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ON RECTANGULAR HYPERBOLAS CIRCUMSCRIBING A TRIANGLE

PARIS PAMFILOS

ABSTRACT. In this article we study rectangular hyperbolas circumscribing a triangle and their
generation in which participate the Steiner lines of the triangle. Using elements of the related
procedure we prove several properties of these hyperbolas. In addition we study a pencil of
hyperbolas naturally associated to such a rectangular hyperbola and a related parabola carrying
the centers of the members of the pencil.

1. INTRODUCTION

The aim in this article is to show that a given rectangular hyperbola circumscribing a triangle
can be described by the intersections of two lines {λX, ηX} passing through two fixed points
{L, H} and corresponding to each other by a homographic relation f : L∗ −→ H∗ between
the pencils of lines through L and H. A similar generation of the special case of the “Jerabek
hyperbola” has been studied in [1]. Figure 1 shows our basic configuration of a triangle ABC,
its orthocenter H and a fixed point L on its circumcircle κ. Line λX is simply LX for a
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FIGURE 1. The hyperbola µ generated by the intersections {λX ∩ ηX : X ∈ κ}

variable point X on the circumcircle κ of 4ABC. Line ηX is the “Steiner line” of X ( [2,
p.54]) containing per definition the reflected points {X′, X′′, X′′′} of X ∈ κ on the sides of
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the triangle and proved to pass through H. This line is parallel to the Wallace-Simson line
(WS-line) of X ( [3, p.8]). We show that the intersection point Y = λX ∩ ηX describes the
rectangular hyperbola µL passing through the vertices of the triangle and the points {L, H}. For
the convenience of easy reference we formulate the basic facts known for this kind of hyperbolas
in the form of a theorem ( [4], [5, p.99], [6, II, p.248], [7, p.35], [8, p.290], [9], [10, p.287]).

Theorem 1. Every rectangular hyperbola µL circumscribing the triangle ABC passes through
the orthocenter H of the triangle and is uniquely determined by its forth intersection L with
the circumcircle κ of the triangle. Its center KL lies on the Euler circle ν of 4ABC and is
the middle of the segment HL. If Â is right, then the altitude from A is tangent to µL at A .

2. THE HOMOGRAPHY BETWEEN THE PENCILS {L∗, H∗}

Consider the system of Cartesian coordinates whose x-axis is the side BC and the y-axis is
the altitude AO of the triangle (see Figure 1). In this system, the coordinates of the vertices are
{A(0, a), B(b, 0), C(c, 0)} and it is easily verified that the coordinates of the orthocenter H and
the equation of the circumcircle are respectively:

H(0,−bc/a) and a(x2 + y2)− a(b + c)x− (bc + a2)y + abc = 0 . (2.1)

We fix point L(m, n) on the circumcircle κ of 4ABC and parameterize κ by a kind of
stereographic projection from L through S(s, 0) on BC, the corresponding point X(x, y) ∈ κ
being the intersection of the circle with line LS and leading to:

x =
s2(c + b−m) + s(m2 + n2 − (b + c)m− bc) + bcm

(m− s)2 + n2 , y =
n(s− b)(s− c)
(m− s)2 + n2 .

The reflected X′ of X w.r.t. BC has coordinates (x,−y) and the Steiner line HX′ of X
intersects the x-axis at the point T(t, 0) :

t = bc
s2(b + c−m) + s(m2 + n2 − (b + c)m− bc) + bcm

s2(bc− an) + s(an(b + c)− 2bcm) + bc(m2 + n2 − an)
. (2.2)

The two quadratics in s appearing in this quotient reduce to linear functions when point L(m, n)
obtains the position diametral to the vertex A w.r.t. κ for {m = b + c, an = bc}. This is a spe-
cial case, which together with the other special cases in which L takes the position of the vertices
of 4ABC or becomes symmetric of H w.r.t. a side of the triangle, will be handled at the end
of the section.

