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DISTANCES OF NAPOLEON POINTS AT OTHER NOTABLE POINTS

TEMISTOCLE BÎRSAN

ABSTRACT. The purpose of this paper is to find formulas for distances from Napoleon
points N+, N− to other notable points in triangle geometry. These distances are expressed
by ∆, l+, l−, f and finally by a, b, c.

Consider a triangle ABC and denote by N+, N− the inner and outer Napoleon points
associated with it. We also denote by F± the Fermat points, by J± the isodynamic points,
and by E the nine-point center (the Euler point) of the given triangle. We consider known
the meanings of the notations O, H, G, K. The purpose of this note is to find a lot of
nineteen formulas for the distances of points N+, N− at points F±, J±, O, H, G, E, K and
between themselves, all these formulas expressed by a, b, c. We will need some formulas
of [3], where distances from F±, J± to other points of the triangle ABC are found.
For historical notes and properties of these points, the reader is referred to the following
treatises: [1], [4], [5], [6], [7].

1. INTRODUCTION AND PRELIMINARIES

Let A+ and A− be the vertices of the equilateral triangles built on the BC outside and
inside the triangle ABC, respectively; similar for B+, B− and C+, C− (Fig. 1). It is known
that F+ = AA+ ∩ BB+ ∩CC+ and F− = AA− ∩ BB− ∩CC− and that AA+ = BB+ = CC+

and AA− = BB− = CC− For the common lengths of these segments, denoted l+ and l−
respectively, we have:

l2
+ =

1
2

(
a2 + b2 + c2 + 4

√
3∆
)

, l2
− =

1
2

(
a2 + b2 + c2 − 4

√
3∆
)

(1.1)

(see, for ex., [4], p. 220). Note that l+ and l− will frequently appear in the formulas for
distances to be obtained below. In the calculations that follow we will routinely use the
following simple relations:

16∆2 = 2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4 (Heron), (1.2)

l2
+ + l2

− = a2 + b2 + c2, l2
+ − l2

− = 4
√

3∆, (1.3)

4l2
+l2

− =
(
a2 + b2 + c2)2 − 3 · 16∆2, (1.4)
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9a2b2c2 − 16∆2 (a2 + b2 + c2) = f (a, b, c) , (1.5)
where

f (a, b, c) = a6 + b6 + c6 + 3a2b2c2 − a4b2 − a2b4 − a4c2 − a2c4 − b4c2 − b2c4. (1.6)

Figure 1

To achieve the proposed goal we will use some geometric properties of the points that
are in our attention. Thus, it is known that F+ J+ ∥ F− J− ∥ OH (Fig. 2; [5], Table 5.3 or, for
a synthetic proof, [2], p.15). The following collineations relative to the specified points
are also known (Fig. 2):
1) O, H, G, E, M (midpoint of HG) in order O− G − E− M− H and 2OH = 3HG = 6OG =
6HM = 4OE = 12GE (Euler line),
2) F+, F−, K, M in order M − F+ − K − F− ( K and M are harmonic conjugates with respect to
F+ and F−),
3) O, F+, N+ and O, F−, N−,
4) H, J+, N+ and H, J−, N−,
5) E, F+, N− and E, F−, N+,
6) K, N+, N−.
The collineations in the last four statements appear in [5], Table 5.1 (they can be easily
verified using barycentric coordinates).

Figure 2
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In connection with statements 3)-6), we are interested in the order in which the points
are located.

Lemma 1.1. The positions of point N+ on lines F+O and F−E are given by
(i) F+ − N+ − O, and
(ii) F− − N+ − E.

Proof. We consider the triangle MOF− (Fig. 3). According to 3) and 5) above, we have
N+ = OF+ ∩ F−E. According to 1) and 2), we have F+ ∈ MF− and E ∈ MO. It follows
from this that (i) and (ii) hold. □

Figure 3 Figure 4

Lemma 1.2. The position of point N− on line F−O is specified by the following statements:
(i) N− /∈ F−O (i.e. N− is not between F− and O),
(ii) F− − O − N− if and only if 4l2

− − l2
+ < 0,

(iii) N− − F− − O if and only if 4l2
− − l2

+ > 0.

