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CONTACT STRUCTURES COMING FROM FOLIATIONS ON (2N+1)-CLOSED
MANIFOLDS

CHEIKH KHOULE AND AMETH NDIAYE

ABSTRACT. In this paper we establish a sufficient condition for a contact structure on
a closed oriented (2n+1)-dimensional manifold to come from a codimension 1 foliation.
Moreover, this condition allow us to generalize a theorem of Etnyre (see [7]) in dimension
3 to (2n+1)-dimensional K-contact manifolds with non-zero first de Rham cohomology
group. In conclusion, we give some examples of manifolds possessing such structures.

1. INTRODUCTION

Let M be a differential manifold, TM its tangent bundle and ξ ⊂ TM, a field of hyper-
planes on M, that is a C∞ differentiable sub-bundle of codimension 1 of TM. Locally
ξ can always be written as the kernel of a non-vanishing 1-form η. Moreover if the or-
thogonal complement of ξ in TM is orientable, then ξ is globally defined by a 1-form
η. In this study, the manifold M will be assumed to be oriented and all the plane fields
considered here are supposed to be coorientable.
There are two classes of hyperplane fields that have received an important attention:
the integrable and the non-integrable one. A hyperplane field ξ with the property that
through any point p ∈ M one can find a codimension 1 submanifold S such that TxS = ξx
for all x ∈ S, is called integrable and S an integral submanifold of M.
The collection of integral submanifolds of an integrable hyperplane field constitutes
what is called a codimension 1 foliation on M. It turns out from the Frobenius inte-
grability condition, that ξ = ker η is integrable if and only if η satisfy

η ∧ dη = 0.

Contact structures are in certain sense the exact opposite of integrable hyperplane fields.
A contact structure in a (2n + 1)-dimensional manifold is a maximally non-integrable
hyperplane field ξ = ker η where the 1-form η is required to satisfy η ∧ (dη)n ̸= 0.
Meaning that η ∧ (dη)n is a volume form on M. Such an η is called a contact form and
the pair (M, η) a contact manifold and there exist always a unique vector field Z, called
the Reeb vector field of the contact manifold M satisfying:

iZη = 1 and iZdη = 0.
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To see the one big difference between these two stuctures, first remark that: if ξ = ker η
is a contact stucture defined in U ⊂ R3, with coordinates (x, y, z). Suppose that at each
point of U, ∂

∂y ∈ ξ and ∂
∂z /∈ ξ. Then there exists q : U −→ R such that

η = dz − q(x, y, z)dx.

Futhermore

u =
∂

∂y
and v = q

∂

∂z
+

∂

∂x
∈ ξ.

We have η ∧ dη = −( ∂q
∂y )dx∧ dy∧ dz, then if we fix the standard orientation −dx∧ dy∧ dz

on U, the contact contion becomes
∂q
∂y

> 0. So ξ consist of horizontal planes (that is , par-

allel to the xy-plane) at any point in the xz-plane and as you leave the xz-plane along a
ray perpendicular to the xz-plane the plane ξ are always tangent to this ray and twisting
a total of 90-degree in a counterclockwise.
Another major difference is given by Gray’s Theorem [4]. This theorem says that iso-
topies of contact forms are equivalent to isotopies of the manifold. We have the converse
situation in the case of codimension one foliation: there are deformations of foliations
that do not come from diffeomorphisms of the underlying 3-manifold see ([8]).

Despite these differences one has the following local result of Darboux/ Pfaff Theorem,
see [4] which gives similarities between foliations and contact structure that is they both
have local normal forms.
Other important kind of similarities between theses structures are given by the following
results separately proved by Thurston and Eliashberg: Namely they state that if M is
a closed oriented irreducible 3-manifold, ξ a 2-plane field and N a closed embedded
surface in M, if ξ is a Reebless foliation (Thurston 1986, [12]) or a tight positive contact
structure (Eliashberg 1992, [5]), then

|e(ξ)[N]| ⩽ −χ(N) i f N ̸= S2

|e(ξ)[N]| = 0 i f N = S2,

where χ(N) is the Euler characteristic of N and e(ξ)[N] ∈ H2(M) the Euler class e(ξ)
on N.

