
Global Journal of Advanced Research

on Classical and Modern Geometries

ISSN: 2284-5569, Vol.8, (2019), Issue 2, pp.91-97

TWO-STEP HOMOGENEOUS GEODESICS IN HOMOGENEOUS LORENTZIAN

SPACES

Z. DIDEHKHANI, B. NAJAFI

ABSTRACT. A geodesic γ(t) in a homogeneous Riemannian space
(

G/H, g
)

is called a homo-

geneous geodesic if it is an orbit of a one-parameter subgroup of G, that is γ(t) = exp(tX).o, for

some nonzero vector X in the Lie algebra of G which is called a geodesic vector. In the present

paper, we discuss a generalisation of homogeneous geodesics in homogeneous Lorentzian spaces,

namely geodesics of the form γ(t) = exp(tX)exp(tY).o, X, Y ∈ g = Lie(G). An example of

such a generalized geodesic is given.

1. INTRODUCTION

One of the classical problem of differential geometry has been to study geodesics of man-

ifolds with a given metric on them. Among geodesics some of them are of paricular interest

because of their special features and applications in other land of science such as physics, me-

chanics etc as well. For instance, homogeneous geodesics i.e geodesics which are orbits of a one

parameter group of isometries of manifold are of this kind. Homogeneous geodesics of a mani-

fold are called by V.I. Arnold “relative equilibriums”. The description of such relative equilibria

is important for qualitative description of the behaviour of the corresponding mechanical system

with symmetries. There is a big literature in mechanics devoted to the investigation of relative

equilibria [2].

Riemannian and Finslerian Homogeneous geodesics have been studied by many authors [2],

[3], [4], [16], [19], [20]. Homogeneous geodesics have been studied in homogeneous pseudo-

Riemannian spaces in [9], [10], [11], [12], [13]. In pseudo-Riemannian spaces since the metric

g is indefinite, the reductive decomposition may not exist (see for instance [14] or [15] for

examples of nonreductive pseudo-Riemannian homogeneous spaces). In pseudo-Riemannian

geometry, null homogeneous geodesics are of particular interest. Plane-wave limits (Penrose

limits) of homogeneous spacetimes along light-like homogeneous geodesics have been investi-

gated in [15], [18].

One of the interest or we can say purpose of mathematicians is to generalise some facts,

definitions and theorems which have been expressed for special cases, in some occasions they
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encounter with situations which show themselves as generalise situation of a known fact of

mathematicians. With these descriptions one can guess we intend to discuss about generaliza-

tion of concept we talked about so far that is generalization of Homogeneous geodesics.

Riemannian generalization of these geodesics namely geodesics of the form

γ(t) = exp(tX)exp(tY).o

which X and Y are in Lie algebra of group of isometries, known as two-step homogeneous

geodesics has been studied in [5], such geodesics were initially studied by H. C. Wang in

1969 [21] as geodesics in a semisimple Lie group equipped with a metric induced by a Car-

tan involution of the Lie algebra of Lie group. D. Atri and Ziller in 1979 [7] , R. Dohira in

1995 [8], are authors who have had research in these forms of geodesics.

In our resarch at first we tried to examin two step homogeneous geodesics in Finslerian space

but we encountered some obstacles. In Finsler geometry, the angle is not symmetric, and orthog-

onality is not necessarily well-defined. These are obstacles that prevent Theorem 3.1 from being

expressed for the Finslerian state. Second, we focused on semi Riemannian case and specially

Lorentzian space to see under what conditions it is possible to express the theorem. In this short

paper we follow [5] and our main aim is to consider two step g.o spaces in Lorentzian spaces

and examine the main theorem in [5] under which conditions is established for the Lorentzian

space (see Theorem 3.1). We use semi Riemannian submersion of anti-de Sitte space to give

example of our main theorem.

2. PREPARATION FOR MAIN THEOREM

The definition given for two-step homogeneous geodesics in Riemannian space [5] can be

used for pseudo-Riemannian spaces with a slight of change. One can see Definition1.1 in [9] for

definition of homogeneous geodesics in pseudo-Riemannian case.

Let (G/H, g) be a pseudo-Riemannian homogeneous manifold and consider the natural map

π : G → G/H. Let O = π(e) be the origin of G/H.

We propose the following definitions.