Proof. (i) it is inferred from the collinearity of points F+, E, N− and the fact that E ∈ OM
(see 5) and 1) above) (Fig. 3, 4).
Let’s denote with Oa

−, Ob
−, Oc

− the circumcenters of equilateral triangles BCA−, CAB−,
ABC− respectively. By definition, N− = AOa

− ∩ BOb
− ∩ COc

− if this intersection is non-
empty; otherwise, N− is the infinite point in the direction of the line F−O. The second
case occurs if and only if AOa

− ∥ BOb
− ∥ COc

−.
We will show that the condition AOa

− ∥ BOb
− ∥ COc

− is equivalent to 4l2
− − l2

+ = 0 using
barycentric coordinates. The barycentric coordinates of points Oa

−, Ob
−, Oc

− are:(
a, 2b sin

(
C − π

6

)
, 2c sin

(
B − π

6

))
,

(
2a sin

(
C − π

6

)
, b, 2c sin

(
A − π

6

))
,(

2a sin
(

B − π

6

)
, 2b sin

(
A − π

6

)
, c
)

.

The equations of lines BOb
− and COc

− are:

c sin
(

A − π

6

)
α = a sin

(
C − π

6

)
γ and b sin

(
A − π

6

)
α = a sin

(
B − π

6

)
β.
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Writing that these lines and the line at infinity, α + β + γ = 0, are concurrent, we find the
condition that the lines BOb

− and COc
− (therefore also AOa

−) are parallel:

a sin
(

B − π

6

)
sin
(

C − π

6

)
+b sin

(
C − π

6

)
sin
(

A − π

6

)
+c sin

(
A − π

6

)
sin
(

B − π

6

)
=0.

Using formulas like sin A =
2∆
bc

, cos A =
b2 + c2 − a2

2bc
, etc. and performing routine

calculations, we will express this condition by the sidelenghts of the given triangle:

3
(
a2 + b2 + c2)− 20

√
3∆ = 0 or 4l2

− − l2
+ = 0,

and the claim is proved.
The sign of the expression 4l2

− − l2
+ in relation to the position of the point N− outside the

segment F−O (Fig. 3, 4) is easily established (for example, taking ABC isosceles triangle).
Consequently, the statements (ii) and (iii) are true. This completes the proof. □

Lemma 1.3. We have:
(i) N− − E − F+ if and only if 4l2

− − l2
+ < 0, and

(ii) N− − F+ − E if and only if 4l2
− − l2

+ > 0.

Proof. (i) From Lemma 2, the condition 4l2
− − l2

+ < 0 is equivalent to F− −O − N−, which
in turn is equivalent to N− − E − F+ (Fig. 3).
(ii) Similar arguments are used (Fig. 4). □

Lemma 1.4. Relative to point H, we have:
(i) H − N+ − J+,
(ii) J− − H − N− if and only if 4l2

− − l2
+ < 0, and

(iii) N− − J− − H if and only if 4l2
− − l2

+ > 0.

Proof. The statements are direct consequences of Lemmas 1 and 2 and the fact that F+ J+ ∥
F− J− ∥ OH (Fig. 2, 4). □

Lemma 1.5. We have:
(i) K − N+ − N− if and only if 4l2

− − l2
+ < 0, and

(ii) N− − K − N+ if and only if 4l2
− − l2

+ > 0.

Proof. (i) From Lemma 2, condition 4l2
− − l2

+ < 0 is equivalent to F− − O − N− (Fig.
3). Because we always have F+ − K − F− and F+ − N+ − O (Lemma 1), it folows that
F− − O − N− is equivalent to K − N+ − N−. That is, statement (i) is true.
(ii) It is shown reasoning similarly (Fig. 4). □

The preceding lemmas establish the order of points in the sequences of collinear points
3)-5) indicated above. We will need these results in the next sections.

