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THE CYCLIC AND ORTHOCENTRIC CHARACTERISTICS OF
QUADRILATERALS

YU CHEN AND RJ. FISHER

ABSTRACT. The symbol JABCD represents a quadrilateral with vertices A, B, C, and D
labelled consecutively. We introduce the cyclic characteristic . and the orthocentric char-
acteristic x, of JABCD. They determine whether JABCD is cyclic or orthocentric. Let
Oq, Oy, O¢, and Oy (resp., N, N, N, and Nj;) be the circumcenters (resp., nine-point cen-
ters) of ABCD, ACDA, ADAB, and AABC, respectively. If JABCD is neither cyclic nor
orthocentric, then the circumcenter quadrilateral 0O,0,0.0,; and the nine-point cen-

ter quadrilateral CON; N, N.N; are similar with g’:g’: = % Z—‘; ; moreover, they have the

same normalized cyclic characteristic & and normalized orthocentric characteristic &, as
OABCD.

1. INTRODUCTION

Given four points A, B, C, and D in a plane such that the line segments AB, BC, CD,
and DA intersect only at their endpoints, the quadrilateral with vertices A, B, C, and D
labelled consecutively, written (JABCD, is defined as AB U BC UCD U DA in [5, page
30]. We say that JABCD is cyclic if its vertices lie on a common circle and that LJABCD is
orthocentric if D is the orthocenter of AABC. These two types of quadrilaterals have been
well studied, e.g., in [3] and [6]. A quadrilateral cannot be both cyclic and orthocentric.
By a general quadrilateral, we mean that it is neither cyclic nor orthocentric. The general
quadrilaterals are not well studied. Using the canonical vector space of geometric vec-
tors, we introduce the cyclic characteristic and orthocentric characteristic of a quadrilateral
in §3. These characteristics are used to prove Theorems 5.1 and 6.1.

The theorems of the paper are proved using the vector method. Broadly, the vector
method is the use of the canonical vector space V of geometric vectors associated to a
plane £ to study problems in a geometrically natural way. By definition, the elements of
)V are the equivalence classes of directed line segments defined as follows: given points
A,B,C,D € & no three of which are collinear, the directed line segments [A, B] and [C, D]
are equivalent, written [A, B] ~ [C, D], if JABDC is a parallelogram. When A, B, C, and
D are collinear, we say that [A, B] and [C, D] are equivalent if for any directed segment
[X, Y] not lying on the line passing through A, B, C, and D, [A, B] ~ [X, Y] if and only if
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[C, D] ~ [X,Y]. The vector AB is taken to mean the equivalence class represented by the
directed line segment [A, BJ.
It is well known that V has a canonical vector addition, a canonical scalar multiplication

by real numbers, and has dimension two. If the angle between AB and CD is 6, then
following [4] the dot product of AB and CD is defined by

zﬁ-C?:AB-CDmosG.

Verifying that the dot product is symmetric, bilinear, and positive definite can be done
using purely geometric arguments. Additionally, the dot product satisfies a generaliza-

tion of the Law of Cosines:
AB . AC = AP +AC-BC (1.1)

which is used multiple times in the paper.
In some sense, the use of the vector method originates with Sylvester’s characterization
of the orthocenter H of a triangle AABC. Sylvester proves that H is determined by the

vector equation
OH = OA + OB + 0OC, (1.2)

where the point O is the circumcenter of AABC; see [1] and [7, page 251].

In general, the vector method efficiently studies problems in a unified way by avoiding
the need to consider multiple cases when using purely geometric methods. In effect,
the approach extends purely geometric methods, while avoiding the use of coordinates.
The vector method is used in [2] to give a proof of the centroid locus problem posed
by N. A. Court. In §2, we illustrate the vector method by reproving three celebrated
theorems; see Theorems 2.1, 2.3, and 2.3. In addition, a technical result that characterizes
the circumcenter and the nine-point center of AABC is established; see Lemma 2.1.
Given LJABCD, let R be the intersection point of the diagonal lines ¢,. and /,,. In §3,
the cyclic characteristic and orthocentric characteristic of (JABCD are defined by

k. = (RA-RC — RB-RD)?,
ko = (RA-RC + RB-RD)? — 4(RA - RB)(RC - RD).
The vertices A and D are determined by the vector equations

RA = —al@ and RD = —[SI@,

where a, € R\ {0, —1} are unique. In terms of the pair («, B), the cyclic characteristic
and the orthocentric characteristic are

k. = (BRB* — aRC?)?,

ko = (BRB? + aRC?)? — 4aB(RB - RC)2.
Proposition 3.2 proves that LJABCD is cyclic (resp. orthocentric) if and only if x, = 0
(resp. x, = 0). The close of §3 addresses the constants « and B. Let A,B,C,D € £ no
three of which are collinear, R be the intersection point of /,. and /,,, and RA = —aRC

and RD = —ﬁ@, where a, 5 € R~ {—1,0}. Lemma 3.1 proves that A, B, C, and D
determine a quadrilateral if and only if either &« > 0 or B > 0.
In §4, we discuss how «. and x, determine the convexity of LIABCD. Firstly, we have

Ko — K¢ = 4“ﬁ[RBZ : Rcz - (I@ ’ I@>2]’
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where
IT = RB*-RC? — (1@ : 1@)2 = 4[Area(ARBC)J%. (1.3)

Note that if 6 is the angle included by RB and 1@, then
4[Area(ARBC))*> = RB?- RC? - sin* 0
= RB%-RC?- (1 — cos? )
= RB?-RC? — (RB - RC - cos 6)?
— RB?.RC? — (RB- RC)%.

