SYNTHETIC PROOF OF DAO’S THEOREM

NGUYEN MINH HA

ABSTRACT. I will present a synthetic proof for Theorem Dao [1].

1. INTRODUCTION

In 2014, O.T. Dao has introduced the following theorem.

Theorem 1.1. Given a triangle ABC inscribed the conic (S) and two points P, Q conjugated with respect to $(S). A_1, B_1, C_1$ are the second intersecting points of PA, PB, PC and (S) respectively. A_2, B_2, C_2 are the intersecting points of QA_1, QB_1, QC_1 and BC, CA, AB respectively. Then A_2, B_2, C_2 are collinear.

In 2015, Giang Ngoc Nguyen proved Dao’s Theorem using the coordinate method [2]. In this article, I will present a synthetic proof for Dao’s Theorem [1].

2. A PROOF OF DAO’S THEOREM

We need two lemmas.

Lemma 2.1. Given a triangle ABC inscribed the circle (O) and two points P, Q conjugated with respect to $(O). A_1, B_1, C_1$ are the second intersecting points of PA, PB, PC and (O) respectively. A_2, B_2, C_2 are the intersecting points of lines (which pass through A_1, B_1, C_1 and are perpendicular to OP) and BC, CA, AB respectively. Then A_2, B_2, C_2 are collinear.

Proof. Let X, Y, Z, X_1, Y_1, Z_1 be the orthogonal projections of A, B, C, A_1, B_1, C_1 onto PO respectively (fig.1).

Noticing that the triangles PA_1B, PB_1C, PC_1A are similar to the triangles PB_1A, PC_1B, PA_1C respectively, we have

$$
\prod \frac{A_2B}{A_2C} = \prod \frac{X_1Y}{X_1Z} = \prod \frac{X_1Y.\overrightarrow{OP}}{X_1Z.\overrightarrow{OP}} = \prod \frac{A_1B.\overrightarrow{OP}}{A_1C.\overrightarrow{OP}} = \prod \frac{(\overrightarrow{OB} - \overrightarrow{OA_1}).\overrightarrow{OP}}{(\overrightarrow{OC} - \overrightarrow{OA_1}).\overrightarrow{OP}} = \prod \frac{\overrightarrow{OB}.\overrightarrow{OP} - \overrightarrow{OA_1}.\overrightarrow{OP}}{\overrightarrow{OC}.\overrightarrow{OP} - \overrightarrow{OA_1}.\overrightarrow{OP}}
$$

$$= \prod \frac{2\overrightarrow{OB}.\overrightarrow{OP} - 2\overrightarrow{OA_1}.\overrightarrow{OP}}{2\overrightarrow{OC}.\overrightarrow{OP} - 2\overrightarrow{OA_1}.\overrightarrow{OP}} = \prod \frac{(OB^2 + OP^2 - BP^2) - (OA_1^2 + PO^2 - A_1P^2)}{(OC^2 + OP^2 - CP^2) - (OA_1^2 + PO^2 - A_1P^2)}
$$

2010 Mathematics Subject Classification. Primary 51M04; Secondary 51M15.

Key words and phrases. Dao’s Theorem, orthogonal projections.
Thus, by Menelaus’ theorem, A_2, B_2, C_2 are collinear. □

Lemma 2.2. Given a triangle ABC inscribed the circle (O) and two points P, Q conjugated with respect to (O). A_1, B_1, C_1 are the second intersecting points of PA, PB, PC and (O) respectively. A_2, B_2, C_2 are the intersecting points of QA_1, QB_1, QC_1 and BC, CA, AB respectively. Then, A_2, B_2, C_2 are collinear.

Proof. Let A_0, B_0, C_0 be the intersecting points of BC_1, CA_1, AB_1 and CB_1, AC_1, BA_1 respectively. Let A_3, B_3, C_3 be the intersecting points of lines (which pass through A_1, B_1, C_1 and are perpendicular with OP) and BC, CA, AB respectively (fig.2).

By Lemma 1, A_3, B_3, C_3 are collinear.

Hence, by Menelaus’ theorem, $\prod \frac{A_3B}{A_3C} = 1$.

It is easy to see that A_0, B_0, C_0 are also conjugated with P with respect to (O). Hence Q, A_0, B_0, C_0 belong to the same line which is polar of P with respect to (O), denoted by $\Delta,$ obviously $OP \bot \Delta$. From this, noticing that A_1A_3, B_1B_3, C_1C_3 are also perpendicular to OP, It follows that A_1A_3, B_1B_3, C_1C_3 are both parallel with Δ.

Thus

$$\prod \frac{A_2B}{A_2C} = \prod \frac{A_2B}{A_2C} : \prod \frac{A_3B}{A_3C} = \prod \frac{A_2B}{A_2C} : \frac{A_3B}{A_3C} = \prod (BCA_2A_3) = \prod \frac{QC_0}{QB_0} = 1.$$

From that, by Menelaus’ theorem, A_2, B_2, C_2 are collinear. □
Now we return to proof of theorem 1.1.
Let \(\alpha \) be the plane containing \((S)\); let \((C)\) be one cone of revolutionsuch that \((S) = (\alpha) \cap (C)\); let \(T\) be the vertex \((C)\); let \(d\) be the axis \((C)\); let \((\beta)\) be one plane which is perpendicular to \(d\) and does not pass through \(T\); let \((O) = (\beta) \cap (C)\).
It is easy to see that \((O)\) is a circles which has the center \(O = d \cap (\alpha)\).
Denote \(F\) the central projection with center \(T\), from \((\alpha)\) to \((\beta)\).
It is easy to see that \(F\) turns \((S)\) to \((O)\) ((\(O)\) without a point, \((O)\) without two points) when \((S)\) is an ellipse ((\(S)\) is a parabola, \((S)\) is a hyperbola).
Since \(P, Q\) are conjugated with respect to \((S)\), the images of \(P, Q\) through \(F\) are conjugated with respect to \((O)\).
Hence, by Lemma 2.1, the image of \(A_2, B_2, C_2\) through \(F\) are collinear.
Thus \(A_2, B_2, C_2\) are collinear.
3. ACKNOWLEDGMENT

The author thanks Prof. Doan Quynh and Master. Nguyen Van Van for their help in the improvement of this paper.

REFERENCES

HA NOI UNIVERSITY OF EDUCATION
HA NOI, VIET NAM.
Email address: minhha27255@yahoo.com