2. DISTANCES FROM N± TO F±, J±, O, H

We will find eight formulas for distances of this type using the fact that F+ J+ ∥ F− J− ∥
OH.

Proposition 2.1. The distances from N+ to points F+, O, J+, H are given by the formulas:

N+F+ =

√
3

3l+
(
4l2

+ − l2
−
)√32∆2l2

+l2
− +

(
2l2

+ − l2
−
)

f , (2.1)
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N+O =
l+

4∆
(
4l2

+ − l2
−
)√32∆2l2

+l2
− +

(
2l2

+ − l2
−
)

f , (2.2)

N+ J+ =
2
√

2
2l+

(
4l2

+ − l2
−
)√8∆2l4

− + l2
+ f − 3a2b2c2l2

−, (2.3)

N+H =

√
6l+

4∆
(
4l2

+ − l2
−
)√8∆2l4

− + l2
+ f − 3a2b2c2l2

−. (2.4)

Proof. Since F+ J+ ∥ OH, it follows that ∆N+F+ J+ ∼ ∆N+OH (Fig. 2 or 4). Hence,

N+F+
N+O

=
N+ J+
N+H

=
F+ J+
OH

.

From the fact that

OH =
1

4∆

√
f (2.5)

([3], (2.10)) and

F+ J+ =

√
3

3l2
+

√
f

([3], (4.3)), it follows that
N+F+
N+O

=
N+ J+
N+H

=
4
√

3∆
3l2

+

.

Taking into account the relations F+N+ + N+O = F+O and J+N+ + N+H = J+H, we
infer that

N+F+ =
4
√

3∆
4l2

+ − l2
−

F+O and N+O =
3l2

+

4l2
+ − l2

−
F+O,

N+ J+ =
4
√

3∆
4l2

+ − l2
−

J+H and N+H =
3l2

+

4l2
+ − l2

−
J+H.

Now, using formulas

F+O2 =
1

144∆2l2
+

[
32∆2l2

+l2
− +

(
2l2

+ − l2
−
)

f
]

(2.6)

([3], (2.6)) and

J+H2 =
1

24∆2l2
+

(
8∆2l4

− + l2
+ f − 3a2b2c2l2

−

)
([3], (3.11)), we immediately obtain the required formulas (2.1)-(2.4). This concludes the
proof. □

Proposition 2.2. The distances from N− to points F−, O, J−, H are given by the formulas:

N−F− =

√
3

3l−
∣∣4l2

− − l2
+

∣∣√32∆2l2
+l2

− +
(
2l2

− − l2
+

)
f , (2.7)

N−O =
l−

4∆
∣∣4l2

− − l2
+

∣∣√32∆2l2
+l2

− +
(
2l2

− − l2
+

)
f , (2.8)

N− J− =
2
√

2
2l−

∣∣4l2
− − l2

+

∣∣√8∆2l4
+ + l2

− f − 3a2b2c2l2
+, (2.9)
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N−H =

√
6l−

4∆
∣∣4l2

− − l2
+

∣∣√8∆2l4
+ + l2

− f − 3a2b2c2l2
+. (2.10)

Proof. We will proceed in the same way, but, according to Lemma 2, we consider two
cases: I. 4l2

− − l2
+ < 0, i.e. F− − O − N− , and II. 4l2

− − l2
+ > 0, i.e. N− − F− − O (Fig. 5).

In both cases we have ∆N−F− J− ∼ ∆N−OH and therefore

N−F−
N−O

=
N− J−
N−H

=
F− J−
OH

=
4
√

3∆
3l2

−

(for the last tie we used (2.5) and the formula F− J− =

√
3

3l2
−

√
f ([3], (4.4))).

Figure 5

Because in case I we have N−F− = N−O + OF− and N− J− = N−H + HJ−, we get:

N−F− =
4
√

3∆
−
(
4l2

− − l2
+

)F−O and N−O =
3l2

−
−
(
4l2

− − l2
+

)F−O,

N− J− =
4
√

3∆
−
(
4l2

− − l2
+

) J−H and N−H =
3l2

−
−
(
4l2

− − l2
+

) J−H.