Hence, k. and «, do not vanish simultaneously. Proposition 4.1 proves that LJABCD is
convex if and only if x, > x.. Thatis, the sign of a8 determines the convexity of LIABCD.

Define
A= (RA-RC)(RB-RD) — (RA - RB)(RC- RD). (1.4)

Then A = apIl. Proposition 4.1 leads naturally to defining “normalized” cyclic and
orthocentric characteristics of LJABCD by

ke="% and & =%
see Definition 4.1. Then LJABCD is convex if and only if &, > 0 if and only if &, > 0.
Note that the “area” term IT in (1.3) appears multiple times in essential calculations in-

volving the basis {1@, RC }. The paper uses the notation IT since it visually simplifies
the important formulas in §5 and §6.

Given a general quadrilateral JABCD, let O,, Oy, O, and O, denote the circumcenters
of ABCD, ACDA, ADAB, and AABC, respectively; likewise, let N;, N, N, and Ny
denote the nine-point centers. Theorem 5.1 proves that [JO,0,0.0; and LN, N, NNy
are well-defined quadrilaterals with the same pair (a, B) of constants and the same nor-
malized characteristics as [JABCD.

Theorem 6.1 establishes that for any non-cyclic JABCD, the six ratios of squared dis-

N2
I(\D]l,-](\)]% = 4%’ where i,j € {a,b,c,d} are distinct indices. Consequently, if
UABCD is a general quadrilateral, then [JO,0,0.0; ~ UN,;N,N:N; The proof is an

immediate consequence of Lemma 6.1.

tances are

2. SOLVING CERTAIN GEOMETRY PROBLEMS USING THE VECTOR METHOD

In this section, we shall apply the vector method to reprove several well-known results
in Euclidean geometry and derive two formulas in vector form for later use.

Using Sylvester’s Law (1.2) and the vector method leads to an efficient proof of the fa-
mous Nine-Point Circle Theorem. As a historical note, Brianchon and Poncelet published
a proof of the Nine-Point Circle Theorem in the paper Recherches sur la détermination d’ une
hyperbole equilatere, au moyen de quatre conditions donnees, Georgonne’s Annales de Math-
ematiques, Vol XI (1820-1821), pages 205-220. Poncelet called the circle the nine-point
circle; see [3, page 299], [8], and [9, pages 337-338].

Theorem 2.1 (Nine-Point-Circle). Let O and H be the circumcenter and orthocenter of ANABC,
respectively. Let M,, My, and M, be the midpoints of BC, CA, and AB, respectively. Let D,, Dy,
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and D, be the feet of the altitudes at vertices A, B, and C, respectively. Let E;, Ey, and E be the
Euler points associated to A, B, and C, respectively. Define the point N by the vector equation

O_f\f:%((ﬂJrO?Jr(f).

The nine-point circle N of A ABC obtained by the dilation of the circumcircle of A ABC through
H with factor % has N as its center and the segments E,M,, E, My, and E. M. as diameters; in
addition, it contains the points D,, Dy, and D..

Figure 1. The Nine-Point-Circle of AABC

—
Proof. Let r be the radius of the circumcircle of AABC. The radius of N is § and ON =

—
%OH . Note that

and

—_ = = — —

NM, = OM, — ON = OM, — 10H = (0B + OC) — 1(OA + OB + OC) = —10A4.
Since N is the midpoint of E;M,; and NE, = NM, = 5, E;M, is a diameter of N.
Since ¢, ,, L £, . ,wehave D;M, - D,E;, = 0. Since E;M, = D;M, — D,E,, we get

E,M2 = (DM, — D,E,) - (DM, — D,E;) = DyM? + D,E2.

N|—=

Note that .
ND, + D,M, = NM, = —NE, = —(ND, + D,E,).
Then
— — —
ND; = —3(D,M; + D,E;)
and

ND? = }(D,M, + D,Ey) - (DsM, + D,Ey)
= %(DaMg + D,E})
= 1E.M;.
Since ND, = %EaMa = Z and N is the center of NV, we obtain D, € N.
By analogy, both E;, M, and E.M, are diameters of N/, and both D, and D, lieon N'. [J
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The next two theorems refer to LJABCD. We say that JABCD is cyclic if all its vertices
lie on some circle and that JABCD is orthocentric if D is the orthocenter of AABC. If
OABCD is orthocentric, then A is the orthocenter of ABCD, B is the orthocenter of
ACDA, and C is the orthocenter of ADAB.

Theorem 2.2. If JABCD is cyclic, then the nine-point circles of ABCD, ACDA, ADAB,
and A ABC are congruent.

Let N, Ny, N, and Ny denote the nine-point centers of ABCD, ACDA, ADAB, and AABC,
respectively. Let P denote the Poncelet point of IABCD, i.e., the point lying on the four nine-
point circles of UJABCD. Then LIN; Ny N:Nj is a cyclic quadrilateral with circumcenter P.

Let O denote the circumcenter of UABCD. Let S be the point that divides the segment OP
internally in the ratio T PS = 3. The homothety about S with factor —5 maps UABCD onto
0NNy NcNj.

