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A NOTE ON THE BARYCENTRIC SQUARE

PARIS PAMFILOS

ABSTRACT. In this note we make some remarks concerning the barycentric quadratic
transformation P 7→ P2 relative to a triangle of reference ABC and its application on
lines, creating the ellipses inscribed in the triangle. In addition, we discuss its relation to
the Newton line of a complete quadrilateral, a property of inscribed ellipses passing also
through the centroid, and certain hyperbolas related to lines passing through the vertices
of the triangle of reference.

1. INTRODUCTION

Using barycentric coordinates (barycentrics [2]) relative to the triangle of reference ABC
one can define the transformation of “Barycentric square” f : P 7→ P2 ([1, p.100]) of the
projective plane into itself, which to the point P(p : q : r) corresponds “its barycentric
square” P2 = (p2 : q2 : r2). The following properties result immediately from the defini-
tion (see Figure 1):
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Figure 1. The map f : P 7→ P and the image f (ε) of a generic line ε

(1) Since the points f (P) have positive coordinates f maps the whole plane into the
inner domain of the triangle of reference ABC and its sides.

(2) f is a {4 to 1} transformation, mapping a point P(u : v : w) and its “harmonic
associates” ([1, p.102]) {(−u : v : w), (u : −v : w), (u : v : −w)} to P2(u2 : v2 : w2).

(3) In particular, the side-line carrying a side, maps onto that side of the triangle and
fixes the vertices and the middle of the side.
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(4) Also a median AM maps via f onto the median segment AM fixing {A, M}
and the centroid G of the triangle.

(5) The seven points consisting of the vertices, the middles of the sides and the cen-
troid of the triangle ABC are the only points which remain fixed under f .

(6) f commutes with the isotomic conjugation τ : (u : v : w) 7→ (1/u : 1/v : 1/w).
(7) A generic line ε of the plane (i.e. line not passing through the vertices of △ABC )

maps to an inconic f (ε) , which is an ellipse tangent to the sides of the triangle at
the points A′′ = f (A′) , B′′ = f (B′) , C′′ = f (B′) , where {A′ ∈ BC , B′ ∈ CA}
and C′ ∈ AB are the intersections of the line ε with the sides.

Last nr follows from nr-1 and the fact that a quadratic map transforms lines into con-
ics. From nr-2 follows also that the intersection A′ = ε ∩ BC maps to the unique point
A′′ = f (A′) common to the ellipse and the side BC. Thus, it is a contact point and the
ellipse is tangent at A′′ to BC.
In section 2 we calculate the barycentrics of the perspector of the ellipse f (ε) and give
some examples of lines defining well known inscribed ellipses of the triangle. In section
3 we discuss the relation of the quadratic transformation f to “complete quadrilaterals”.
General information on this kind of quadrilaterals can be found in [3]. Some properties
related to the Newton line of cyclic quadrilaterals are discussed in [4]. In section 4 we ex-
amine the conics created by lines passing through the middles of the sides of the triangle
of reference. In the last section 5 we discuss the case of non-generic lines, i.e. lines that
pass through some vertex of the triangle of reference.

2. THE PERSPECTOR

With the notation and conventions of the preceding section, assume that the generic line
ε has the coefficients (p : q : r). Then the intersection points with the sides of the triangle
and their images via f are respectively

A′ = (0 : r : −q) , B′ = (−r : 0 : p) , C′ = (q : −p : 0) , (2.1)

A′′ = (0 : r2 : q2) , B′′ = (r2 : 0 : p2) , C′′ = (q2 : p2 : 0) . (2.2)

Later are the three traces of the point

E = ( q2r2 : r2 p2 : p2q2 ) =

(
1
p2 :

1
q2 :

1
r2

)
, (2.3)

the perspector of the ellipse. It follows that the equation of the ellipse is

p4x2 + q4y2 + r4z2 − 2(p2q2xy + q2r2yz + r2 p2zx) = 0 . (2.4)

We notice that the correspondence {generic lines 7→ inellipses} is a {4 to 1}, since the
lines

ε : px + qy + rz = 0 ,
−px + qy + rz = 0 ,

px − qy + rz = 0 ,
px + qy − rz = 0 ,

 (2.5)

define the same perspector E, as in formula (2.3), consequently define also the same
ellipse. We call these three lines “companion lines” of ε. Figure 2 shows the line ε and its
companion lines defining the same perspector and the same ellipse. Besides the points
{A′, B′, C′} where ε intersects the sides of the triangle, the points {A1, B1, C1} at which
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Figure 2. Four lines defining the same inscribed ellipse via f

the companion lines intersect the sides of the triangle are harmonic conjugate to the
former:

A1 = A′(BC) , B1 = B′(CA) , C1 = C′(AB) .
If A′ = λB + µC = (0 : λ : µ), then A1 = λB − µC = (0 : λ : −µ), both defining

A′2 = A2
1 = (0 : λ2 : µ2),

and analogous relations holding for the pairs {(B′, B1), (C′, C1)}.
Since every inner point of the triangle has barycentrics which can be written in the form
of squares, as in equation (2.3), it follows that every ellipse inscribed in the triangle ABC
can be obtained as the image via f of a line of the plane, and conversely, every generic
line of the plane produces via f an ellipse inscribed in the triangle.
Figure 3 shows the case of the incircle, whose perspector is the “Gergonne center” of the
triangle

A

B C

ε

Figure 3. Incircle as image via f of the line ε

Ge =

(
1

b + c − a
:

1
c + a − b

:
1

a + b − c

)
,

with {a = |BC|, b = |CA|, c = |AB|} the side-lengths of the triangle. The line ε produc-
ing the incircle via f is

ε : x
√

b + c − a + y
√

c + a − b + z
√

a + b − c = 0 .

Figure 4 shows the case of the “Brocard ellipse”, whose perspector is the “Symmedian
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Figure 4. Brocard ellipse as image via f of the line ε

center” of the triangle
K =

(
a2 : b2 : c2) ,

The line ε producing this ellipse via f is

ε :
x
a
+

y
b
+

z
c

= 0 .

The focal points of this ellipse, which is the “dual” inconic of the circumcircle, sharing
with it the same perspector, are the “Brocard points” 1st and 2nd:

1st : B1 =

(
1
b2 :

1
c2 :

1
a2

)
and 2nd : B2 =

(
1
c2 :

1
a2 :

1
b2

)
.

Figure 5 shows the case of the ellipse, whose perspector is the “3rd Brocard center” of the
triangle B3 =

(
a−2 : b−2 : c−2) , The line ε producing this ellipse via f is

ε : ax + by + cz = 0 .

The simplest case is the “Steiner inellipse”, which is the image via f of the line at infinity

A
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ε

Figure 5. Ellipse, image via f of the line ax + by + cz = 0

x + y + z = 0 (see Figure 6). By the remark made at the beginning of the section, the
Steiner inellipse is also the image f (ε) of the three lines {ε} which pass through the
middles of the sides of △ABC, and are the companion lines of the line at infinity.

We notice that the ellipses considered, appearing as images f (ε) of generic lines of
the plane, and which we could call “squares of lines”, are not the only ellipses inscribed
in the triangle, i.e. tangent to its sides. There are many other, usually called “escribed”,
which run totally outside the triangle (see Figure 7). These correspond to perspectors E
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Figure 6. Steiner inellipse, image via f of the line at infinity x + y + z = 0

which are inside the “Steiner ellipse” κ of the triangle, whose center is at the centroid G,
but outside the inner domain of the triangle, as seen in the figure.
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Figure 7. Escribed ellipses to the triangle

3. COMPLETE QUADRILATERAL AND NEWTON LINE

By the remark at the beginning of the preceding section, the triangle ABC together with
a generic line ε and its companion lines define a complete quadrilateral, whose “diagonal
triangle” is the triangle of reference ABC (see Figure 8).

Theorem 3.1. With the notation and conventions adopted so far, the Newton line of the complete
quadrilateral defined by the triangle ABC and the line ε is the trilinear polar of the perspector
E of the corresponding ellipse f (ε).