Definition 2.1. A geodesic γ through the point p defined in an open interval J (where s is

an affine parameter) is said to be two-step homogeneous if there exist (I) a diffeomorphism

s = ϕ(t) between the real line and the open interval J; and (II) There is a pair vectors (X, Y) ∈
g× g− {(O, O)} (This symbol is a formal symbol),such that γ(ϕ(t)) = exp(tX)exp(tY)(p)
for all t ∈ (−∞,+∞).

The reason for the appearance of the ϕ in the definition is as follows: If t (the natural pa-

rameter of the 1-parameter isometry group) is not the affine parameter of the geodesic, ϕ is the

reparametrization of the geodesic from t to the affine parameter (or conversely). This cannot

happen in the Riemannian case, because covariant derivative of the tangent vector along ho-

mogeneous geodesic is always zero. However, along a light-like homogeneous geodesic this

derivative can be a multiple of the tangent vector.

Definition 2.2. A two-step geodesic orbit space (two-step g.o space) is a pseudo-Riemannian

homogeneous space so that all geodesics γ with γ(0) = 0, are two-step homogeneous.
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By contrast with the Riemannian case, not every smooth manifold can be made a Lorentz

manifold.

Proposition. 1. [17] For a smooth manifold M the following are equivalent

• There exists a Lorentz metric on M .

• There exists a time-orientable Lorentz metric on M .

• There is a nonvanishing vector field on M .

• Either M is noncompact, or M is compact and has Euler number χ(M) = 0.

For example, the only compact surfaces that can be made Lorentz surfaces are the torus and

Klein bottle. Also, a sphere Sn admits a Lorentz metric if and only if n is odd > 3 [17].

Definition 2.3. ( [1],p:500) Let N be an n dimensional Lorentz manifold. A linear subspace

V ≤ TpN is said to be

(1) spacelike if the restriction of the Lorentzian metric 〈, 〉 to V is positive definite; that is,

〈, 〉|V is a Euclidean metric;

(2) timelike if the restriction of the Lorentzian metric 〈, 〉 to V is nondegenerate of index 1;

that is, 〈, 〉|V is a Lorentzian metric,

(3) lightlike (or null) if the restriction of the Lorentzian metric 〈, 〉 to V is degenerate.

3. MAIN THEOREM

Here we consider two-step homogeneous geodesics in homogeneous pseudo-Riemannian

spaces (especially Lorentzian spaces) and prove the following theorem. It should be noted that

the Riemannian version of the following theorem is proved in [5] (Theorem 2.3 )and we try to

state it for a Lorentzian metric.

Theorem 3.1. Let M = G/H be a noncompact homogeneous space admitting a naturally reduc-

tive Lorentzian metric. Let B be the corresponding Lorentzian scalar product on m = T0(G/H).
We assume that m admits an Ad(H)-invariant orthogonal decomposition

m = m1 ⊕m2 ⊕ ... ⊕ms, (3.1)

with respect to B, where each mi is not a null subspace. We can equip G/H with a G-invariant

Lorentzian metric g corresponding to the Ad(H)-invariant Lorentzian scalar product

〈, 〉 = λ1B |m1
+... + λsB |ms , λ1, ..., λs > 0. (3.2)

If (ma,mb) is pair of submodules in the decomposition (3.1) such that

[ma,mb] ⊂ ma, (3.3)

then any geodesic γ of (G/H, g) with γ(0) = 0 and γ̇(0) ∈ ma ⊕mb, is a two-step homoge-

neous geodesic.

In particular, if γ̇(0) = Xa + Xb ∈ ma ⊕mb, then for every ϕ(t) ∈ J , γ is given by

γ(ϕ(t)) = expt(Xa + λXb)expt(1 − λ)Xb.o, (3.4)

where λ = λb
λa

. Moreover, if one of the following relations holds:

1)λa = λb or

2)[ma,mb] = 0

then γ is a homogeneous geodesic, that is γ(ϕ(t)) = expt(Xa + Xb).o, for any ϕ(t) ∈ J.
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Proof: We closely follow the proof of main theorem in [5], and the same notation as in [5].

