthocentric characteristics are equal to κ̄c
and κ̄o, respectively.

(2) If � ABCD is not orthocentric, then �NaNbNcNd is a well-defined quadrilateral and
its normalized cyclic and normalized orthocentric characteristics are equal to κ̄c and κ̄o,
respectively.

6. TWO SIMILAR QUADRILATERALS ASSOCIATED TO A GENERAL QUADRILATERAL

Lemma 6.1. Given �ABCD and any pairwise distinct I, J, K, L ∈ {A, B, C, D}, we have

OiO2
j =

cI J κ̄c

4 KL2 and NiN2
j =

cI J κ̄o

16 KL2, (6.1)

where

cAB = α
β , cBC = 1

αβ , cAC = β(1+α)2

α(1+β)2 ,

cCD = β
α , cAD = αβ, cBD = α(1+β)2

β(1+α)2 .
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Proof. The proof to follow uses Lemma 5.2 repeatedly. First of all,

−β
−→
RB · −→RC =

−→
RD · −→RC

= 1
2 (RD2 + RC2 − CD2)

= 1
2 (β2RB2 + RC2 − CD2)

so that

CD2 = β2RB2 + RC2 + 2β
−→
RB · −→RC

= 2βx + β2RB2 + RC2.
(6.2)

Equation (6.2) will be used in the proof of the equation for OaO2
b .

Recall x =
−→
RB · −→RC, Π = RB2 · RC2 − x2 from (1.3), and ∆ = αβΠ from (1.4). Then the

vector equation for
−−→
OaOb in Lemma 5.2 and the algebraic properties of the dot product

imply

4β2Π2OaO2
b = (βRB2 − αRC2)2(RC2 + βx)2RB2

− 2x(βRB2 − αRC2)2(RC2 + βx)(βRB2 + x)

+ (βRB2 − αRC2)2(βRB2 + x)2RC2

= κc[(RC2 + βx)2RB2 − 2x(RC2 + βx)(βRB2 + x) + (βRB2 + µ)2RC2]

= κc[RB2 · RC2(2βx + β2RB2 + RC2)− x2(2βx + β2RB2 + RC2)]

= κc(RB2 · RC2 − x2)(2βx + β2RB2 + RC2)

= κcΠCD2.

Hence, OaO2
b =

cAB κ̄c

4 CD2 holds.
To prove NaN2

b = α
β ·

κ̄o ·CD2

16 , let Y = RB2 and Z = RC2. Define

f (x) = 2βx2 + β(βY− αZ)x− (βY + αZ),

g(x) = 2αβx2 − (βY− αZ)x− β(βY + αZ).

By Lemma 5.2,

4βΠ
−−−→
NaNb = f (x)

−→
RB + g(x)

−→
RC.

By the algebraic properties of the dot product

16β2Π2NaN2
b = [ f (x)]2Y + 2x f (x)g(x) + [g(x)]2Z. (6.3)

The right side of (6.3) is the degree-five polynomial

h(x) = a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0,

174



The Cyclic and Orthocentric Characteristics of Quadrilaterals

where

a5 = 8αβ,

a4 = 4αβ3Y + 4αβZ,

a3 = −2β3Y2 − 12αβ2YZ− 2α2βZ2,

a2 = −β4Y3 − β2Y2Z− 6αβ3Y2Z− 6αβYZ2 − α2β2YZ2 − α2Z3,

a1 = 2β3Y3Z + 4αβ2Y2Z2 + 2α2βYZ3,

a0 = β4Y4Z + β2Y3Z2 + 2αβ3Y3Z2 + 2αβY2Z3 + α2β2Y2Z3 + α2YZ4.

By equations (3.2) and (6.2),

h(x) = 8αβ2x3(x2 −YZ) + (4αβ3Y + 4αβZ)x2(x2 −YZ)

− 2β(βY + αZ)2x(x2 −YZ)− (βY + αZ)2(β2Y + Z)(x2 −YZ)

= [8αβ2x3 + (4αβ3Y + 4αβZ)x2 − 2β(βY + αZ)2x

− (βY + αZ)2(β2Y + Z)](x2 −YZ)

= {2β[4αβx2 − (βY + αZ)2]x + (β2Y + Z)[4αβx2 − (βY + αZ)2]}(x2 −YZ)

= [(βY + αZ)2 − 4αβx2](2βx + β2Y + Z)(YZ− x2)

= κoΠCD2.

Hence 16β2Π2NaN2
b = κoΠCD2 so that

NaN2
b = κo ·CD2

16β2Π =
(

α
β ·

κ̄o
16

)
CD2.

Next, we verify (6.1) for OaO2
c and NaN2

c . First, write

2αΠ
−−→
OaOc = f (x)

−→
RB + g(x)

−→
RC

where
f (x) = −(1 + α)(βRB2 − αRC2)x,

g(x) = (1 + α)(βRB2 − αRC2)RB2.
Then

4α2Π2OaO2
c = [ f (x)]2RB2 + 2x f (x)g(x) + [g(x)]2RC2

= (1 + α)2κcRB2(RB2 · RC2 − x2)

= (1 + α)2κcΠRB2.

However, since
−→
BD =

−→
RD−−→RB = −(1 + β)

−→
RB, we get BD2 = (1 + β)2RB2. Hence

OaO2
c =

[
β(1+α)2

α(1+β)2 · κ̄c
4

]
BD2.

To obtain the second equation, proceed in the same way by setting Y = RB2, Z = RC2,
and x =

−→
RB · −→RC. Next, define

f (x) = (βY− αZ)x,

g(x) = 2αx2 − (βY + αZ)Y
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so that
4αΠ
1+α

−−→
NaNc = f (x)

−→
RB + g(x)

−→
RC.

Then
16α2Π2

(1+α)2 NaN2
c = [ f (x)]2Y + 2x f (x)g(x) + [g(x)]2Z,

= 4αβx4 + (−β2Y3 − 6αβY2Z− α2YZ2)x2

+ β2Y4Z + 2αY3Z2 + α2Y2Z3

= 4αβY(x2 −YZ)x2 + Y(βY + αZ)2(YZ− x2)

= Y[(βY + αZ)2 − 4αβx2](YZ− x2)

= κoΠ
(1+β)2 BD2.

Hence NaN2
c =

[
β(1+α)2

α(1+β)2 · κ̄o
16

]
BD2.

The remaining four pairs of squared distances are argued in similar fashion. �

We say that�A1A2A3A4 and�B1B2B3B4 are similar, written�A1A2A3A4 ∼ �B1B2B3B4,
if ∠Ai = ∠Bi for all i ∈ {1, 2, 3, 4} and the six ratios Ai Aj

Bi Bj
are equal to each other for all

distinct i, j ∈ {1, 2, 3, 4},. Note that if the six ratios are equal to each other, then the four
angle equations must hold.

Theorem 6.1. Assume that �ABCD is not cyclic. Let R be the intersection point of `AC and
`BD . Let κc and κo be the cyclic and orthocentric characteristics of �ABCD, respectively; see
(3.1) and (3.2). Following the earlier notation, let Oa, Ob, Oc, and Od denote the circumcenters
and Na, Nb, Nc, and Nd denote the nine-point centers of4BCD,4CDA,4DAB, and4ABC,

respectively. Then for any distinct i, j ∈ {a, b, c, d}, Ni N2
j

OiO2
j
= κo

4κc
. Consequently, if �ABCD is a

general quadrilateral, then �OaObOcOd ∼ �NaNbNcNd.
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