Proof. From line ε : px + qy + rz = 0 and equations (2.1) and (2.2) we have the coordi-
nates of the middle A0 of A′A1

A′(0 : r : −q) , A1(0 : r : q) ⇒
A0 = (r + q)A′ + (r − q)A1 = (0 : 2r2 : −2q2) = A′′(BC) ,

and analogously the middles {B0, C0} respectively of {B′B1, C′C1} are the harmonic con-
jugates {B0 = B′′(CA), C0 = C′′(AB)}, showing that they lie on the trilinear polar of the
perspector E. □

We should notice at this point a certain symmetry concerning the complete quadri-
lateral. Considering a triangle ABC and the corresponding to it barycentrics, every line
ε : px + qy + rz = 0, not passing through any of its vertices, defines, together with its
companions (2), a complete quadrilateral having △ABC as its diagonal triangle. Every
complete quadrilateral can be defined this way and its four lines can be described by
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Figure 8. Complete quadrilateral and its Newton line defined from △ABC and ε

equations with coefficients differing only on their signs. By theorem 3.1, the Newton
line is then represented by equation

p2x + q2y + r2z = 0 . (3.1)

This shows that, given the triangle ABC, any complete quadrilateral having that as
its diagonal triangle is completely determined by its Newton line and its coefficients
(p2 : q2 : r2). These correspond to a line running totally outside the domain of the tri-
angle ABC, and any such line can be represented in the form p2x + q2y + r2z = 0, the
corresponding quadrilateral consisting of lines with coefficients {(±p : ±q : ±r)}.
As an application of this remark we give a proof of the following well known couple of
results ([5, p.154], [3]).

Theorem 3.2. The centers of the conics inscribed in a complete quadrilateral lie on the Newton
line of the quadrilateral.

Proof. We work with barycentrics w.r.t. the diagonal triangle ABC of the quadrilat-
eral. Its sides are represented by a line ε : px + qy + rz = 0 and its companions (2).
The theorem of Desargues ([6, p.25]) implies that the conics inscribed in the quadri-
lateral have △ABC as “self-polar”. This implies that they can be represented in the
form {Ux2 + Vy2 + Wz2 = 0}. The center of a conic is the pole of the line at infinity
x + y + z = 0, thus having barycentrics (1/U : 1/V : 1/W) . On the other side, line ε is
tangent to the conic and satisfies the dual conic equation ([1, p.125]):

p2

U
+

q2

V
+

r2

W
= 0 .

This, for variable (U : V : W), shows that the conic centers lie on the Newton line. □

The center of a parabola is considered to be its point at infinity at which is tangent to the
line at infinity. It represents also the direction of its axis. From this and the preceding
theorem follows the corollary:
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Corollary 3.1. The Newton line of the complete quadrilateral is parallel to the axis of the parabola
inscribed in the quadrangle.

4. MIDDLES OF SIDES AND MEDIANS

Besides the points {A′′, B′′, C′′} in equation (2.2), inscribed ellipses which are obtained
as images of generic lines via f have three additional points on the medians. These are
easily determined from the intersections of the line ε with the medians:

ε : px + qy + rz = 0 ,

A-median: (0 : −1 : 1), intersection: (q + r : −p : −p), on f (ε) : ((q + r)2 : p2 : p2) ,

B-median: (1 : 0 : −1), intersection: (−q : r + p : −q), on f (ε) : (q2 : (r + p)2 : q2) ,

C-median: (−1 : 1 : 0), intersection: (−r : −r : (p + q)), on f (ε) : (r2 : r2 : (p + q)2) .

When line ε passes through the middle, M say of side BC, then the corresponding
ellipse f (ε) is tangent to BC at M, since later is a fixed point of f . Next theorem lists
some additional properties of this ellipse.
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Figure 9. Line ε through the middle M and corresponding ellipse f (ε)

Theorem 4.1. For a line ε through the middle M of the side BC of △ABC the corresponding
ellipse f (ε) has the following properties:

(1) It is tangent to the sides {AB, AC} at points correspondingly {C′′, B′′} whose line
B′′C′′ is parallel to BC.

(2) The median AM is conjugate to the direction of BC and carries the center of the ellipse.
(3) The diametral point J′ of the ellipse is the image J′ = f (J) of the intersection J of ε

with the parallel to BC from A.

Proof. Nr-1. Line B′′C′′ is the polar of A w.r.t. the ellipse f (ε) and using the equation
(2.4) of the f (ε) we determine its coefficients p4 −p2q2 −p2r2

−p2q2 q4 −q2r2

−p2r2 −q2r2 r4

1
0
0

 = p2

 p2

−q2

−r2

 .