On the other hand, in case II we have N−F− = N−O − F−O and N− J− = N−H − J−H,
and so we get:

N−F− =
4
√

3∆
4l2

− − l2
+

F−O and N−O =
3l2

−
4l2

− − l2
+

F−O,

N− J− =
4
√

3∆
4l2

− − l2
+

J−H and N−H =
3l2

−
4l2

− − l2
+

J−H.

It remains to use the formulas

F−O2 =
1

144∆2l2
−

[
32∆2l2

+l2
− +

(
2l2

− − l2
+

)
f
]

(2.11)

([3], (2.7)) and

J−H2 =
1

24∆2l2
−

(
8∆2l4

+ + l2
− f − 3a2b2c2l2

+

)
([3], (3.12)) to infer formulas (2.7)-(2.10), valid in both cases. The proof is complete. □
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Remark 2.1. Since 4l2
+ − l2

− > 0, we can switch from the formulas in Proposition 6 to the
corresponding formulas in Proposition 7 and vice versa by replacing l+ with l− and l− with l+.

The formulas for distances N+F−, N+ J− and N−F+, N− J+ will be established in Section
5.

3. DISTANCES FROM N± TO SOME POINTS OF EULER LINE

We will only consider points G and E, but we would do the same for point M or another
point on the Euler line.

Proposition 3.1. The distances between points N+, N− and E are given by

N+E =
l−

8∆
(
4l2

+ − l2
−
)√32∆2l2

+l2
− +

(
2l2

+ − l2
−
)

f , (3.1)

and
N−E =

l+
8∆
∣∣4l2

− − l2
+

∣∣√32∆2l2
+l2

− +
(
2l2

− − l2
+

)
f . (3.2)

Proof. Applying the median theorem to the triangle N+OH (Fig. 2), we have:

4N+E2 = 2
(

N+O2 + N+H2)− OH2.

Taking into account (2.2), (2.4) and (2.5), this equality is written:

64∆2N+E2 =
2l2

+(
4l2

+ − l2
−
)2

[
32∆2l2

+l2
− +

(
2l2

+ − l2
−
)

f + 6
(

8∆2l4
− + l2

+ f − 3a2b2c2l2
−

)]
− f

from where

64∆2 (4l2
+ − l2

−
)2

N+E2 = l2
−
[
32∆2l2

+

(
2l2

+ + 3l2
−
)
− 36a2b2c2l2

+ +
(
6l2

+ − l2
−
)

f
]

= l2
−
[
32∆2l2

+

(
2l2

+ + 3l2
−
)
− 4l2

+

(
9a2b2c2 − f

)
+
(
2l2

+ − l2
−
)

f
]

.

Now, using (1.5), we get:

64∆2 (4l2
+ − l2

−
)2

N+E2 = l2
−
[
32∆2l2

+l2
− +

(
2l2

+ − l2
−
)

f
]

,

hence the formula (3.1).
Obviously, considering the triangle N−OH (Fig. 2) and performing similar calculations,
we find the formula (3.2). The proof is finished. □

Remark 3.1. The formulas (3.1), (3.2) pass into each other if we substitute l+ by l− and l− by
l+. This remark is valuable for all subsequent propositions.

Corollary 3.1. We have

N+E =
3l+l−

2
(
4l2

+ − l2
−
)F+O

and
N−E =

3l+l−
2
∣∣4l2

− − l2
+

∣∣F−O.

Proof. It immediately follows from (3.1), (3.2) and (2.6), (2.11).

