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SOME RESULTS ON 3-DIMENSIONAL FINSLER MANIFOLDS

A. TAYEBI AND F. ESLAMI

ABSTRACT. The special and useful Moodr frame for 3-dimensional manifolds was introduced and
developed by Moér and Matsumoto. For every Finslerian tensor, Matsumoto was assigned three
scalars H, Z and J which are called the main scalars of metric. In this paper, we show that there
is not non-Riemannian 3-dimensional (&, B)-metric with Z = 0 and J = 0. Then, we character-
ize weakly Landsberg 3-dimensional Finsler metrics. Finally, we characterize 3-dimensional weakly
Berwald metrics and Finsler metrics with almost vanishing H-curvature.

Keywords: Mo6r frame, («, 8)-metric, weakly Landsberg metric, weakly Berwald metric, H-curvature.!

1. INTRODUCTION

Let (M, F) be a Finsler manifold. The second and third order derivatives of %Ff at a non-zero
vector y € TyMjy are the fundamental form g, = g;; (y)dx' ® dx/ and the Cartan torsion C, =
Cijk(y)dx' @ dx) @ dx*, respectively. Taking a trace of Cartan torsion yields the mean Cartan
torsion I, = I;(y) dx.

In [6], Moo6r constructed an intrinsic orthonormal frame field (¢, m’, n') on 3-dimensional Finsler
manifolds which was a generalization of the Berwald frame of two-dimensional Finsler mani-
folds. The first vector (' = ¢"F ; is the normalized supporting element and the second one m' is
taken as the normalized torsion vector. Indeed, m' is the unit vector along mean Cartan torsion
I' = ¢l ie, m' := I'/|[1]|, where g/ = (g;;)~! and |[T|| := \/LI. The third element n' is a
unit vector orthogonal to the vectors ¢* and m'. Then, Matsumoto gave a systematic description

of a general theory of 3-dimensional Finsler spaces based on Mo6r’s frame [5]. In this frame, the
Cartan torsion of a Finsler metric F is written as follows

Fci]'k = Hmimjmk - J{mimjnk + mimn; + mm;n; — I’l,’ﬂjnk}
—|—I{nl~njmk + njngm; + Tlil’lkm]'},
where H, 7 and J are called the main scalars of F.

Theorem 1.1. There is not non-Riemannian (a, B)-metric on a 3-dimensional manifold M such that
Z=0and J =0.

A Finsler metric F is called a Berwald, Landsberg and weakly Landsberg metric if Cyj s = 0,
Lijk := Cijgjsy® = 0and J; := gkajki = 0, respectively, where “ | ” denotes the h-covariant deriva-
tive with respect to the Berwald connection of F. In [5], Matsumoto proved that a 3-dimensional
non-Riemannian Berwald metric is characterized by the fact that the h-connection vector /; van-
ishes and the main scalars H, Z, J are h-covariant constant. He also characterized 3-dimensional
Landsberg metric in terms of h-curvature vector /; and the main scalars of F. In this paper, we
characterize 3-dimensional weakly Landsbergian Finsler metrics as follows.
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Theorem 1.2. Let (M, F) be a 3-dimensional Finsler manifold. Then F is a weakly Landsberg metric if
and only if H' +I' = 0 and hy = 0 hold, where H' := Hsy*, T' := Tsy* and ho := hy'.

Every Berwald metric is a Landsberg metric and weakly Berwald metric. But the converse may
not be holds [2]. For 2-dimensional Finsler manifolds the converse of this fact holds. It is inter-
esting to find the condition under which every 3-dimensional Landsberg metric with vanishing
mean Berwald curvature reduces to a Berwald metric. As a result of Theorem 1.2, we get the
following.

Corollary 1.1. Let (M, F) be 3-dimensional Finsler manifold. Suppose that F has horizontally constant
main scalars T and J. Then F is a Landsberg metric with vanishing mean Berwald curvature if and only
if it is a Berwald metric.

Finally, we give a characterization of 3-dimensional weakly Berwald Finsler metrics as follows.

Theorem 1.3. Let (M, F) be 3-dimensional Finsler manifold. Then F is a weakly Berwald metric if and
only if Ejjm'm/ = Ejn'nl = E;ym'n) = 0.