In some of the excepted positions, but also for all other points L(m, n) ∈ κ the two quadratics
are genuine. It is though easily verified that they have a common root

s0 =
bcm

bc− an
.

Thus, dividing both with their common factor (s− s0) , the relation between {s, t} becomes a
“homographic” one of the form

t =
p · s + q

p′ · s + q′
= bc

(b + c−m)s + (an− bc)
−(an− bc)s + ((b + c)an− bcm)

. (2.3)

The determinant pq′ − p′q of the relation (2.3) is

bc(an− bm + b2)(an− cm + c2) . (2.4)
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The case bc = 0, meaning that the triangle is right-angled, can be avoided by assuming the right
angle at A. The two lines an− bm + b2 = 0 and an− cm + c2 = 0 define the quadrangle
ABA1C, with A1 the diametral of A w.r.t. κ. Thus, the two lines intersect the circle at the
points {B, C, A1} defining positions of L pertaining to the exceptional cases to be handled
below. For all but these exceptional positions, the relation (2.3) is a genuine homographic one
between the points {S, T}. It follows, that the correspoding lines {λX = XL , ηX = X′H},
which belong to the pencils {L∗, H∗} of lines passing respectively through the points {L, H},
are also homographically related.

By the Chasles-Steiner principle of generation of conics ( [11, p.5], [12, p.72], [13, p. 259]),
their intersection Y = λX ∩ ηX generates a conic. It is then easy to see that this conic passes
through the vertices of 4ABC and, by the general properties of the Chasles-Steiner generation
method, passes also from the centers of the pencils {H∗, L∗} i.e. points {H, L}. This identifies
the conic with the rectangular hyperbola passing through the vertices of 4ABC and L.

Now to the special cases. Cases in which L takes the position of a vertex can be handled by
assuming that L coincides with A (see Figure 2), i.e. A = L(0, a) reducing relation (2.3) to

t = bc
s(b + c) + (a2 − bc)

s(bc− a2) + (a2(b + c))
with determinant bc(b2 + a2)(c2 + a2) . (2.5)

It is then easily seen that as X approaches A the corresponding point Y approaches A and
XY takes the position of a common tangent to κ and the conic at A. In this case the center of
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FIGURE 2. Rectangular hyperbola tangent to κ at A

the hyperbola is the middle KA of the segment AH and its axes are parallel to the bisectors
of the angle Â. Also the tangents to the hyperbola at {B, C} intersect on the symmedian of the
triangle from A.

The case of the symmetrics of H w.r.t. the sides of 4ABC can be handled by taking
L = A′(0, bc/a). This is a special case in which the three points {A, H, A′} are on the conic,
which is degenerate and reduces to the product of two lines {AH, BC}.

Finally, in the case of the diametral A1 of A w.r.t. to κ : A1 = L(b + c, bc/a) (see Figure
3) the coefficients of the quadratic terms in s vanish, the quadratics reducing to linear functions
in s and the relation in (2.2) taking then the form:

t = bc
s(h2 − bc) + (bc(b + c))

s(−bc(b + c)) + (h2 + bc + b2 + c2)
, (2.6)
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where we have set h = −bc/a equal to the y-coordinate of H. The determinant of the homo-
graphic relation can be seen to be again non zero and the hyperbola in this case, passing through
A1 has its center at the middle M of side BC, its axes are parallel to the bisectors of Â and its
tangents at {B, C} are parallel to the tangent to κ at A1 (see Figure 3). In this case it can be
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FIGURE 3. Rectangular hyperbola with center at the middle M of BC

also proved that the tangent to the hyperbola at A contains the symmedian point of 4ABC.
The discussion shows that the generation of the hyperbola by the intersections Y = λX ∩ ηX
is valid in all cases, except those for which the location of L is the reflected of the orthocenter
H on a side of 4ABC, in which the hyperbola degenerates in a product of two lines and Y
describes only one of them.