Figure 2. The Nine-Point Quadrilateral of DABCD

Proof. Since ABCD, ACDA, ADAB, and AABC have the same circumcircle, their nine-
point circles have the same radius. So the four nine-point circles are congruent.

Note that since the Poncelet point P lies on each of the four congruent nine-point circles,
UN,NpN:Nj is a cyclic quadrilateral with center P and radius equal to half the radius of
the circumcircle of JABCD.

To prove that there is a homothety from [1 ABCD onto [IN,; N, N:N; with a factor of —3,
it suffices to show that for all distinct7,j € {a,b,c,d},

1f = 2N;N.. @.1)
Now O—>Na = %((ﬁ + O? + O_[S) Hence,

AD — OD — OA
— (20N, — OB — OC) — OA
— 20N, — 20N,

— 2N,N..

The other cases of (2.1) are argued similarly.
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The homothetic center S is the point that is common to the lines ¢, foralli € {a,b,¢,d}.
Let Ds denote the homothety from (JABCD onto CON,N,N:N,;. Let C (resp. N) denote
the circumcircle of JABCD (resp. ON;N,N.N;). Then Ds maps C onto N and Dg(0) =
P. Hence S lies between O and P such that % =2or % = 3. ([l

Theorem 2.3. IfLIABCD is orthocentric, then the nine-point circles of the four triangles ABCD,
ACDA, ADAB, and /N ABC are coincident.

If N is the common nine-point center and O,, Oy, O, and Oy are the circumcenters of ABCD,
ACDA, ADAB, and ANABC, respectively, then the rotation by 180° about N maps JABCD
onto 1J0,0,0.0,. Hence [JO,0,0.0; is congruent to LIJABCD.

Figure 3. The Circumcenter Quadrilateral of an Orthocentric JABCD

Proof. Let N;, Ny, N, and Nj be the nine-point centers of ABCD, ACDA, ADAB, and
AABC, respectively. Applying Sylvester’s Law twice leads to

ﬁ:%zﬁﬂ%ﬁ

L(0,8 — O, 4) + L(04D — 044)

— 1(~04B — 0,C) + 1(04B + 04C)
— 1(04B — 0,B) + 1(04€ — 0,€)
= 10,0; + 10,0,

_0.0.

Hence O,D = O4A so that the circumcircles of ABCD and AABC are congruent.
Next, since

0,05 + O4A = 0,A = 20,N, = 20,0 + 20,N,,
we get

S R
OaNy = 1(044 +0,0;) = }(04A + AD) = 104D = ON;.

So N, = Nj;. By analogy, the circumcircles of both ACDA and ADAB are congruent to
the circumcircle of AABC. We also get that N, = N, = N..
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Consequently, since N, = N, = N, = Nj; and since the four circumcircles are congru-
ent, the nine-point circles of ABCD, ACDA, ADAB, and AABC are coincident by the
definition of the nine-point circle.

Implicit in the above argument 1s that for any distinct i,j € {a,b,c,d}, I 7 O O; and

in addition, N is the midpoint of I O for eachi € {a,b,c,d}. Hence the rotation by 180°
about N maps LJABCD onto JO,0,0.0;. Figure 3 illustrates the rotation. g

The next lemma illustrates how to characterize the circumcenter and the nine-point cen-
ter of AABC by means of the vector method.

Lemma 2.1. Given AABC, choose a point R € £,. ~{A, C} and write RA = —aRCuwitha e
R~ {—1,0}. Let O and N be the circumcenter and nine-point center of AABC, respectively.

In terms of the basis { 1@ RC } for the vector space V,
RO — RCURB—aRC*—(1-) )(RB-RC)] I RE 4 (1=0)RE*RC2—(RB2—aRC?) (RB-RC) e 2.2)

2H 211

and
RN — RBZ-RC2+04RC4+(1704)411{_IC2(I@-1@)72(1@-1@)21@

2.3
n (1—a)R32.Rc2+(RBZ—aRfr)I(@R)—z(l—a)(R_é-ﬁé)zEg 23)

where TT = RB2 - RC2 — (RB - RC)? = 4] Area (ARBC)]2; see (1.3).
Proof. Let L be the foot of the altitude at A. Since L € ¢,., we write Rl = (1- t)]@ + tlﬁ
for some t € R. Then
Xﬁ:ﬁ—ﬁ:t(l@—l@)ﬂal@ﬂ@).
Since Eé . Zi =0, we get
0= (RC—RB) - AL
— (RC — RB) - (RC — RB)t + (RC — RB) - («RC + RB)
— BCt + BC - (RB + aRC)

BC”’

and hence
F— _ﬁ-([@ﬂxl@)
- BC2 :
So
(RB+aRC) BC.(RB+aRC)
ﬁ:{ur Bct :|1@+|: Bct ]RT%
BC? ]ﬁ Eﬁ al@ «BC? E? Eﬁ al@
== B(c2 - )E§+ BC2 HRORE
_ 1+th§1¥ 1@ l+aB(1§?I¥ 1@

Continuing, since (i)? = Eé — 1@ (ﬁ = Iﬁ — I@, and OC? = OA2, we get
2(RC - RO) + RO? = RA2 — 2(RA - RO) + RO?