There are many connections in Finsler geometry [3][4][11][13]. Throughout this paper, we use
the Berwald connection on Finsler manifolds. The k- and v- covariant derivatives of a Finsler
tensor field are denoted by “ | ” and “, ” respectively.

2. PRELIMINARIES

A Finsler metric on M is a function F : TM — [0, c0) which has the following properties: (i) F is
C®on TM := TM \ {0}; (ii) F is positively 1-homogeneous on the fibers of tangent bundle TM;
(iii) for each y € T M, the following quadratic form g, on TxM is positive definite,

1

g, (1, 0) == 33591 [Pz(y+ su+ tv)} s,i=0, 4,0 € TM.

Let x € M and Fy := F|r,p. To measure the non-Euclidean feature of Fy, define C,: TM®
T,M ® TyM — R by

1d
24t
The family C := {Cy} T, is called the Cartan torsion. It is well known that C=0 if and only if
F is Riemannian.

For y € TyM)y, define mean Cartan torsion I, by I, (u) := I;(y)u', where I; := gkal-jk and u =

i 0
W

Cy(u,v,w) := {gyﬂw(u,v)} li=0, u,v,w € TyM.

|x. By Diecke Theorem, F is Riemannian if and only if I, = 0[10].
The horizontal covariant derivative of C along geodesics give rise to the Landsberg curvature
Ly : M ® TyM ® TxM — R defined by Ly (1, v, w) := Lijk(y)u’vfwk, where

Lijk == Cijpsy’,
u=uLl,0="02 andw = w2 ;. The family L := {Ly},eru, is called the Landsberg
curvature. A Finsler metric is called a Landsberg metric if L = 0 [9].

The horizontal covariant derivatives of mean Cartan torsion I along geodesics give rise to the
mean Landsberg curvature J, (u) := J;(y)u', where

Ji = Lijsy®.
A Finsler metric is called a weakly Landsberg metric if J] = 0 [12].
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Given a Finsler manifold (M, F), then a global vector field G is induced by F on TMy, which in a

standard coordinate (x, y') for TMy is given by G = /-2, o —2Gi(x, y)?, where

1 ;| 9?F? oF?
it il k90
Ci=38 [axkay’y ox!

}, y € TyM.

G is called the spray associated to (M, F). For a tangent vector y € TyMy, define B, : TyM ®
TeM @ TxM — TyM by By (u, v, w) := Bi]‘kl (y)ulvFw! 2 557 |x where

B. = &

T dyiaykay!”
B is called the Berwald curvature. Then, F is called a Berwald metric if B = 0.
Define the mean of Berwald curvature by Ey: TyM ® T:M — R, where

Zg 8y(By u,0,¢), e]) @.1)

The family E = {E, }, crp {0} is called the mean Berwald curvature or E-curvature. In local coordi-
nates, E, (u,v) := E,'j(y)uivj, where

1
l] 2 Bn:m]
By definition, E,(u,v) is symmetric in # and v and E,(y,v) = 0. E is called the mean Berwald
curvature. F is called a weakly Berwald metric if E = 0.

Ej;

3. PROOF OF THEOREM 1.1
In this section, we are going to prove Theorem 1.1. For this aim, we need the following.

Lemma 3.1. Let (M, F) be a 3-dimensional non-Riemannian Finsler manifold. Then the Cartan torsion
of F is given by following
C,‘]'k = {a,‘h]'k + lljl’lki + akhi]‘} + {biljlk + binIk + bklilj}r (31)

where a; = a;(x,y) and b; = b;(x,y) are scalar functions on TM.
Proof. For 3-dimensional Finsler manifolds, we have

8ij = f,fj + mim; + nin;.
Thus B o o o

=00 +m'm! +n'n.
Then the Cartan torsion of F is written as follows

FC,’jk = ’Hmim]-mk - J{mimjnk + minyn; + Mmn; — Vliﬂ]‘nk}

+I{n,-njmk + njnm; +n,~nkm]-}, (3.2)
where H, Z and 7 are called the main scalars of F. Thus
Fl, = (H + I)my. (3.3)
Contracting (3.3) with ¢"* yields
= (H +I)mk. (3.4)