Theorem 2. For all points L of the circumcircle κ of the triangle ABC, except the reflected of
the orthocenter H w.r.t. the sides, the rectangular hyperbola passing through L is generated
by the intersections Y = λX ∩ ηX of the lines λX = LX and the Steiner line ηX for X ∈ κ.
For the excepted positions of L the corresponding hyperbola µL degenerates to the product of
a side-line and the orthogonal to it altitude-line of the triangle. The point Y in this case lies
always on a side-line of the triangle.

3. THE PROJECTIVITY MAPPING THE CIRCUMCIRCLE TO THE HYPERBOLA

Naturally connected to the generation of the hyperbola discussed in the preceding section is
a projectivity mapping the circumcircle to the hyperbola.

Theorem 3. With the notation and conventions adopted in the preceding section the transfor-
mation fL : X 7→ Y is a projectivity mapping the circumcircle κ to the rectangular hyperbola
µL circumscribing the triangle ABC and passing through L ∈ κ.

Proof. The proof is very simple and results from the general properties of projectivities, accord-
ing to which ( [14, I, p.213]), given three distinct points {A, B, C} on the conic κ and three
other distinct points {A′, B′, C′} on the conic κ′, there is a unique projectivity f : κ → κ′

with the property { f (A) = A′, f (B) = B′, f (C) = C′}. Considering the vertices of the tri-
angle of reference ABC, as points of κ and also as points of µL, we deduce the existence
of a projectivity mapping κ to µL and also fixing these three points. We show that this
projectivity coincides with fL. This follows at once from the preservation of the cross ra-
tios by projectivities. In fact, referring to figure 4, the cross ratios (AB, CX) on κ and
(AB, CY) = ( f (A) f (B), f (C) f (X)) on µL are per definition both equal to the cross ratio
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of the pencil of lines through {L : LA, LB, LC, LX}, which is the same with the cross ratio
(A′B, CS) of their intersections with line BC. Thus, f (X) = fL(X) = Y for every X ∈ κ,
which proves the claim. �
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FIGURE 4. Equality of cross ratios

Remark. Notice that the argument appearing in the proof of the preceding theorem does not use
any particular property of the hyperbola. It could be transferred verbatim to the more general
case of an arbitrary triangle conic µ and its fourth intersection L with the circumcircle. This
would produce an analogous projectivity Y = fL(X) mapping κ to µ and such that line XY
passes through L for all X ∈ κ.

Remark. It is easy to see that every projectivity f between two conics {κ, µ} of the plane
extends to a projectivity of the whole plane onto itself ( [6, II, p.179]). It suffices to consider
four points {A, B, C, D ∈ κ} and their images {A′, B′, C′, D′ ∈ µ} under f . By the general
properties of projectivities there is a projectivity of the plane f ′ mapping the first quadruple to
the second and coinciding with f on κ. In the following we’ll work with this extension of fL
to the whole plane, denoting the extension with the same symbol fL.

In the rest of this section we discuss some consequences of theorems 2 and 3 expressing
properties of rectangular hyperbolas, which we formulate as “propositions”. To start with, we
consider the positions {D, E ∈ κ} for which the corresponding intersection point Y = λX ∩ ηX
goes to infinity, i.e. the two lines {λD, ηD} corresponding to D say, become parallel defining
the point at infinity of the hyperbola µL and the direction of one of its asymptotes (see Figure
5). Since the asymptotes are orthogonal the parallels to them {LD, LE} are also orthogonal and
ED is a diameter of the circumcircle. Since ηD is the Steiner line of D, the WS-line of D is
the parallel to ηD passing through the middle KL of LH. Thus the asymptote parallel to LD
coincides with the WS-line of D. Analogous properties hold also for E. Since points {D, E}
map by the projectivity fL to infinity, the tangents {tD, tE} to κ respectively at {D, E} map
to the asymptotes and the line DE maps to infinity. Also, by the “angle property” of the pairs
of points of κ by which their WS-lines intersect at half the angle and inverse orientation of
their central angle ( [15, p.207]), we deduce easily that line ζ is parallel to the WS-line of the
diametral L′ of L w.r.t. κ. All this proves next proposition.