— 4?RC? + 2a(RC - RO) + RO?
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and
2(RC-RO) = (1 — a)RC2. 2.4)
Let M be the midpoint of BC. Write OM = sﬁ for some s € R. Since m = m — 1@,
we get
RO = RM — sAL
1(RB + RC) — 208 (RE - BE)RB — (RB - BC)RC]
2_ , 2
_ BC 2552% )(RC-BE) )RE 4 BC +25;;_g2 )(RB-BC) e
and
s(14a)[(RB-RC)2— RB2-RC2] 4 BC2-RC2+ BC2(RB- 1?:
2(138 . 1@) 04 Bcz
Using (2.4) leads to
_ BC?(«RC2+RB-RC)
- 2(14-a)I1
So

RO — RCURB*—aRC*—(1- a)(]@-ﬁ)}ﬁg_'_ (1-a)RB2-RC2— (RB>—aRC?)(RB-RC) e

ZH 211

Finally, since

RN — ON — OR
%OTKJF@HY OR
:H@H@H@ 1@
:%ﬁjﬂ%l@—%@,

we get

RN — RBZ.RC2+aRC4+(1—aZL1§IC2(1@-1{?’)—2(1@.1@)2I@

+ (1—a)RBZ~RCZ—(aRCZ—RIi)T(@@—z(l—a)(1@1@)2 RC.

3. CYCLIC AND ORTHOCENTRIC CHARACTERISTICS OF A QUADRILATERAL

Definition 3.1. Given LJABCD, let R be the intersection point of /,. and ¢,
(1) The cyclic characteristic of JABCD is defined by

— (RA-RC - RE-RD) (3.1)
(2) The orthocentric characteristic of LJABCD is defined by
— (RA-RC + RB-RD)? — 4(RA - RB)(RC - RD). (3.2)
Write RA = —aRC and RD = —BRB for some &, € R\ {—1,0}. We have
= (BRB*> — aRC?)?
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and

ko = (BRB? + aRC?)? — 4aB(RB - RC)?
— (BRB? — «RC?)? + 4ap[RB? - RC? — (RB - RC)?] (3.3)
— K +4aB[RB? - RC? — (RB- RC)2.

If af < 0, then the first equation in (3.3) implies x, > 0. On the other hand, x, > 0 by
definition. Hence if af > 0, then the bottom equation of (3.3) implies x, > 0. So both
and «, are always non-negative.

Proposition 3.1. x, = 0 if and only if BRB*> + «RC? = 0 and RB-RC = 0.

Proof. =) When x, = 0, we have (BRB? + aRC?)? = 404,3(@ : I@)2 We will prove that
BRB? + «RC? = 0 which also implies I@ . I@ =0.

Suppose that BRB? + aRC? # 0. Then 41xﬁ(l@ : §3)2 = (BRB? +aRC?)? > 0,s0ap > 0.
Since (BRB? + «aRC?)? — 4aBRB? - RC? = (BRB? — aRC?)? > 0, we have

(BRB? +aRC?)? > 4apRB? - RC2.
By the Cauchy-Schwartz inequality,
40BRB? - RC? < (BRB? + aRC?)? = 4aB(RB - RC)? < 4aBRB? - RC2.

This leads to |I@ . I@| = RB - RC, or equivalently, 1@ and 1@ are collinear. Since B, R,
and C are collinear and A, R, and C are collinear, A, B, and C are collinear, a contradic-
tion. So BRB? + aRC? = 0.

<) The converse follows from the definition of x,. 0

Proposition 3.2. LJABCD is cyclic (resp. orthocentric) if and only if k. = 0 (resp. x, = 0).

Proof. Denote the circumcenter of AABC by O. By equation (2.2) in Lemma 2.1, we have
2RB - RO = RB? — aRC? and 2RC - RO = (1 — )RC2. By definition, JABCD is cyclic
(resp. orthocentric) if and only if OB = OD (resp. (f)) = (ﬁ + @ + OT%)

(1)NotethatO—B):@—Iﬁand(ﬁ:@—l@: —ﬁ]@—]@. Then

OB =0D < (1—B)RB?=2RB-RO
<= (1— B)RB*> = RB* — aRC?
<= BRB*—aRC*=0
<— k. =0.
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(2) Note that {I@, RC } is a basis for V.

OD = OA + 0B + OC <= RD = RA + RB + RC — 2RO
= (1+ﬁ)1@+(1—a)§3:21@
[(1+B)RB+(1—a)RC]-RB = 2RO-RB
[(1+B)RB+ (1—a)RC]-RC = 2RO-RC
BRB?+ «RC? = (1—a)(RB-RC)
= { (14 B)(RB-RC) = 0
BRB?+aRC?> = 0
{ RE-RC = 0

—

By Proposition 3.1, JABCD is orthocentric if and only if x, = 0. O

The following lemma is used in the proof of Theorem 5.1.

Lemma 3.1. Let A, B, C, and D be points in a plane with the following properties:

(1) no three of these points are collinear.
(2) £, and €, intersect at a point R.

(3) RA = —«RC and RD = —51@for some o, p € R~ {—1,0}.

Then A, B, C, and D determine a quadrilateral if and only if either & > 0 or > 0.

Proof. By definition, A, B, C, and D do not determine a quadrilateral if and only if either
ABNCD # @or ADNBC # @. Note that £,, N ¢, # @ if and only if there exist s, t € R
satisfying

(1—$)RA + sRB = (1 — £)RC + tRD
= sﬁ—a(l—s)]@z—ﬁﬂ@%—(l—t)]@

< s=—pt and —wa(l—s)=1—t

= (=01

< af#1, s= _gl_zu;})ﬁ, and t= f_*a"‘ﬁ.