The direction of this line, i.e. its intersection with the line at infinity is

(−q2 + r2 : −r2 − p2 : p2 + q2) = (0 : −q2 − p2 : p2 + q2) ,
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later because ε passing through M(0 : 1 : 1) satisfies q + r = 0. Thus, the direction of
the line B′′C′′ is the same with that of BC : (0 : −1 : 1).
Nr-2 follows from nr-1.
Nr-3 follows also from a simple computation. The line parallel to BC has coefficients
εA = (0 : 1 : 1) and intersects ε at J(r − q : p : −p), with J′ = f (J) = ((r − q)2 : p2 : p2)
a point on the median AM.
As we noticed in § 2, when ε passes also through the middle of AC, then the corre-
sponding ellipse f (ε) is the Steiner inellipse of △ABC . □

Ellipses f (ε) produced as images of lines ε through the middle M of BC coincide
with the ellipses produced from lines ε parallel to BC (see Figure 10). This is immedi-
ately seen by the location of the perspector, which in both cases is on the median AM.
This follows also from the form of the coefficients (p : q : −q) of a line through M and
the corresponding form of companion lines considered in § 2. In this case the coefficients
of line ε and its companions are

(p : q : −q) , (−p : q : −q) , (p : −q : −q) , (p : q : q) .

The second corresponds to the affine reflection of the first in the median, the third is
parallel to BC and the fourth is also parallel to BC through the harmonic conjugate
B′(AC) of the point B′

G
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B C

E

ε

Μ

B'C'

Figure 10. Ellipse f (ε) for line ε parallel to BC

Theorem 4.2. Generic lines ε through the centroid G define ellipses f (ε) tangent to ε at G.

Proof. Since the line ε passes through G it satisfies the condition p + q + r = 0, which
implies p2 = q2 + r2 + 2qr and similar relations for the cyclic permutations of {p, q, r}.
Obviously also, since f fixes G, the ellipse, in this case, passes through G. Hence using
equation (2.4), the tangent at G has coefficients

( p2(p2 − q2 − r2) : q2(q2 − p2 − r2) : r2(r2 − p2 − q2) ) = 2pqr(p : q : r) ,

thereby proving the claim (see Figure 11). □

Corollary 4.1. All the inscribed in the triangle ABC ellipses, which pass through the centroid
G, are images f (ε) of lines ε through G.

Proof. In fact, consider the tangent ε of an ellipse ε′ passing through G. The ellipses ε′

and f (ε) are tangent to the same four lines {BC, CA, AB, ε} and also tangent to ε at the
same point G. Thus, they coincide and ε′ = f (ε) ([7, § 6.1]). □
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Figure 11. Ellipse f (ε) for a line ε through the centroid G

Theorem 4.2 could be roughly expressed by saying, that “the lines through G are tangent
there to their squares”. Next theorem shows that these are the only inscribed ellipses that
are the squares of one of their tangents.

Theorem 4.3. If an inscribed to the triangle ABC ellipse is the image f (ε) of one tangent ε of
it, then ε contacts the ellipse at the centroid G of the triangle.

Proof. Let us assume that Q(u : v : w) is the contact point of the ellipse ε′ = f (ε) with
the line ε : px + qy + rz = 0 and pqr ̸= 0. If the image f (Q) = Q2 = Q, then the theo-
rem holds, since then we have for a constant k ̸= 0 :

{ u2 = ku , v2 = kv , w2 = kw } ⇒ u(u − k) = v(v − k) = w(w − k) = 0,

implying that Q = G. We complete the proof by showing that Q2 ̸= Q is impossible.
In fact, if Q2 ̸= Q, then Q belonging to the ellipse is the square Q = P2 of another
point P ∈ ε. Then, both {P(x : y : z)} and P2(x2 : y2 : z2) = Q are distinct points of ε,
and we can represent the coefficients of ε through the exterior product of the vectors of
coordinates:

(p : q : r) = P × P2 = (yz2 − y2z : zx2 − z2x : xy2 − x2y) =
(

y − z
x

:
z − x

y
:

x − y
z

)
.