Proposition 4. The parallels {LD, LE} to the asymptotes of µL define a diameter DE of the
circle κ and the line ζ = DE maps via fL to the line at infinity ε∞ of the plane. The WS-lines
of {D, E} intersect at the middle KL of HL, the center of the hyperbola, thus coinciding with
the asymptotes which coincide also with the images via fL of the tangents to κ correspondingly
at {D, E}. The line ζ is parallel to the WS-line of the diametral point L′ of L w.r.t. κ.
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FIGURE 5. The directions {LD, LE} of the asymptotes

Proposition 5. Lines {θP} intersecting ζ = DE at a fixed point P map via fL to parallel lines.
In particular, all lines through D or E map to lines parallel to the asymptotes corresponding
to the directions of LD or LE.

Proof. In fact, lines passing through a point P ∈ ζ map to lines passing through the point
Q = fL(P) at infinity. The tangent to κ at D maps via fL to the tangent of µL at fL(D)
which is a point at infinity of µL, hence its tangent there is the asymptote parallel to LD. �
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FIGURE 6. Two parallel tangents at {I′, J′}

Proposition 6. Lines parallel to ζ = DE map to parallel lines. In particular the tangents at
the diametral points {I, J} of the orthogonal to ζ diameter I J map via fL to parallel tangents
of the hyperbola µL correspondingly at its points {I′ = fL(I), J′ = fL(J)}. The line I′ J′ is the
conjugate diameter to the direction of these parallel tangents of µL passing through the center
KL of µL (see Figure 6).

Proof. This is a particular case of proposition 5. The intersection point P of a line ε parallel to
ζ is the point at infinity of ζ which maps via fL to a point at infinity too. The second claim is
an immediate consequence of the first and the third claim is a consequence of the second. �

Proposition 7. The directions of lines {LI, LJ} are parallel to the axes of the hyperbola.

Proof. This follows from the fact that D̂LE is a right angle with sides parallel to the asymptotes
and {LI, LJ} are bisectors of this angle. �
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Proposition 8. The line at infinity ε∞ maps via fL to the middle-parallel θ of the tangents to
µL respectively at {I′, J′}.
Proof. Since the line at infinity ε∞ is parallel to every line of the plane, it is also a paral-
lel to ζ. Thus, it maps to a line parallel to those tangents. The parallels {ζ, ε∞} are har-
monic conjugate to the parallel tangents to κ at {I, J}. Since fL preserves the cross ratio,
the images { fL(ζ), fL(ε∞)} define on I′ J′ harmonic conjugate points of the pair (I′, J′). Since
fL(ζ) = ε∞ its intersection with I′ J′ is at infinity, hence the intersection of fL(ε∞) with I′ J′
is the middle KL of I′ J′. �
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FIGURE 7. The rectangle with sides parallel to the axes

Proposition 9. If {M, N} are respectively the intersections of κ with the tangent to µL at L
and with LH, then { fL(N) = H, fL(M) = L}. The quadrangle HI′LJ′ is a rectangle and the
tangents at {L, H} are parallel and orthogonal to I′ J′. Line θ is orthogonal to LH . Further,
line θ is parallel to the WS-line of the diametral M′ of M w.r.t. κ.

Proof. The first claim follows directly from the definition of fL. The second claim follows from
the parallelity of {LI′, LJ′} to the axes of µL. The orthogonality of LM to I′ J′ follows from
theorem 1. Since the triangles {HLI′, HLJ′} are isosceli the tangent to µL at L is orthog-
onal to I′ J′ and the tangent at I′ is orthogonal to LH. Last claim follows easily from the
aforementioned angle-property of WS-lines. �

Proposition 10. Points {M, N} map via fL correspondingly to {L, H} and the middle P and
the point at infinity Q of line MN map correspondingly to the point at infinity of line LH and
to KL.