Then

ABNCD # Q@ < aB #1, 0<7§177T5)ﬁ<11 and 0<11ff,;<1

<= either (-1 <a<0and —1<pB<0)or(a < —land B < —1).
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Note that £4p N {pc # @ if and only if there are s, t € R satisfying
(1—$)RA + sRD = (1 t)RB + tRC
_BsRB — a(1—s)RC = tRB + (1 — t)RC

<~
< —Bs=1—t and —a(l—s)=t
B 1) (s) (1
= <oc -1)\t) \«a
+
— a#£B, s:%, and t:““_“/f.
Then
ADNBC #Q <= a # B, 0<%<1, and 0<‘f,¢+_0}f<1

<= either (-1<a<0and < —1)or(a < —land —1< B <0).

So A, B, C, and D do not determine a quadrilateral if and only if both « < 0 and g <
0. O

Remark 3.1. A purely geometric proof of Lemma 3.1 can be obtained using the Crossbar
Theorem. A thorough discussion of the Crossbar Theorem is given in [5].

4. CONVEX AND NON-CONVEX QUADRILATERALS

We say that LJABCD is convex if the region enclosed by LIABCD is a convex set, that is,
given any two points X, Y in the enclosed region, the line segment XY lies in the region.
Given LJABCD, denote the intersection point of ¢ and ¢gp by R. Write ﬁ = —al?f
and RD = —[3@, where a, B € R~ {—1,0}.

Note that ABNCD = @and ADNBC = @. If« > 0and B > 0, then JABCD is convex.
If a < 0, then LJABCD is non-convex; more precisely, we have

b B Non-Convexity of [JABCD
x>0 -1<pB<0 D is an interior point of AABC.
x>0 < -1 B is an interior point of AACD.

-1<a<0 g >0 A is an interior point of ABCD.
a < —1 g >0 C is an interior point of AABD.

The five figures shown in Figure 4 illustrate the above table.

a>0,-1<p<0

B
1<0<0,$>0

A
A
R
D
2 B R D

a>0,p<-1 a<-1.B>0

Figure 4. Five Cases of Quadrilaterals
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The following proposition characterizes the convexity of LJABCD in terms of the cyclic
and orthocentric characteristics; see Definition 3.1.

Proposition 4.1. A quadrilateral JABCD is convex if k, > K. or non-convex if K, < k.
Proof. By the definitions of x, and k., we have
Ko — ke = (BRB? + aRC?)? — 4aB(RB - RC)? — (BRB® — aRC?)?
— 4aB[RB? - RC? — (RB - RC)?]

@.1)
= 16ap[Area( ARBC)]?
#0
Hence x. and x, cannot vanish simultaneously.
(1) If x, > ¢, thenaf > 0,ie., &« > 0and B > 0, so JABCD is convex.
(2) If x, < x¢, then ap < 0, so UABCD is non-convex. O

Remark 4.1. As observed by equation (4.1) in the proof of Proposition 4.1, x, and . do
not vanish simultaneously. Hence 0 < 7= < co. The orthocentric and cyclic quadrilat-
erals are the limiting cases of the ratio W1th the general quadrilateral satisfying the strict
inequality 0 < 7 < co.

Definition 4.1. Following (1.4), set A = (1@ : I@) (I@ . Iﬁ) - (ﬁ : 1@)(1@ . Iﬁ))

(1) The normalized cyclic characteristic of LJABCD is defined by

kc - %. (4.2)
(2) The normalized orthocentric characteristic of JABCD is defined by
ko = R. (4.3)

Note that k. = D‘E—CH and &, = D‘E—"H ; see (1.3). Then &, = &. + 4 by equation (3.3). Note that
the sign of each normalized characteristic is the sign of 3. Moreover, LJABCD is convex
if and only if k. > 0 if and only if &, > 0.

5. CIRCUMCENTER AND NINE-POINT CENTER QUADRILATERALS

The four lemmas in this section are used to prove Theorem 5.1. All of them depend
upon Lemma 2.1 in §2. Together, these four lemmas and Lemma 6.1 form the proof of
Theorem 6.1.

First, we use Lemma 2.1 to express the eight vectors

RO, RO, RO, ROy RN, RN, RN, RN,

in terms of the basis {1@, RC } for V. The details are given below for two of the eight
vectors. The proofs for the remaining six vectors are similar. All eight are summarized
in Lemma 5.1 just ahead.

To begin, recall from (1.3) the notation IT = RB?- RC? — 1@ 1@ as well as x =
(

2
RB - RC. Consider ABCD, where R € ¢,,,. By Lemma 2.1, the ﬁ-coefflaent of RO,

(2.2))is

see

RB2[RC?—BRB*+(B—1)x]
201 :
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On the other hand, because lﬁ = —,31@, the ﬁ—coefﬁcient of R—Oa> is

(1—B)RB2-RC?+(BRB?>—RC?)x]
211 :

Next, apply Lemma 2.1 to ACDA, whereR € /,_,i.e., settingC = A, D = B,and A = C.
So a is replaced by 1, i.e., RC = 11@ Since RD = —BRB, we get RD?> = B2RB? and
RD- ﬁ = ap( Eﬁ I@ Then the Zﬁ —,Bﬁg summand of R—>O;J is
RA2[RD?>— 1RA%—(1-1)(RD-RA)] — Bu®RC2[RB—aRC?— B(a—1)(RB-RC)]
2[RD2-RA2—(RD-RA)?2] IRD = 202211 RB

_ RC?[aRC*—p*RB*+ 1)x
[ ﬂzﬂ pla—1)x] op

Similarly, the lﬁ—summand of R—>Ob is

2RB?>—aRC?)x—pB(a—1)RB2-RC?
(PRI -aRC)x plo RC.