(3.3)x(3.4) yields
H+Z=F|]1]], (3.5)
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where ||I|| := +/I,I"™. Then by assumption, we get H + Z # 0.
The angular metric is given by

hi]' = m;m; + nin;. (3.6)
By considering (3.5) and (3.6), one can rewrite (3.2) as (3.1), where
1 F
0= 5z [3Imi + jni], b= sariTe [(’H — 3T)m; — 4jni}. 3.7)
It is easy to see that a;y' = 0 and b;y’ = 0. This completes the proof. 0

Proof of Theorem 1.1: Let F = a¢(s), s = B/a, be a non-Riemannian (&, §)-metric on a 3-
dimensional manifold M. Suppose that F satisfies Z = 0 and J = 0. In this case, by (3.1) we
have 4; = 0. By Lemma 3.1, we get

Cijk = biljlk + b]‘IiIk + kain. (3.8)
Using (3.7) and (3.5) imply that
1
by = ——— 1. (3.9)
3[[1]?
By (3.8) and (3.9), we have
1
Cije = 7||1\|2I"Ifl"' (3.10)

On the other hand, it is proved that every non-Riemannian («, §)-metric on a manifold M of
dimension n > 3 is semi-C-reducible [14]. More precisely, the Cartan tensor of F is given by
following

p 1-P
Cijk = 1xn n {I’li]'lk + hjin + hkilj} + 7||I||2 Iiljlk, (3.11)
where
_n+1 TS
Pi= " [s0g" — ¢/ (9~ sg')]. (3.12)
By (3.10) and (3.11), we get P = 0. According to (3.12), P = 0 if and only if ¢ satisfies following
s(pp” +¢'¢") — p¢" = 0. (3.13)

By solving (3.13), we get

¢ =12+,

where ¢; and ¢; are two real constant. In this case, F = a¢(s), s = f/«, reduces to a Riemannian
metric which contradicts with our assumptions. O

4. PROOF OF THEOREM 1.2

Proof of Theorem 1.2: The horizontal derivation of Mo6r frame are giving by following
by =0, my; = hjni,  ny; = —hjm;,
where h; are called the h-connection vectors. Thus
m) = mi‘]»yj = hon;, nl:= n,-|]~yj = —hom;,
where hg := hiyi.
According to Lemma 3.1, F is considered as a non-Riemannian metric. Then, by (3.5) it follows

that the main scalars of F satisfies H + Z # 0.
Now, by taking a horizontal derivation of (3.3), we get

FJi = (H +Z")my + (H + T)hony. 4.1)
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Let F be a weakly Landsberg metric. Then, by contracting (4.1) with m* and n*, we get
H +I'=0, and hy=0. 4.2)

The converse is trivial.

Lemma 4.1. Let (M, F) be a 3-dimensional non-Riemannian Finsler manifold. Then F is a relatively
isotropic mean Landsberg metric if and only if the following hold

H +T =cF(H+TI), hy=0, (4.3)
where ¢ = c(x) is a scalar function on M.
Proof. By assumption, (4.1) reduces to following
(H' + I Ymy + (H + I)hong = cF(H + I)my. (4.4)
(4.4) is equal to following

(H'+1') = cF(H+1T), (4.5)
(H+Z)hy = 0. (4.6)
Since H + I # 0, then we get (4.3). O

In page 86 of [8], the following lemma was obtained.

Lemma 4.2. ([8]) The Berwald and mean Berwald curvatures of F are given by following
By = gim{cmjl\k + Comalj — Ciram + Lmjk,l}/ 4.7)
1
Eij = E{I/‘Z + ]z,]} (4.8)

Every Berwald metric is a Landsberg metric with vanishing mean Berwald curvature. For 2-
dimensional Finsler manifolds the converse of this fact holds. We find the condition that every
3-dimensional Landsberg metric with vanishing mean Berwald curvature reduces to a Berwald
metric.