Proof. The first part was discussed in the preceding proposition. The rest follows from fact that
the angles ĴlH = M̂LI and P is the intersection ζ ∩ NM. Since fL preserves cross ratios,
(NM, PQ) = −1 and ζ maps via fL to the line at infinity, fL(P) is the point at infinity of
LH and consequently fL(Q) = KL. �

Proposition 11. The line L′L with L′ = fL(L) is tangent to κ at L (see Figure 8).

Proof. By the definition of fL the image Y = fL(X) results as intersection of LX with the
hyperbola µL. The result follows from the fact, that as X approaches L the corresponding line
LX approaches the tangent to κ at L. �
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Proposition 12. The Steiner line ηL = L′H is parallel to line MN (see Figure 9).

Proof. In fact, the Steiner line L′H is parallel to the WS-line KLP of L which passes through
the middle P of LL′, which is also the middle of the segment of L1L2 cut on LL′ by the two
asymptotes {α, β}. This implies the equality of the angles

P̂KLL1 = P̂L1KL = D̂2LD = L̂ED = D̂LD1,

where D1 is the projection of L on ED and D2 = LL′ ∩ ED. This implies the parallelity of

A

B C

H

L

κ

K
L

M

N

L'
D

E

μ
L

σ
L

L''

D
1

L
3

D
2

P

α

β

L
1

L
2

FIGURE 9. The Steiner line L′H is parallel to MN

KLP to LD1 and consequently the orthogonality of KLP to ED, which is also orthogonal to
MN, hence latter is parallel to ηL = L′H. �

4. REPRESENTATIONS IN BARYCENTRICS

Concerning the representation of the various elements in coordinates, the equation of µL,
since latter passes through the vertices of 4ABC, has in barycentrics X(u, v, w) ( [16], [17])
the form of the quadratic equation: pvw + qwu + ruv = 0. The coefficients can be easily
found from the property of the conic to pass through {H, L}. This leads to a system of two
homogeneous equations in {p, q, r}:

ph2h3 + qh3h1 + rh1h2 = 0 and pmn + qnl + rlm = 0 ,
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where (l, m, n) are the barycentrics of L and (h1, h2, h3) = (1/SA, 1/SB, 1/SC) those of the
orthocenter H, with {a = |BC|, b = |CA|, c = |AB|} and

SA = (b2 + c2 − a2)/2 , SB = (c2 + a2 − b2)/2 , SC = (a2 + b2 − c2)/2 .

It turns out that the coefficients are multiples by a non-zero constant of the quantities:

p = l(mSB − nSC) , q = m(nSC − lSA) , r = n(lSA −mSB). (4.1)

Because fL fixes the vertices of 4ABC its matrix is diagonal and can be determined by com-
puting the barycentrics of one additional point and its image or an additional line and its image.
For this it is convenient to use proposition 12, from which follows that the inverse projectivity
g of fL maps the tangent tL of κ at L to the tangent of µL at L. The coefficients of the two
tangents result by multiplying respectively the matrices of {κ, µL} with the barycentrics vector
L(l, m, n), leading to the coefficients of these two lines:c2m + b2n

a2n + c2l
b2l + a2m

 and

mn(nSC −mSB)
nl(lSA − nSC)
lm(mSB − lSA)

 ,

and the expression of the diagonal matrix of fL, which up to a non-zero constant multiplicative
factor is: 

mn(nSC−mSB)
c2m+b2n 0 0

0 nl(lSA−nSC)
a2n+c2l 0

0 0 lm(mSB−lSA)
b2l+a2m

 .

5. A PENCIL OF RELATED HYPERBOLAS

Fixing a point L on the circumcircle κ of 4ABC and the corresponding rectangular hyper-
bola µL, there emerges a naturally defined pencil of hyperbolas passing through the vertices of
the triangle and an additional fourth point at infinity L∞. This means that the hyperbolas of the
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FIGURE 10. A pencil of hyperbolas defined by a rectangular hyperbola
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pencil have one of their asymptotes pointing in the direction determined by the point at infinity
L∞ (see Figure 10). This point at infinity is determined by the direction of the line ζ = DE,
where {D, E} are the diametral points of κ whose WS-lines are the asymptotes of µL. Next
theorem formulates the definition of these hyperbolas (see Figure 11).