At the first glance, codimension 1 foliation and contact structures belong entirely to
two different worlds. However, the two theories have developed a number of strik-
ing similarities and their understanding can produce information about the topology of
the underlying manifold. It is then relevant to know how to transport the results from
one field to the other. Eliashberg and Thurston are the first who investigate this way and
their theory of confoliations (kernel of a non-vanishing 1-form η such that η ∧ (dη)n ≥ 0
holds) is the middle ground of these two field. Theses works of Eliashberg and Thurston
open a large field of research, which study the transport from codimension 1 foliation
into contact structure in several ways : approximations, deformations, affine deforma-
tion etc. Precisely a codimension 1 foliation ξ defined by a non singular 1-form α on M,
is called Cr-close to a contact structure if in any Cr-neighborhood of ξ relatively to the
Cr-topology of plane field of Withney, there is a contact structure.
ξ is called Cr-deformable into a contact structure, if there is on M a 1-parameter family
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hyperplane field (ξt)t⩾0 of class Cr, defined by the 1-form αt such that ξ0 = ξ and for all
t > 0, αt is a contact form.
It is well known from [6], through confoliation theory that : Any oriented codimension 1,
C2-foliation on an oriented 3-manifold is C0-close to a contact structure, except the prod-
uct foliation of S2 × S1 by spheres S2. But it was then unknown if this approximation can
always be done through a deformation. This result brings up the following question in
[6] : Is it always possible to deform a codimension 1 foliation on an oriented (2n + 1)-
manifold into contact structure ? Even the fact that it is not easy to answer positively
to this question, it will be important to find conditions of deformability. The first author
get success in this direction by proving in [2] a necessary and sufficient condition to de-
form an integrable 1-form into contact form. Nonetheless it is very difficult to say that a
codimension 1 foliation is not deformable into contact.
In [7], Etnyre study the deformation in the reversed sense and he proved that: every pos-
itive and negative contact structure on a closed oriented 3-manifold is a C∞-deformation
of a C∞-foliation. The point of view of Etnyre gives us the idea to investigate analytic
ways, in order to partially generalize his theorem in higher odd dimension.
More precisely we prove that: let (M, β) be a closed, (2n + 1)-dimensional contact man-
ifold with Reeb vector field Z which contain an integrable 1-form α such that β ∧ (dα) ∧
(dβ)n−1 = 0 and α(Z) = 0. Then the contact structure defined by β converges to the
codimension 1 foliation {α = 0}. This later result guides us to be able to generalize the
above theorem in (2n + 1)-dimensional K-contact manifold M with H1(M) ̸= 0. In or-
der to face theses goals, we deal with particular deformations called CB-deformations
see [2]. Here C and B are two C∞-functions : [0,+∞[−→ [0,+∞[ with C(0) = 1 and
B(0) = 0.

2. SUFFICIENT CONDITION OF CONVERGENCE OF CONTACT STRUCTURES

In this section unless otherwise stated, M is a (2n+ 1)-dimensional closed oriented man-
ifold.

Definition 2.1. A contact structure ζ = {β = 0} on M comes from (or converges to) a codi-
mension 1 foliation ξ = {α = 0} via (CB)-deformations if there exists a 1-parameter family of
hyperplane fields (ξt)t≥0 defined by the 1-forms αt = C(t)α + B(t)β such that α0 = α, α1 = β
and for all t > 0, αt is contact. One can say also that the contact structure ζ converges to a
codimension one foliation ξ.

Remark 2.1. If C(t) = 1 − t and B(t) = t, we recover the linear deformations introduced by
Dathe-Rukimbira in [3].

Let us recall that a flow Xt : M → M generated by a vector field X is called Confor-
mally Anosov if there exists a continuous Riemannian metric on M and a continuous
splitting TM3 = N+ ⊕ N− ⊕ λX, such that the splitting is invariant under the flow and
the differential dXt : TM → TM acts by dialations on N+ and by contractions on N−
after dXt|N+⊕N− has been renormalized to have determinant 1. It follows from [6] that,
if ξ+ and ξ−, generated (X, N+) et (X, N−) respectively are C1-smooth, then they are
integrable and are called the unstable and stable foliations of the Conformally-Ansosov
flow Xt.
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Proposition 2.1. Let M be a closed oriented 3-manifold, Suppose Xt is a Conformally Anosov
flow with C1-smooth stable and unstable foliations ξ+ = kerα+ and ξ− = kerα−. Then ξ =
ker(α− + α+) is a contact structure coming from ξ+ or ξ−.

Proof. We know from [6] that:

α− ∧ dα+ + α+ ∧ dα− > 0.

Then β = α− + α+, is a positive contact form. Consider for all t ≥ 0, the 1-forms α+
t =

C(t)α+ + B(t)β. One has α+
0 = α+ and for all t > 0:

α+
t ∧ dα+

t = (C(t)B(t) + B2(t))(α− ∧ dα+ + α+ ∧ dα−).