The vector RN, is determined in terms of @ and 1@ using equation (2.3) in Lemma 2.1.
In summary, the four circumcenters and four nine-point centers are given by the vector
equations listed below.

Lemma5.1. Let x = RB - RC. The four circumcenters of LJABCD are given by
RO _ (1-B)RB* Rc2 (,BRBZ RC?)x 1@ RB2[RC?— ﬁRBZ (1—B)x] ﬁé
—B(a—1)RB2- RCZI@

R—>Ob _ RC?[B(a— 1)x+szC2 B*RB?] 'ﬁ n l;zRBz,aRcz)

2811 2811 ’
— _
RO, _ (#®RC?— ﬁRBZ);cM_ic(‘B 1)RB?- Rczﬁ + RB2[a(B— 1);;;@11232 a?RC?| 1@

RO RCZ[RBLaRcZ (1= gp . (1=)RB™ RC22H(aRC2 RBY)x g A
Additionally, the four nine-point centers are given by

72(17,B)x27(ﬂRBZiLZIQ]CZ)er(1fﬁ)RBZ-RC2 1@

—2x2+(1—B)RB?x+RB? RC?+BRB* I@
7

+ 41T
282x2+B(1—a)RC2x—B2RB>- RC2 —aRC*
RN, = x24B0-0) ot aRC 2B
i Zﬂ(afl)x2+(aRC27ﬁ:'BRrEI§2)x+ﬁ(lﬂx)RBZ-RCZ Ea
_ 2a(B—1)x*+(BRB?>—a?RC?)x+a(1—B)RB>-RC?
IWC— a(B—1)x"+(B a4mxa B 1@
+2a2x2+a(1 ﬁ)RBi};HaZRBZ -RC2—BRB* 1@
on7 _ —2x2+(1—a)RC2x+RB2-RC2+aRC*
RNj = —22+(-a)RCh aRC' BB
n —2(1—a)x?—(«RC? 4112132)“(1 «)RB2- Rczﬁ

Using Lemma 5.1, the vectors between the circumcenters as well as the vectors between
the nine-point centers are expressed in terms of the basis {Eﬁ 1@} as follows:
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Lemma 5.2. Let x = @ : 1@ and TT = RB? - RC? — x2. The six circumcenter vectors are

l

0,0, = f(ﬁRBzfocRﬁCz)[RCerﬁx]Eg + (,BRBZfaRCZ)[ﬁRBZer] I@,

m — —(1+a) ﬁzlizlaqhalecz 1@+ (1+a)( ﬁngiﬁaR@)RBZEa
0,0, = (BRE® ~aRC?) iy ﬁRBLaR(I:IZ)[RBZ_x]I@
0,0, = (ﬁRBZ—aIEE;)r[IaRCZ BIRB + (ﬁRBZ—txl;xC;i_[[ﬁRBZ—ax] RC,
0,0, = 1) ﬁR]ZS;;IaRCZ RC TR 4 —(14B) @%%z_wcz R
0.0, = (5RBZ—a1§%[aRc2+x] RE+ BRBZ—aZIiCr;) [RE>+ax] b

Additionally, the six nine-point center vectors are

m 22 +ﬁ(,BRBZ—aRC42'gH (BRB2+&RC?)RC? I@

4 2a/3x2—(51{32—aRczst—ﬁ(;sRBZJchz)RBz 1@,
m _ (1+a)(ﬁzzfl2_l—a12c2 1@

I (14a)[2ax? _(ff§2+“RCZ YRB?] 1@

Nu N, = —2Bx +(ﬁRBLaRcZ)ric+(ﬁRBz+aRc2 Rczﬁ

_|_

I\m — 2upx ‘*‘5(51{32—DCR(ZB)IJ_CI+oc(I3RBZ+aRC2 RC 2%

" 2a5x2+a(5RBLa¢Ri)ﬁ I{ﬁ(ﬁRBZMRCZ)RBZ I@,

N—>bNd _ (1+,B)[72ﬁx2+(§RBz+szC2)RC2] %

4

20x?+(BRB?*—aRC?)x—(BRB?>+aRC?)RB?
La RC

I (148)(BRB2—aRC?)x 138

411
m _ —2apx —(5RB2—aRi?ﬁ+a(5RB2+aRc2)Rc2 I@
—20x?+a(BRB*—aRC?)x+(BRB?>+aRC?)RB?

+ L RC.