Substitution of these values in equation (2.4) gives the equation of the ellipse. The coef-
ficients of the tangent at Q(x2 : y2 : z2) is then found to be a constant non-zero multiple
of (

y − z
x2 :

z − x
y2 :

x − y
z2

)
,

and this must be a constant non-zero multiple of the previously found values of (p : q : r) :(
y − z

x2 :
z − x

y2 :
x − y

z2

)
= k ·

(
y − z

x
:

z − x
y

:
x − y

z

)
⇒

x = y = z ,

which contradicts to the hypothesis. □

5. NON GENERIC LINES

As we noticed in § 1, we consider as “non generic” the lines which pass through a vertex
of the triangle of reference ABC. A line through a vertex, say A(1 : 0 : 0) of the triangle
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maps to a line through the same vertex. In fact, such a line ε can be described by its
intersection P(0 : q : r) with the line BC

ε : Pt = (1 − t)A + tB = (1 − t : tq : tr) ⇒ P2
t = ((1 − t)2 : t2q : t2r) ,

which is a line passing through P2(0 : p2 : q2), as is seen through the vanishing of the
determinant ∣∣∣∣∣∣

1 0 0
0 q2 r2

(1 − t)2 t2q2 t2r2

∣∣∣∣∣∣ = 0 .

Next theorem deals with basic properties of the curve enveloping the lines {εt = PtP2
t }

for t ∈ R (see Figure 12).

A

B CP P2

P
t

P
t

ε

 2

Q
t

Figure 12. Hyperbola enveloping lines {PtP2
t , Pt ∈ ε, t ∈ R}

Theorem 5.1. With the notation and conventions of this section, for a line ε through A(1 : 0 : 0)
intersecting BC at the point P(0 : q : r) with q ̸= r, the lines {εt = PtP2

t , Pt ∈ ε, t ∈ R} have
the following properties.

(1) They envelope a conic passing through {A, P2} and having there correspondingly tan-
gents the lines {ε, BC}.

(2) The lines {BG, CG}, where G is the centroid of △ABC, are tangent to the conic.
(3) The conic is a hyperbola and in case the line ε is parallel to BC through A, the hyper-

bola is tangent to the middle of BC. When ε coincides with the median AM, the lines
{PtP2

t , Pt ∈ ε} coincide all with line AM.

Proof. The line ε in parametric form has the coefficients

ε : Pt = (1 − t)A + tP = (1 − t : tq : tr) , P2
t = ((1 − t)2 : t2q2 : t2r2) ⇒

εt = PtP2
t = Pt × P2

t =

(
(1 − t) tq tr
(1 − t)2 t2q2 t2r2

)
⇒

εt = ( t2qr(r − q) : (1 − t)r(1 − t(1 + r)) : (1 − t)q(t(q + 1)− 1) ) . (5.1)

Since the coefficients of the lines {εt} are quadratic functions of the parameter t they
envelope a conic ([8, p.248]). The equation of the conic is determined by writing the line
explicitly

εt = t2qr(r − q) · x + (1 − t)r(1 − t(1 + r)) · y + (1 − t)q(t(q + 1)− 1) · z

= t2[qr(r − q)x + r(r + 1)y − q(q + 1)z] + t[q(q + 2)z − r(r + 2)y] + [ry − qz]

= t2α(x : y : z) + tβ(x : y : z) + γ(x : y : z) .
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The equation of the conic is then

4αγ − β2 = 4qr(r − q)x(qz − ry) + (q2z − r2y)2 = 0 . (5.2)

The matrix M, expressing the conic in the form Xt MX = 0, has a simple inverse, which
up to a non-zero factor is

M′ =

 0 q2 r2

q2 2q2 2qr
r2 2qr 2r2

 . (5.3)

Applying this to the vector (5.1) of coefficients of the lines εt, we determine their contact
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B''

C''

Figure 13. Lines {BG, CG} are tangent to the conic

points with the conic, which are

Qt = ( −(t − 1)2 : qt((q + 2)t − 2) : rt((r + 2)t − 2) ) . (5.4)

Using this and equation (5.2) we complete the proof of nr-1.
Nr-2. Using equation (5.1) we see that the line εt passes through B when t = 1/(1 + r).
Replacing this value into (5.1) we see also that G(1 : 1 : 1) satisfies the equation of the
corresponding tangent line (see Figure 13). Analogously is proved the tangency of GC.
Nr-3 is proved by applying the kind-criterion Gt M#G < 0 through the adjoint matrix
M# ([1, p.127]). In fact, M# = |M|M−1 and it is seen that

Gt M#G = −8q2r2(r − q)2(r2 + qr + q2) ,

thereby proving the claim about the kind of the conic.
Concerning the case ε is parallel to BC through A, analogous arguments show that the
equation of the conic is

(y − z)2 + 8x(y + z) = 0 .
This is again a hyperbola with tangents the lines {GB, GC} and center at the middle of
the median AB. (see Figure 14). The last statement is trivially verified.

□
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