Since the functions C and B should be chosen more generally, one can, in particular,
choose C(t) = sin2[(t + 1)π

2 ] and B(t) = t exp(t − 1). Then we establish that ξ =
ker(α− + α+) is a contact structure coming from ξ+, by using the above computation.
The same argument is true for ξ−. □

The authors of [2] proved the following theorem

Theorem 2.2 ([2]). Let (V, β, Z) be a closed, (2n + 1)-dimensional contact manifold with Reeb
vector field Z. A 1-form α integrable on V admits a deformation of type CB via β if and only if

α ∧ (dβ)n + nβ ∧ dα ∧ (dβ)n−1 ≥ 0. (2.1)

The weakness of certain conditions of the theorem 2.2 allow us to give a sufficient condi-
tion for a contact structure to converge to a codimension 1 foliation. And this generalize
the Ethnyre theorem in some odd dimensional manifold. Precisely we have the follow-
ing result:

Theorem 2.3. Let (M, β) be a closed, (2n + 1)-dimensional contact manifold with Reeb vector
field Z, which contain an integrable 1-form α such that :

i) β ∧ (dα) ∧ (dβ)n−1 = 0
ii) α(Z) = 0

Then the contact sructure ζ defined by β comes from the codimension 1 foliation ξ = {α = 0}
via CB-deformations.

Proof. The conditions (i) and (ii) give that α ∧ (dβ)n + nβ ∧ dα ∧ (dβ)n−1 = 0. So from the
theorem 2.2, α admit a deformation of type CB via β.
If we fix C(t) = sin2[(t + 1)π

2 ], B(t) = t exp(t − 1) and let αt = C(t)α + B(t)β, then we
have

αt ∧ (dαt)
n > 0, ∀t > 0; α0 = α and α1 = β.

Hence the 1-forms αt = C(t)α + B(t)β define a 1-parameter family of hyperplane fields
ξt which satisfy ξ0 = ξ, ξ1 = ζ and ξt is a contact structure ∀t > 0. □

3. GENERALISATION OF ETNYRE RESULT IN K-CONTACT MANIFOLD

Let (M, β, Z) be a (2n + 1)-dimensional contact manifold, with contact form β an Reeb
vector field Z. A contact metric structure on M is given by the existence of a Riemannian
metric g and (1, 1)-tensor field ϕ such that [1]:

ϕ2X + X = β(X)Z, (3.1)

dβ(X, Y) = 2g(X, ϕY), (3.2)
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g(ϕX, ϕY) = g(X, Y)− β(X)β(Y), (3.3)

for all vector fields X, Y on M, where

dβ(X, Y) = Xβ(Y)− Yβ(X)− β([X, Y]).

Notice that identity (3.1) implies that ϕZ = 0 and β ◦ ϕ = 0. We say that (M, β, Z, g, ϕ) is
K-contact manifod if the Reeb field Z is Killing, i.e. LZg = 0.

Theorem 3.1. A K-contact structure on a (2n + 1)-dimensional closed oriented manifold M
such that dim(H1(M)) ̸= 0, converges into a codimension 1 foliation.

Proof. Let (β, Z) be this K-contact form with Reeb vector field Z. Since dim(H1(M)) ̸= 0
there exists a non singular closed 1-form α on M with [α] ̸= 0. By Hodge’s Decomposi-
tion Theorem, α is cohomologous to a non singular harmonic 1-form µ. It follows from
[11] that µ(Z) = 0 and since µ is closed it satisfies also the statements of Theorem 2.3.
This complete the proof. □

4. SOME EXAMPLES WHERE WE FIND THIS KIND OF DEFORMATIONS

In certain quotients of a Lie group under a discrete subgroup we can prove

Theorem 4.1. Let M be a closed 3-manifold diffeomorphic to a quotient of the Lie group G under
a discrete subgroup Γ action by left multiplication, where G is one of the following.

• ˜SL2, the universal cover of PSL2R,
• Ẽ2, the universal cover of group of orientation preserving isometries of the Euclidean

plane.
Then there is on M, a codimension 1 foliation which is CB-deformable into contact structures.

Before proving this theorem, we recall first the following notions due to H. Geiges and J.
Gonzolo see [9]

Definition 4.1. A taut contact circle on a 3-manifold M is a pair of contact forms (β1, β2) such
that the 1-form λ1β1 + λ2β2 is a contact form defining the same volume form for all (λ1, λ2) ∈
S1 ⊂ R2. Equivalently, we require that the following equations be satisfied:

β1 ∧ dβ1 = β2 ∧ dβ2 ̸= 0
β1 ∧ dβ2 = −β2 ∧ dβ1.

If the mixed terms β1 ∧ dβ2 and β2 ∧ dβ1 are identically zero rather than just of opposite sign,
we speak of a Cartan structure.

If (β1, β2) is a taut contact circle, then so is ( f β1, f β2) for any positive function f . The
conformal class of a taut contact circle (β1, β2) is the collection of all pairs ( f β1, f β2) ob-
tained from (β1, β2) by multiplication by some positive function f .

We will give a detailed proof of the lemma 3.1 in [10] by setting the following proposition
which we will use later in the proof the theorem 4.1.