Lemma 5.3. Assume that JABCD is not cyclic. Let R, be the intersection point of £, , and

lo,o0,- Then
— — — —
R,0, = —aR,0,, RoOy = _,BRoOb/
R,0} = 4. KACE, R,0% = B . %RB®
S —— _ —>.
R0, RO, = %(RE-RC), BGRT _ o () REEC

Consequently, if . and &, are the normalized cyclic and normalized orthocentric characteristics
of 00,0400y, respectively, then k. = &, and &), = &,.
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— —
Proof. Choose a point R" on ¢, , such that RO, = —aR'O,, i.e.,

0gO¢

H N
RR' = L RO, + 1 RO,

_ (1-B)RB* Rg:lz] (= Rczxﬁ_*_ (1fa)RBZ-R§IZ{(1fﬁ)RBZxE8.

ey
Using Lemma 5.1 along with R'O, = RO, — RR, etc., we get
(xRB — RB2RC),
2_
RO, = ﬁRBzﬁr";R (—~RC?RE + xRC),
R’OC — BRE_RC*(_\RE + RB2RC),
ROy = PRE_4RC RC2RE — xRE),

R O ﬁRBZfocRC

Consequently, R'O; = —BR'O; and hence R’ is the intersection point of £,
— — —
ie, R, =R'.SoR,0, = —aR,0, R,O; = —BR,0y. Then, we have
RC?(B*RB*—aRC?)? k.RC?
R,0% = R 452H“ ) :%'“i )
2 RB?(B2RB*—aRC%)? R RB?
ROOC ('B 40‘2r10é - g = 7
=" 5" _ (RB-RC)(BRB*—aRC? %.(RB-RC
Roob : Rooc - fa‘gn a ) (R4 R )/

and

R,0,-R,O, («B) RB-RC

R,0p RO, — SENM\XP)RBRC"

Finally, using (5.3), (5.4), and (5.5), the normalized cyclic characteristic is

< — (BR,0?—aR,02)?
€7 ap[R,0%-R,02—(R,0;-R,0,)?]

_ _ [5GRCpREP
wp{E [RB2-RC?— (RB-RC)2]}

= ..

In the same way, we show &), = &,.

o, and £

(5.1)

(5.2)

OpOq”

(5.3)
(5.4)
(5.5)

Lemma 5.4. Assume that (JABCD is not orthocentric. Let R, be the intersection point of £, .

andﬁ . Then
N, N N — =
RyN; = —aR,N,, RyN; = _ﬁRan/
RNE =g SE, RN =L
R,N, - R,N. = —g 1@ E@ ﬁ:%: Ilﬁ = sgn («a ,B)ﬁ—gll?c

Consequently, if k! and & are the normalized cyclic and normalized orthocentric characteristics

of ON, N, NNy, respectively, then k! = &, and &) = &,.
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— —
Proof. Choose a point §’ on ¢, such that S'N, = —aS"N,, i.e,,

RS’ IWJHMW

= T+a

NgNc

(5.6)
1-B)RB2-RC?+(1—a) RC2x—2(1—p)x 1-a)RB>RC?+(1—B)RB2x—2(1—a)x*
— (=p) (4H0<) x—2(1-p)x I@%—( «) (4H/5) x=2(1-a)? g A
. Lo —
Using Lemma 5.1 along with S'N, = IWQ — RS, etc., we get
S/Ni _ f(ﬁRBZﬁaRcz)x 1@ n [(ﬁRBZ+aRC2)RBLzax2]‘8
S/—NZ _ = (5R32+aR§2)Rc2+2,5x2] RB+ 5R32gaRc2 138
—
g/ Nc _ ﬁRBZ;lafIRCZ 1@ + 5R32+affé)RBz+2ax2] ‘8
S N, = [(5RBZ+aRc2)Rc2 —2Bx7] 1@+ ﬂRBZZIP;RCZ xﬁa
=
Consequently, S N; = —BS'Nj, and hence S’ is the intersection point of the lines £,
and {, \ ,ie, Ry = =6'.S0 R,N, = —aR, N and R,N; = —BR,N,. Moreover, we have
Ry N} = RCUFREHRC  depr’] _ & &RC) (5.7)
RyNZ = SEUPRELarey tape] _ 0. nfp?, 58)
. 21 p2 2V2_ P2 _
RN, - Ry, = REROUPRI ok P ap (RBRC) _ g, (RE-RE), (59
and

—
RNRN: _ oon (o) RERC

RuN, Ry N.

Finally, using the (5.7), (5.8), and (5.9) equations &/ = &. and &/ = &, follow routinely.
0

In summary, Lemmas 3.1, 5.3, 5.4, and Definition 4.1 prove the following theorem.

Theorem 5.1. (1) If UABCD is not cyclic, then [JO,0,0.0; is a well-defined quadrilat-
eral and its normalized cyclic and normalized orthocentric characteristics are equal to &,
and &,, respectively.

(2) If D ABCD is not orthocentric, then [1N;N,N:N; is a well-defined quadrilateral and
its normalized cyclic and normalized orthocentric characteristics are equal to k. and «,,
respectively.

6. TWO SIMILAR QUADRILATERALS ASSOCIATED TO A GENERAL QUADRILATERAL
Lemma 6.1. Given JABCD and any pairwise distinct I, ],K,L € {A, B,C, D}, we have

0,07 = U KL*> and NN? = 6.1)
where

S

cwo =5 =aB cu = Siibh.
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Proof. The proof to follow uses Lemma 5.2 repeatedly. First of all,

—~BRE-RC = RD-RC
= 3(RD* 4+ RC* — CD?)
= 1(B*RB* + RC? — CD?)

so that

CD? = B2RB? + RC? + 2BRB - RC

(6.2)
= 2Bx + B*RB* + RC?.