We will establish the formulas for distances N+G and N−G by applying Stewart’s theo-
rem to triangles N+OH and N−OH (same as above) and point G (Fig. 2). □
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Proposition 3.2. The distances between N+, N− and G are given by

N+G =

√
3

3
(
4l2

+ − l2
−
)√l2

+l2
−
(
2l2

+ + l2
−
)
− 2 f (3.3)

and

N−G =

√
3

3
∣∣4l2

+ − l2
−
∣∣√l2

+l2
−
(
2l2

− + l2
+

)
− 2 f . (3.4)

Proof. We will establish only the first formula. According to Stewart’s theorem, we have

N+G2 · OH = N+O2 · GH + N+H2 · GO − OH · GO · GH.

But, it is well known that GO =
1
3

OH and GH =
2
3

OH. Then,

9N+G2 = 6N+O2 + 3N+H2 − 2OH2.

Using (2.2) and (2.4), we find f + 16∆2 (l2
+ + l2

−
)
+

72∆2N+G2 =
3l2

+(
4l2

+ − l2
−
)2

[
32∆2l2

+l2
− +

(
2l2

+ − l2
−
)

f + 3
(

8∆2l4
− + l2

+ f − 3a2b2c2l2
−

)]
− f

=
3l2

+(
4l2

+ − l2
−
)2

[
32∆2l2

+l2
− + 24∆2l4

− − 9a2b2c2l2
− +

(
5l2

+ − l2
−
)

f
]
− f

and thus, replacing 9a2b2c2 according to (1.5) and (1.3),

72∆2N+G2 =
3l2

+(
4l2

+ − l2
−
)2

[
16∆2l2

+l2
− + 8∆2l4

− +
(
5l2

+ − 2l2
−
)

f
]
− f .

Hence,

72∆2 (4l2
+ − l2

−
)2

N+G2 = 24∆2l2
+l2

−
(
2l2

+ + l2
−
)
−
[(

4l2
+ − l2

−
)2 − 3l2

+

(
5l2

+ − 2l2
−
)]

f

= 24∆2l2
+l2

−
(
2l2

+ + l2
−
)
−
(

l4
+ − 2l2

+l2
− + l4

+

)
f

= 24∆2l2
+l2

−
(
2l2

+ + l2
−
)
− 3 · 16∆2 f .

Consequently

3
(
4l2

+ − l2
−
)2

N+G2 = l2
+l2

−
(
2l2

+ + l2
−
)
− 2 f ,

from which we deduce the formula (3.3). The proof is complete. □

4. DISTANCES FROM N± TO K

The points F+, F−, K are known to be collinear in the order F+ − K − F−. We will apply
Stewart’s theorem again. We will need the formulas (2.1), (2.2), (2.6); (2.7), (2.8), (2.11)
above, but also by the following three:

OK =
abc
2∆

· l+l−
l2
+ + l2

−
, (4.1)

F+K =

√
f√

3
(
l2
+ + l2

−
) l−

l+
and F−K =

√
f√

3
(
l2
+ + l2

−
) l+

l−
. (4.2)

([3]; (3.1), (2.13), (2.14)).
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Proposition 4.1. The distances between Napoleon points N± and K are given by

N+K=
1√

3
(
l2
++ l2

−
) (

4l2
+ − l2

−
)√160∆2l2

+l2
−
(
l2
++ l2

−
)
+
(
3l2

+ − 2l2
−
) (

3l2
− − 2l2

+

)
f , (4.3)

N−K=
1√

3
(
l2
+ + l2

−
) ∣∣4l2

− − l2
+

∣∣√160∆2l2
+l2

−
(
l2
+ + l2

−
)
+
(
3l2

+ − 2l2
−
) (

3l2
− − 2l2

+

)
f . (4.4)

Hint. The calculation of these distances is done following the same procedure as above.
To calculate the distance N+K we apply Stewart’s theorem to the triangle KOF+ and to
the point N+ (we have O − N+ − F according to Lema 1):

N+K2 · F+O = OK2 · N+F+ + F+K2 · N+O − F+O · N+F+ · N+O

(Fig. 6). The formula for distance N+K is obtained by substituting the factors N+F+,
N+O, F+O, OK, F+K by their expressions given by (2.1), (2.2), (2.6), (4.1), (4.2) respec-
tively. Next, we arrange the resulting equality by separating and associating terms that
have the factor f from the other terms. A special statement relative to the expression
of OK2: its factor a2b2c2 is replaced by f + 16∆2 (l2

+ + l2
−
)

(according to (1.5) and (1.3))
before grouping terms. Finally, the formula (4.3) is found.