Theorem 13. Let P ∈ ζ be fixed, X ∈ κ be a variable point and Y = fL(X). Then the in-
tersection point of lines XP ∩ fL(XY) = Z describes a hyperbola ζ(L, P) passing through
the vertices of the triangle of reference ABC, the point P and having one asymptote parallel
to line ζ and the other asymptote parallel to the direction determined by the point at infinity
Q = fL(P).
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FIGURE 11. The hyperbola ζ(L, P) defined by point P ∈ ζ

Proof. This is again an immediate consequence of the Chasles-Steiner principle. By theorem
5 the lines {YZ = fL(XP), X ∈ κ} are parallel to a fixed direction represented by the point at
infinity Q = fL(P). The transformation fL establishes a homography between the lines of the
pencils {P∗, Q∗}. By the aforementioned principle, the intersections of pairs of lines of the two
pencils corresponding under this homography {Z = PX ∩ fL(PX)} describe a conic passing
through the centers {P, Q} of the two pencils. Since Q is at infinity, the conic is a hyperbola
and the direction determined by Q coincides with the direction of one of its asymptotes, if
we can show that there is also a second point at infinity. Latter is easily seen since, when X
obtains the position of D, then PX = ζ and fL(ζ) being the line at infinity implies that the
corresponding point Z = PX ∩ fL(PX) is at infinity in the direction of ζ. This shows that
there is a second point at infinity and the other asymptote is parallel to ζ. Further, it is trivially
seen that the hyperbola passes through the vertices of 4ABC and the point LP ∈ κ, which is
the second intersection of κ with the parallel to Q through L and is also on line MP. �

Theorem 14. The centers {KP} of the hyperbolas {ζ(L, P) : P ∈ ζ} lie on a parabola ζL,
whose axis is parallel to line ζ (see Figure 12). The parabola passes through the middles of the
sides of the triangle ABC and also passes through the intersections {A′, B′, C′} of the sides of
the triangle with the parallels to ζ from the opposite vertices.

Proof. It is well known ( [18, p.153], [6, II, p.213]) that the centers {K, K′, . . .} of conics
{κ, κ′, . . .} passing through four fixed points {A, B, C, D} lie on a conic ν, called “nine-point-
conic” of the four points (see Figure 13). This conic passes through the middles {E, F, G, H, I, J}
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FIGURE 12. The parabola ζL containing the centers KP of all {ζ(L, P), P ∈ ζ}

of the six segments joining pairs of these four points and also passes through the three intersec-
tions {M, N, O} of “opposite sides”, i.e. intersections of (extensions of) pairs of segments
with no common endpoint. In our case the fourth point D is at infinity and determines a di-
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FIGURE 13. The “nine-point-conic” of {A, B, C, D}

rection of parallel lines. The points {M, N, O} in this case are the intersections of the sides
of 4ABC with the lines {DA, DB, DC}, which are the parallels to the direction determined
by D through the corresponding vertices of ABC. The fact that, in our case, this conic ν is a
parabola as stated, follows from the following lemma (see Figure 14). �

Lemma 15. Given a triangle ABC and a line ε, consider the triangle A′B′C′ formed by the
parallels to the sides of ABC from the opposite vertices, called “anticomplementary” of ABC.
The parallel projections {A′′, B′′, C′′} along ε of {A′, B′, C′} respectively on the opposite sides
of A′B′C′ together with {A, B, C} are six points on a parabola, whose axis is parallel to ε.