Let X = Xa + λXb, Y = (1− λ)Xb, α(t) = exptXexptY and β = πoα. Let γ : J → G/H be

a reparametrization of β. Thus there exists a diffeomorphism ϕ : R → J such that γ(ϕ(t)) =
β(t). We have

∇γ̇γ̇ = (ψ′)2∇β̇ β̇ + ψ′′ β̇ (3.5)

where ψ(s) = ϕ−1(s) = t has nowhere vanishing derivative. For some ϕ the curve γ is a

geodesic if and only if ∇β̇ β̇ = −k(s)β̇ where k = ψ′′/(ψ′)2. The affine parameters for a

geodesic which is a reparametrization of exptXexptY.o are t and ekt where k arises from (3.5).

Let ∇ be a Lorentzian connection of (G/H, gλ). For a space like geodesic we have

g(∇γ̇γ̇, Z) = γ̇g(γ̇, Z)−
1

2
Zg(γ̇, γ̇) + g([Z, γ̇], γ̇), (3.6)

for a timelike geodesic

g(∇γ̇γ̇, Z) = γ̇g(γ̇, Z) +
1

2
Zg(γ̇, γ̇) + g([Z, γ̇], γ̇) (3.7)

and for a null geodesic

g(∇γ̇γ̇, Z) = γ̇g(γ̇, Z) + g([Z, γ̇], γ̇) (3.8)

for any vector field Z ∈ G/H. The relation (13) in [5] implies that the vector field α̇ along the

curve α can be extended to the vector field XR + YL in G. Then for any t ∈ R there exists a

neighbourhood Uπ(α(t)) of π(α(t)) = β(t) in G/H such that π∗(XR + YL) is a well defined

vector field in Uπ(α(t)) which locally extends β̇. Therefore, ∇β̇ β̇ is well defined hence ∇γ̇γ̇ is

well defined.

Next, we will show that the right-hand side of equation (3.6) vanishes for any ϕ(t) ∈ J and for

any vector field Z in G/H, which is equivalent to show ∇β̇(t) β̇(t) = −k(s = ϕ(t))β̇(t). By

replacing this in relation (3.6) we obtain

−kg(β̇, Z) = g(∇β̇ β̇, Z) = β̇g(β̇, Z)−
1

2
Zg(β̇, β̇) + g([Z, β̇], β̇) (3.9)

By the calculations on [5] we see that the second term for spacelike and timelike case is zero

and for null case was already zero and first and third terms cancel each others. We obtain that

the right hand side of equation (3.6) vanishes for all three curves, therefore k should be zero and

t is an affine parameter of γ.

If λa = λb, then λ = 1, therefore

β(t) = π(expt(Xa + λXb)expt(1 − λ)Xb) = π(expt(Xa + Xb)).

Eventually, if [ma,mb] = {0} then the vectors Xa + λXb and Xb commute, therefore

β(t) = π(expt(Xa +λXb)expt(1−λ)Xb) = π(exp[t(Xa +λXb)+ t(1−λ)Xb]) = π(expt(Xa +Xb)).

�

Corollary 3.1. Let M = G/H be a noncompact homogeneous space admitting a naturally

reductive Lorentzian metric. Let B be the corresponding Lorentzian inner product of m = To
G
H .

We assume that m admits an Ad(H)-invariant orthogonal decomposition m = m1 ⊕ m2 with

respect to B such that [m1,m2] ⊂ m1 which m1 and m2 are not null subspaces. Then M admits

an one parameter family of G-invariant Lorentzian metrics gλ, λ ∈ R, such that (M, gλ) is a
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two step g.o space.

Each metric gλ corresponds to an Ad(H)-invariant Lorentzian inner product on m of the form

〈, 〉 = B|m1
+ λB|m2

. This is homothetic to a metric corresponding to the inner product 〈, 〉 =

λ1B|m1
+ λ2B|m2

, λ = λ2

λ1
.

According to Theorem 3.1, examples such as Flag manifolds, Generalized Wallach spaces

and k-symmetric spaces of compact type for even k which appeared in [5] as two-step g.o. Rie-

mannian spaces do not work in Lorentzian spaces.

Let G be a Lie group and K, H two compact Lie subgroups of G with K ⊂ H. Let π :

G/K −→ G/H be the associated bundle with fibre H/K to the H-principal bundle p : G −→
G/H. Let g be the Lie algebra of G and k ⊂ h the corresponding Lie subalgebras of K and H.