Equation (6.2) will be used in the proof of the equation for OaOi.
Recall x = @ . l@, IT = RB?- RC? — x? from (1.3), and A = «pI1 from (1.4). Then the
vector equation for Oa—>Ob in Lemma 5.2 and the algebraic properties of the dot product
imply
4B*1170,0% = (BRB? — aRC?)?(RC? + Bx)*RB?
— 2x(BRB? — aRC*)?(RC? + Bx)(BRB? + x)
+ (BRB? — «RC?)?(BRB? + x)?RC?

= x.[(RC? + Bx)*RB* — 2x(RC? + Bx)(BRB? + x) + (BRB? + p)*RC?|

= «.[RB*- RC?*(2Bx + B*RB? + RC?) — x*(2Bx + B*RB* 4 RC?)]

= «.(RB*- RC* — x%)(2Bx + B>RB* 4 RC?)

= x IICD*.

Hence, OaOl% = %CD2 holds.

To prove NaNf = % . ’_‘“'lc6D2, let Y = RB? and Z = RCZ. Define

fx) =2px* + B(BY — aZ)x — (BY +aZ),
g(x) = 2apx*> — (BY — aZ)x — B(BY + aZ).

By Lemma 5.2,
ABTINN, = f(x)RB + g(x)RC.
By the algebraic properties of the dot product
16’ TN Ny = [f(x)*Y + 2xf (x)g(x) + [8(x)*Z. (63)
The right side of (6.3) is the degree-five polynomial
h(x) = asx® + agx* + azx® + axx® + a1x + ao,
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where
as = 8af,
ay = 4ap?Y + 4apZ,
a3 = —2B°Y> — 12ap>YZ — 20> BZ?,
ay = —B*Y° — B2Y2Z — 6apPY?Z — 6aBYZ* — a*BPYZ? — 0?73,
a1 = 2B3Y3Z + 4apPY? 7% + 202 BY Z°,
a0 = BY*Z + BPY3Z2 + 20B°Y3Z2 + 20BY2 7% + a?BPY?Z3 + a?Y Z2,
By equations (3.2) and (6.2),
h(x) = 8ap?x®(x? — YZ) + (4aB>Y + 4aBZ)x*(x* — YZ)
—2B(BY +aZ)?x(x* = YZ) — (BY +aZ)*(B?Y + Z)(x* - YZ)
= [8ap?x® + (4aB’Y + 4apZ)x* — 2B(BY + aZ)*x
— (BY +aZ)*(B*Y + 2)](x* — YZ)
= {2B[4apx® — (BY +aZ)?|x + (B*Y + Z)[4apx® — (BY +aZ)*]} (x* — YZ)
= [(BY +aZ)? — 4aBx?)(2Bx + B*Y + Z)(YZ — x?)
= x,IICD?.
Hence 16[32H2NQN§ = x,IICD? so that
NaNj = S = (5 5) €D
Next, we verify (6.1) for O, O? and N, Ng. First, write
24110,0, = f(x)RB + ¢(x)RC

where
f(x) = —(1+a)(BRB*> — aRC?)x,

g(x) = (1+a)(BRB* — «aRC?*)RB?.
Then
40*11°0,07 = [f(x)]?RB* + 2xf(x)g(x) + [¢(x)]*RC?
= (1+a)*x.RB*(RB?- RC? — x?)
= (1 +a)* IIRB?

However, since BD = RD — RB = —(1+ ,B)Eg, we get BD? = (1 + B)2RB2. Hence

2 _ [B+a)? & 2
0,0?% = [a(Hg)z -’ﬂ BD2.

To obtain the second equation, proceed in the same way by setting Y = RB?, Z = RC?,
and x = 1@ . E@ . Next, define
f(x) = (BY —aZ)x,
g(x) = 20x® — (BY +aZ)Y
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so that %m _ f(x)ﬁ . g(x)ﬁa
Then
o NaNZ = [f(0)Y +2xf (x)g(x) + [g(x)]°Z,
= daBx* + (—B*Y° — 6aBY?Z — a?YZ?)x*
+ BY Z 4+ 20Y° 7% + 7Y 77

= 4aBY (x* = YZ)x*> + Y(BY +aZ)*(YZ — x?)

= Y[(BY +aZ)* — 4apx?|(YZ — x*)

= gD
Hence N,N? = {581;; : f—g} BD?.
The remaining four pairs of squared distances are argued in similar fashion. U

We say that A Ay A3 Ay and [1B1 By B3 By are similar, written [JA1 Ay A3 As ~ [0B1B2B3By,
if ZA; = ZB; foralli € {1,2,3,4} and the six ratios Igi—g‘; are equal to each other for all

distinct i,j € {1,2,3,4},. Note that if the six ratios are equal to each other, then the four
angle equations must hold.

Theorem 6.1. Assume that LIABCD is not cyclic. Let R be the intersection point of £,. and
l,,. Let x. and x, be the cyclic and orthocentric characteristics of LJABCD, respectively; see
(3.1) and (3.2). Following the earlier notation, let O,, Oy, O, and Oy denote the circumcenters

and N, Ny, N, and N denote the nine-point centers of ABCD, ACDA, ADAB, and AABC,
N2
I(\)];g% = 4’%. Consequently, if JABCD is a

general quadrilateral, then JO,0,0.O4 ~ UN,N,N:Ny.

respectively. Then for any distinct i,j € {a,b,c,d},
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