Proof. Consider the conic ν passing through the five points {A, B, C, B′′, C′′}. Then the seg-
ments {AB, CC′′} are parallel chords of ν and the line DD′ joining their middles is parallel



12 PARIS PAMFILOS

D

D'

ν

B'

C'

A'

C

A

B

C''

B''

E'

E

A''

ε

FIGURE 14. A property of the parabola

to ε. Analogously {AC, BB′′} are parallel chords of ν and the line EE′ joining their mid-
dles is also parallel to ε. Thus, {DD′, EE′} are conjugate diameters of two different directions
pointing in the same direction, which is possible only for parabolas with axis parallel to ε. Then
{AA′′, CB} are segments whose middles {F, F′} define a parallel to ε. Hence A′′ is also on
ν. �

Remark. Lemma 15 gives a convenient method to draw the parabola circumscribing 4A′B′C′
and having its axis parallel to a given direction ε, giving additional points on the parabola and
allowing its construction as a conic passing through five points. All parabolas circumscribing a
4A′B′C′ can be constructed in this way.
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FIGURE 15. The hyperbola θ(L, P) defined by point P ∈ θ

Considering the inverse transformation gL of fL we can define a pencil {θ(L, P)} of hyper-
bolas analogous to the pencil {ζ(L, P)} of theorem 13. The role of ζ plays now line θ. For
each point P ∈ θ the lines PX through P map to lines θX parallel to the direction represented
by the point at infinity Q = gL(P). Again, by the method of the aforementioned theorem, we
can prove that the intersection points {PX ∩ θX, X ∈ µL} generate a hyperbola. Next theorem
formulates the corresponding result (see Figure 15).



ON RECTANGULAR HYPERBOLAS CIRCUMSCRIBING A TRIANGLE 13

Theorem 16. Let P ∈ θ be fixed, X ∈ µL be a variable point and θX = gL(PX). Then the
intersection point of lines XP ∩ θX = Y describes a hyperbola θ(L, P) passing through the
vertices of the triangle of reference ABC, the point P and having one asymptote parallel
to line θ and the other asymptote parallel to the direction determined by the point at infinity
Q = gL(P).

Analogously also to theorem 14 the centers of the hyperbolas {θ(L, P)} vary on a parabola
θL passing through the middles of the sides of 4ABC and the parallel to θ projections
{A′, B′, C′} of the vertices of ABC on its opposite sides (see Figure 16).
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FIGURE 16. The parabola θL containing the centers of all {θ(L, P), P ∈ ζ}

Theorem 17. Both parabolas {ζL, θL} pass through the intersection point U = ζ ∩ θ.

Proof. We show this for ζL the proof for θL being completely analogous. The proof follows
from propositions 5 and 8. In fact, we consider the hyperbola ζ(L, P) for P the point at
infinity of the line ζ. This is generated by the intersections {Z = PX ∩ fL(PX)}, and X can
be considered varying on line θ (see Figure 17). By the aforementioned propositions the lines
XZ map via fL to parallels θX to θ. Referring points Z to coordinates {X(x), Y(y)} along
the axes {θ, ζ}, the homographic relation between the lines {XZ, fL(XZ) = YZ} translates to
a homographic relation between the coordinates

y =
ax + b
cx + d

.

Since by their definition, for X going to infinity, the corresponding θX goes to θ and for x
tending to 0, the line θX tends to infinity, we see that the relation reduces to one of the form

y =
k
x

with k 6= 0 .

It is then trivial to see that the hyperbola ζ(L, P) has the axes {θ, ζ} as asymptotes and their
intersection U as its center. �

Remark. From our discussion follows that the rectangular hyperbola µL defines a unique parabola
ζL circumscribing the medial triangle A′B′C′ of the triangle of reference ABC. It is easily
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FIGURE 17. The special hyperbola ζ(L, P) for P ∈ ζ at infinity

seen, that conversely, given an arbitrary parabola ν circumscribing the triangle A′B′C′, there
is associated a unique rectangular hyperbola µL circumscribing the anticomplementary trian-
gle ABC for which the corresponding ζL = ν. To see this consider the diameter DE of the
circumcircle κ of 4ABC, which is parallel to the axis of ν. If L′ is the point on κ whose
WS-line is parallel to DE, the diametral L ∈ κ, according to proposition 4, defines the point
which in turn defines the hyperbola µL with the desired property.
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