We choose an Ad(H)-invariant complement m to h in g, and an Ad(K)-invariant complement

p to k in h. An ad(H)-invariant nondegenerate bilinear symmetric form on m defines a G-

invariant semi-Riemannian metric g′ on G/H and an ad(K)-invariant nondegenerate bilinear

symmetric form on p defines a H-invariant semi-Riemannian metric ĝ on H/K. The orthogonal

direct sum for these nondegenerate bilinear symmetric forms on p ⊕ m defines a G-invariant

semi-Riemannian metric g on G/K.

Theorem 3.2. [6] The map π : (G/K, g) −→ (G/H, g′) is a semi-Riemannian submersion

with totally geodesic fibres.

Now we are going to show that total spaces of semi Riemannian submersions is an example

of Lorentzian two step g.o spaces.

Property 1. Let G be a noncompact Lie group admitting a left invariant Lorentzian metric and

let K, H be closed and connected subgroups of G, such that K ⊂ H ⊂ G. Let B be the Ad-

invariant Lorentzian inner product on the Lie algebra g corresponding to the left invariant metric

of G. We identify each of the spaces T0(G/K), T0(G/H) and T0(H/K) with corresponding

subspaces m,m1 and m2 of g, such that m = m1 ⊕ m2 where restriction of B to mi is not

null. We endow G/K with the G-invariant Lorentzian metric gλ corresponding to the Ad(K)-
invariant Lorentzian inner product 〈, 〉 = B|m1

+ λB|m2
, λ > 0, on m. Then (G/K, gλ) is a

Lorentzian two step g.o. space.

Proof: The proof is similar to the Riemannian version in [5].

Example 1. We consider Hopf pseudo-Riemannian submertion. (2n + 1)-dimensional anti-

de Sitter space can be considered as the total space of the pseudo Riemannian homogeneous

Hopf bundle. Let G = SU(1, n), H = S(U(1)U(n)), K = SU(n), we have semi-Riemannian

submersion

H2n+1
1 = SU(1, n)/SU(n) −→ CHn = SU(1, n)/S(U(1)U(n))

from (2n + 1)-dimensional anti-de Sitter space with constant sectional curvature −1 and signa-

ture (1, 2n) to a complex hyperbolic space CHn with fibers isometric to H1
1 = (S1,−gS1).

H2n+1
1 = {x ∈ R

2n+2
2 : 〈x, x〉 = −1} ⊂ R

2n+1
2 ,

where

〈, 〉 = dx2
1 + ... + dx2

n−1 − dx2
n − dx2

n+1
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is the pseudo-Euclidean metric of R
2n+1
2 with index 2. For each x ∈ H2n+1

1

Tx H2n+1
1 = {v ∈ R

2n+1
2 : 〈v, x〉 = 0} = x⊥

and the restriction of 〈, 〉 to Tx H2n+1
1

is a Lorentzian metric, because of the decomposition

R
2n+1
2 = TxS2n

1 ⊕ span{x} with 〈x, x〉 = −1. Therefore, H2n+1
1

is a Lorentzian hypersurface

of R
2n+1
2 .

Let g1 = 〈, 〉 be the metric of H2n+1
1

. We equip H2n+1
1

with a one parameter family of metrics

gλ.

Since SU(1, n) is noncompact so it admits a left invariant Lorentzian metric corresponding to an

Ad(SU(1, n))-invariant Lorentzian inner product B on su(1, n). We identify each of the spaces

T0H2n+1
1

= T0(G/K), T0CHn = T0(G/H), and T0S1 = T0(H/K) with corresponding sub-

spaces m,m1, and m2 of su(1, n). The desired one parameter family of metrics gλ corresponds

to the one parameter family of Lorentzian inner products

〈, 〉 = B|m1
+ λB|m2

, λ > 0 (3.10)

on m = m1 ⊕m2. By our assumptions we see that restriction of B on each of mi is not degen-

erate and the scalar product 〈, 〉 is Lorentzian. We see that the inner product (3.10) induces the

standard metric g1 on H2n+1
1

. Therefore Proposition 1 implies that (H2n+1
1

, gλ) is a Lorentzian

two step g.o. space. Especially if we consider X ∈ T0H2n+1
1

, hence the unique geodesic γ of

(H2n+1
1

, gλ) with γ(0) = o and γ̇(0) = X, is given by γ(t) = expt(X1 + λX2)expt((1 −
λ)X2), t ∈ R where X1, X2 are the projections of X on m1 = ToCHn and m2 = T0S1 respec-

tively.
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