Figure 6

For the second formula, we apply Stewart’s theorem to the triangle KOF− and to the
point N− (Fig. 6). Taking into account the position of the point N− on the line OF−
(Lemma 2), we have two cases to consider. But we are led to the same calculations in both
cases. (This is equivalent to using Stewart’s theorem variant that takes into account the
orientation of segments.) Next, we perform the calculations with the same precautions
as above and finally obtain the formula (4.4). □

Now, taking into account (1.1), through a routine calculation we find

160∆2l2
+l2

−
(
l2
+ + l2

−
)
+
(
3l2

+ − 2l2
−
) (

3l2
− − 2l2

+

)
f = φ(a, b, c),

where

φ(a, b, c) = a10 + b10 + c10 − 4a8b2 − 4a2b8 − 4a8c2 − 4a2c8 − 4b8c2 − 4b2c8

+3a6b4 + 3a4b6 + 3a6c4 + 3a4c6 + 3b6c4 + 3b4c6

+16a6b2c2 + 16a2b6c2 + 16a2b2c6

−15a4b4c2 − 15a4b2c4 − 15a2b4c4. (4.5)
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From (1.1) it readily follows that

4l2
+ − l2

− =
1
2

[
3
(
a2 + b2 + c2)+ 20

√
3∆
]

,

4l2
− − l2

+ =
1
2

[
3
(
a2 + b2 + c2)− 20

√
3∆
]

.

Then the distances N+K and N−K are expressed by sidelenghts a, b, c as follows:

N+K =
2
√

φ
√

3 (a2 + b2 + c2)
[
3 (a2 + b2 + c2) + 20

√
3∆
] ,

N−K =
2
√

φ
√

3 (a2 + b2 + c2)
∣∣∣3 (a2 + b2 + c2)− 20

√
3∆
∣∣∣ .

Obviously, we have

N+K
N−K

=

∣∣4l2
− − l2

+

∣∣
4l2

+ − l2
−

=

∣∣∣3 (a2 + b2 + c2)− 20
√

3∆
∣∣∣

3 (a2 + b2 + c2) + 20
√

3∆
.

5. DISTANCES N+F−, N−F+, N+ J−, N− J+

Thanks to Lemmas 1 and 3, we have a simpler way to calculate distances N+F− and
N−F+.

Proposition 5.1. We have the formulas:

N+F− =
2
√

3
3l−

(
4l2

+ − l2
−
)√32∆2l2

+l2
− +

(
2l2

+ − l2
−
)

f (5.1)

and

N−F+ =
2
√

3
3l+

∣∣4l2
− − l2

+

∣∣√32∆2l2
+l2

− +
(
2l2

− − l2
+

)
f . (5.2)

Proof. Indeed, from Lemma 1 the points N+, F−, E are collinear and located in the order
F− − N+ − E (Fig. 3). Hence, N+F− = F−E − N+E. By the formulas (3.1) and

F−E =
1

24∆l−

√
32∆2l2

+l2
− +

(
2l2

+ − l2
−
)

f

([3], (2.12)), this equality is written in the form

N+F− =

(
1

24∆l−
− l−

8∆
(
4l2

+ − l2
−
))√32∆2l2

+l2
− +

(
2l2

+ − l2
−
)

f ,

from where we immediately get the formula (5.1).
Similarly, it follows from Lemma 3 that N−F+ = N−E + F+E if 4l2

− − l2
+ < 0 (Fig. 3), and

N−F+ = N−E − F+E if 4l2
− − l2

+ > 0 (Fig. 4). In both cases, using the formulas (3.2) and

F+E =
1

24∆l+

√
32∆2l2

+l2
− +

(
2l2

− − l2
+

)
f

([3], (2.11)), and then performing the calculations, we obtain the required formula (5.2).
Hence the proposition. □
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Distances of Napoleon points at other notable points