Proposition 4.1. Let (β1, β2) be a Cartan structure on a 3-manifold with, respectively, Z1 and
Z2 the Reeb vectors field of β1 and β2. Then there is a unique 1-form β3 such that

dβ1 = β2 ∧ β3
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dβ2 = β3 ∧ β1
β3(Z1) = β3(Z2) = β1 ∧ dβ3 = β2 ∧ dβ3 = 0.

Proof. The definition 4.1 implies that:

β1 ∧ (dβ1) = β2 ∧ (dβ2), (4.1)

β1 ∧ (dβ2) = 0, (4.2)

β2 ∧ (dβ1) = 0. (4.3)

If we compute by iZ2 in (4.3) and by iZ1 in (4.2) one has:

dβ1 = β2 ∧ iZ2 dβ1. (4.4)

dβ2 = β1 ∧ iZ1 dβ2. (4.5)

Computing also by iZ2 in (4.2) and by iZ1 in (4.3) one has:

β1(Z2) = β2(Z1) = 0. (4.6)

Furthermore computing by iZ2 in (4.1) one has also:

β1(Z2)dβ1 − β1 ∧ iZ2 dβ1 = dβ2 (4.7)

Thus (4.5), (4.6) and (4.7) implies that:

−β1 ∧ iZ2 dβ1 = β1 ∧ iZ1 dβ2.

Hence by computing this equation by iZ1 we have:

−iZ2 dβ1 = iZ1 dβ2. (4.8)

Since β2 ∧ dβ2 is volume form and div(Z1) = 0 then

d(iZ1(β2 ∧ dβ2)) = div(Z1)β2 ∧ dβ2 = 0,

which means that:

d(β2(Z1)dβ2 − β2 ∧ iZ1 dβ2) = 0.

Therefore (4.6) and the differentiation implies that:

β2 ∧ d(iZ1 dβ2) = dβ2 ∧ iZ1 dβ2 =
1
2

iZ1(dβ2 ∧ dβ2) = 0.

Analogously, changing Z1 by Z2 and β2 by β1 one prouves that:

β1 ∧ d(iZ2 dβ1) = 0 = β2 ∧ d(iZ1 dβ2). (4.9)

Hence setting β3 = iZ1 dβ2, the equalities (4.9), (4.8), (4.4) and (4.5) gives us the existence
of a 1-form β3 such that:

dβ1 = β2 ∧ β3,
dβ2 = β3 ∧ β1,

β3(Z1) = β3(Z2) = β1 ∧ (dβ3) = β2 ∧ (dβ3) = 0.

It is straightforward to check that β3 is unique: indeed if there exists a 1-form β4 satisfy-
ing the above conditions, then dβ1 = β2 ∧ β3 = β2 ∧ β4 and computing by iZ2 in this last
equality one has β4 = β3, because β4(Z2) = β3(Z2) = 0. □
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Definition 4.2. A Cartan structure (β1, β2) is called a K-Cartan structure if the unique β3 of
the proposition 4.1 satisfies

dβ3 = Kβ1 ∧ β2.

Here K may be any function on M that is constant along the common kernel of β1 and β2 (since
dK ∧ β1 ∧ β2 = d2β3 = 0), but the two cases of interest to us will be K ≡ −1 and K ≡ 0.

Proof. (of theorem 4.1)
• If M = Γ\ ˜SL2, following H. Geiges and J. Gonzalo from [10], in each conformal

class of taut contact circles on M there is one and only one 1-Cartan structure.
Let (β1, β2, β3) be such a structure in any arbitrary conformal class, following
Jacobowitz [10] it is equivalent to the existence on M of a triple of independent
1-forms (η1, η2, η3) called a projective structure, satisfying

dη1 = −η2 ∧ η3, dη2 = −2η1 ∧ η2, dη3 = 2η1 ∧ η3.

such that β1 = 2η1, β2 = η2 + η3, β3 = η2 − η3.
Setting α = η2 one has

α ∧ dα = 0. (4.10)

α ∧ dβ1 = 0. (4.11)

Let Z1 be the Reeb vector field of β1 then the proposition 4.1 and its proof imply
that β2(Z2) = β3(Z1) = 0. Futhermore by the equalities β2 = η2 + η3, β3 =
η2 − η3 one has

α(Z1) = η2(Z1) =
β2(Z1) + β3(Z1)

2
= 0. (4.12)

Hence the theorem 2.3 implies in virtue of (4.10), (4.11) and (4.12) that the foliation
defined by α is CB-deformable into contact structures by the way of β1.

• If M = Γ\Ẽ2, Also following [10], in each conformal class of taut contact circles
on M there is a 0-Cartan structure which is unique up to multiplication by a
positive constant. Let (β1, β2, β3) such a structure in any arbitrary conformal
class, then dβ3 = 0 and the proposition 4.1, implies that β3(Z1) = β3(Z2) = 0.
Hence theorem 2.3 implies that the foliation defined by β3 is (C,B)-deformable
into contact structures by the way of β1 or β2.

□
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