Lemma 4.3. Let (M, F) be 3-dimensional Landsberg manifold. Then F is weakly Berwald metric if and
only if the following hold

Hij+Z;=0hj=0. (4.9)
Proof. Let F be a Landsberg metric. By (4.8), we get
1
Ey = 21 (4.10)

Thus F is weakly Berwald metric if and only if I;
implies that

j = 0. Taking a horizontal derivation of (3.3)

1
Lj=% () + Tyymi + (M + D)y 4.11)
By (4.11), we get (4.9). ]
Proof of Corollary 1.1: Let F be a weakly Berwald metric with vanishing Landsberg curvature.
By (3.1), one can obtain the following

Cijks = {ai|shjk + ajishyi + ak|shij} + {bi\stIk + bjjs Ll + bk|sli1j} (4.12)
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and by (4.9) we get
1 —4

a$:§P%m+Jm+ %:Emmﬂ%“+j”4 (4.13)
Putting (4.13) in (4.12) yields

_ %k 40i1)

Cijk\s = 3F [31‘51’}11' -+ ._751/1,'] h]k — W [I‘smi + jsi’l,} I]'Ik
Oliik
= 3F(‘l|]1|)‘2 [(3||1\ hjx — AL ) Tgm; + (| |1] Phy — 41]'1k)~75ﬂi]r (4.14)

where 0, ;) denotes the permutation in indexes i, j and k. By assumption, we have Z; = 7|, = 0.
By putting these relations in (4.14), it follows that F is a Berwald metric.

5. PROOF OF THEOREM 1.3

In this section, we will prove a generalized version of Theorem 1.3. Indeed, we study Finsler
metrics with isotropic mean Berwald curvature. A Finsler metric F on a manifold M is called of
isotropic mean Berwald curvature if the following holds

n+1
Ei]': > cF 1]’11']', (51)

where ¢ = ¢(x) is a scalar function on M. In this case, F is called a isotropic mean Berwald metric.
Theorem 5.1. Let (M, F) be 3-dimensional Finsler manifold. Then F is a isotropic mean Berwald metric
(5.1) if and only if the following hold

Ei]-m’m] = Eiji’ll?l] = f' E,-jmlnf =0. (5.2)
Proof. Since E;j is symmetric and Eijfi = 0, then with respect to Moo¢r frame we have that
Eij = Amim; + B(m;n; +nym;) + Cn;n;,
where o o o
A= E,'jm’m], B:= E,-]-m’n], C:= E,-]-n‘n].

As hjj = m;m; + nin;, then F a isotropic mean Berwald metric if

Amim; + B(m;n; + nim;) + Cnn;j = ZCF_l(mfm]» +nnj). (5.3)
Contracting (5.3) with m'm/, n'n/ and m'n/ yield (5.2). O
Proof of Theorem 1.3: By Theorem 5.1, we get the proof. O

In [1], Akbar-Zadeh considered a non-Riemannian quantity H which is obtained from the mean
Berwald curvature by the covariant horizontal differentiation along geodesics. This is a positively
homogeneous scalar function of degree zero on the slit tangent bundle. Akbar-Zadeh proved that
for a Finsler metric of scalar flag curvature, the flag curvature is a scalar function on the manifold
if and only if H = 0. It is remarkable that, the quantity H, = Hi]-dxi ® dx/ is defined as the
covariant derivative of E along geodesics, where Hjj := Ejjj,,y". A Finsler metric F is called of
almost vanishing H-curvature if

n+1

2

where 0 := 0;(x)y' is a 1-form on M and h = hijdxi ® dx/ is the angular metric. In [7], Najafi-
Shen and the first author generalized the above Akbar-Zadeh theorem and prove that a Finsler
metric has almost isotropic flag curvature K = 36/F + ¢ if and only if it has almost vanishing

H= Floh, (5.4)
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H-curvature (5.4) for a scalar function ¢ = ¢(x) and a 1-form 6 = 6;(x)dx’ on M. By the same
argument used in Theorem 5.1, one can get the following.

Theorem 5.2. Let (M, F) be 3-dimensional Finsler manifold. Then F has almost vanishing H-curvature
(5.4) if and only if the following hold

H,-]-m’m] = Hi]-n’n7 = ?, Hi]-mln] =0. (55)
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