The distances N+ J− and N− J+ are not as easy to obtain. Again we will use Stewart’s
theorem. We will need the following formulas:

J+O =
abc
4∆

l−
l+

, J−O =
abc
4∆

l+
l−

(5.3)

([3]; (3.3), (3.4)) and

J+F− =
4
√

3∆
3l+

=
l2
+ − l2

−
3l+

, J−F+ =
4
√

3∆
3l−

=
l2
+ − l2

−
3l−

(5.4)

([3]; (4.6), (4.5)).

Proposition 5.2. We have

N+ J− =
1

3l−
(
4l2

+ − l2
−
)√192∆2l2

+

(
4l2

+ + l2
−
)
+ 3

(
4l2

+ − 3l2
−
)

f (5.5)

and
N− J+ =

1
3l+

∣∣4l2
− − l2

+

∣∣√192∆2l2
−
(
l2
+ + 4l2

−
)
+ 3

(
4l2

− − 3l2
+

)
f . (5.6)

Proof. For the first formula we consider the triangle J−F+O and the point N+ ∈ F+O. By
Lemma 1, F+ − N+ − O. Then,

N+ J2
− · F+O = J−F2

+ · N+O + J−O2 · N+F+ − F+O · N+F+ · N+O

holds (Fig. 7). Except for N+ J−, we replace the factors in this equality with their expres-
sions given by the preceding formulas. Performing the calculations as above we will
obtain the formula (5.5).

Figure 7

For the second formula we consider the triangle J+F−O and the point N− ∈ F−O (Fig.
7). We omit the details of the routine calculation. Thus, the desired result is proven. □

6. DISTANCE BETWEEN POINTS N+ AND N−

We will pay special attention to the distance N+N−.

Proposition 6.1. The distance N+N− is given by

N+N−=

√
3(

4l2
+ − l2

−
) ∣∣4l2

− − l2
+

∣∣√160∆2l2
+l2

−
(
l2
++l2

−
)
+
(
3l2

+ − 2l2
−
) (

3l2
− − 2l2

+

)
f . (6.1)
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Proof. First solution. It is based on Lemma 5. If 4l2
− − l2

+ < 0, the collinear points
K, N+, N− are in the order K − N+ − N− and therefore N+N− = KN− − KN+. Using
(4.3) and (4.4), it follows that

N+N− =

√
160∆2l2

+l2
−
(
l2
+ + l2

−
)
+
(
3l2

+ − 2l2
−
) (

3l2
− − 2l2

+

)
f

√
3
(
l2
+ + l2

−
) (

1∣∣4l2
− − l2

+

∣∣ − 1
4l2

+ − l2
−

)
and by a simple calculation we get the formula (6.1).
If 4l2

− − l2
+ > 0, then N− − K − N+ and, hence, we have N+N− = KN+ + KN−. Again

we find the formula (6.1).
Second solution. By applying Stewart’s theorem to the triangle N−OF+ and to the point
N+ (by Lema 1, O − N+ − F ) we have (Fig. 3 or 4 ):

N+N−
2 · F+O = N−O2 · N+F+ + N−F+2 · N+O − F+O · N+F+ · N+O.

Using the formulas (2.1), (2.2), (2.6), (2.8), (5.2) and performing routine calculations we
will obtain (6.1). The proof is finished. □

Remark 6.1. In addition to the polynomial φ defined by (4.5), we also introduce the following
homogeneous symmetric polynomial:

ψ(a, b, c) = 7a4 + 7b4 + 7c4 − 11a2b2 − 11a2c2 − 11b2c2. (6.2)

Then, the above formula for distance N+N− is written:

N+N−
2 =

3φ

ψ2 , (6.3)

where φ and ψ are given by (4.5) and (6.2). The reader can express other distances above only in
a, b, c.
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