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ON THE GEOMETRY OF WARPED PRODUCT PSEUDO-SLANT

SUBMANIFOLDS IN A NEARLY COSYMPLECTIC MANIFOLD

WAN AINUN MIOR OTHMAN, RIFAQAT ALI, AND ABID KAMAL

ABSTRACT. In this paper, we study the non-trivial warped product pseudo-slant sub-
manifold of a nearly cosymplectic manifold such that the extrinsic sphere is slant immer-
sion. outset of the considering, we also show some integrability and totally geodesic fo-
liations results for the distributions of pseudo-slant submanifold. Next, we demonstrate
the characterization theorem for the existence of warped product isometrically immersed
into nearly cosymplectic manifolds.

1. INTRODUCTION

The geometry of warped product submanifolds have been studied dynamically since B.
Y. Chen [12] has investigated the idea of CR-warped product submanifold in a Kaehler
manifold. Further in the different geometric aspect, he has studied the warping fuc-
tion in the form of some partial differential equations. In fact, distinct forms of warped
product submanifolds of different class of structures were studied by the many authors
(see [1, 2, 3, 4, 5, 6, 8, 7, 12, 13, 20, 22, 23, 26, 27]). Recently, in [5], the author estab-
lished general inequalities for warped product pseudo-slant isometrically immersed in
nearly Kenmotsu manifolds for mixed totally geodesic submanifold. Moreover, S. Ud-
din et al. has obtained some existence results for warped product pseudo-slant subman-
ifolds in terms of endomorphism in a nearly cosymplectic manifold (see [25]). In the
present paper, we define clearly a characterization theorem of the non-trivial warped
product pseudo-slant submanifolds of the form M⊥ × f Mθ which are the natural exten-
sion of CR-warped product submanifolds. Since every CR-warped product submanifold
is a non-trivial warped product pseudo-slant submanifold of the forms M⊥ × f Mθ and
Mθ × f M⊥ with slant angle θ = 0. But the warped product pseudo-slant submanifold
never generalize the CR-warped product submanifold. First, we consider the non-trivial
warped product pseudo-slant submanifold M = M⊥ × f Mθ such that Mθ and M⊥ are
proper slant and anti-invariant submanifolds, respectively. Further, we establish a neces-
sary and sufficent condition involving the slant angle and warping functions, to reduce
a pseudo-slant submanifolds into warped products. However, similar results has been
obtained by many prestigious geometers (see [5, 6, 4, 2, 20, 22, 23, 26]) for distinct warped
product submanifolds in different type of ambient manifolds.
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The paper is arranged as follows: Section 2, we notice some preliminary formulas
and definitions. Section 3, is come up with full of attention to the study of pseudo-
slant submanifolds of nearly cosymplectic manifolds and some theorems are given on
total manifolds. Section 4, we study the warped product pseudo-slant submanifolds of
a nearly cosymplectic manifold and obtain some results on its characterization.

2. PRELIMINARIES

An odd (2n + 1)−dimensional Riemannian manifolds (M̃, g) is called nearly cosymplectic

manifold, if it is consisting off an endomorphism ϕ of its tangent bundle TM̃ , a structure
vector fields ξ and a 1-form η which satisfies the following:

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ηoϕ = 0, (2.1)

g(ϕU, ϕV) = g(U, V)− η(U)η(V), (2.2)

(∇̃U ϕ)V + (∇̃V ϕ)U = 0, (2.3)

for any vector fields U, V on M̃ such that ∇̃ denotes the Riemannian connection with re-
spect to Riemannian metric g (see [25]). Furthermore, the fundamental 2−form denoted
by Φ, i.e., Φ(U, V) = g(ϕU, V). The pair (Φ, η) defines a locally conformal cosymplectic
structure was proved, i.e.,

dΦ = 2Φ ∧ η, dη = 0.

It is fascinating to see that the structure vector field ξ is killing in nearly cosymplec-
tic manifolds. For this killing vector field we have the following an important theorem
which was proved in [16]:

Theorem 2.1. On a nearly cosymplectic manifold ξ is killing.

From the above theorem, we have

g(∇̃Vξ, U) + g(∇̃Uξ, V) = 0, (2.4)

for any vector fields U, V tangent to M̃, where M̃ is a nearly cosymplectic manifold. If we

consider PUV and QUV be the tangential and normal components of (∇̃U ϕ)V, i.e.,

(∇̃U ϕ)V = PUV +QUV (2.5)

Similarly, we have

(∇̃U ϕ)N = PU N +QU N (2.6)

for any N ∈ Γ(T⊥M̃). From the above relation it can be concluded that for nearly cosym-
plectic manifolds the following conditions are satisfied:

PUV + PVU = 0, QUV +QVU = 0. (2.7)

The following properties of P andQ can be directly verified which are developed here
of later usage (see [25, 27]):

(i) PU+VW = PUW + PVW, (ii) QU+VW = QUW +QVW,
(iii) PU(W + Z) = PUW + PUZ,
(iv) QU(W + Z) = QUW +QUZ,
(v) g(PUV, W) = −g(V,PUW), (vi) g(QUV, N) = −g(V,PU N),
(vii) PU ϕV +QU ϕV = −ϕ(PUV +QUV).





(2.8)
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A Riemannian manifold M is isometrically immersed into almost contact metric

manifold M̃ and let g denote the Riemannian metric induced on M. Suppose that Γ(TM)
and Γ(T⊥M) be the Lie algebra of vector fields tangent to M and normal to M, respec-

tively and ∇⊥ the induced connection on T⊥M. It is represented by F (M) the algebra
of smooth functions on M and Γ(TM) , the F (M)-module of smooth sections of TM
over M which are also denoted by ∇ the Levi-Civita connection of M then the Gauss and
Weingarten formulas are given by

∇̃UV = ∇UV + h(U, V) (2.9)

∇̃U N = −ANU +∇⊥
U N, (2.10)

for each U, V ∈ Γ(TM) and N ∈ Γ(T⊥M), where h and AN are the second fundamental
form and the shape operator (corresponding to the normal vector field N), respectively

for the immersion of M into M̃. They are defined by

g(h(U, V), N) = g(ANU, V). (2.11)

Now, for any U ∈ Γ(TM), we have

ϕU = PU + FU, (2.12)

where PU and FU are tangential and normal components of ϕU, respectively. Similarly

for any N ∈ Γ(T⊥M), we have
ϕN = tN + f N, (2.13)

where tN (resp. f N) are tangential (resp. normal) components of ϕN. A submanifold
M is said to be totally geodesic and totally umbilical, if h(U, V) = 0 and h(U, V) =
g(U, V)H, respectively.

Now, we define a class of submanifolds which are called the slant submanifold. For
each non-zero vector U tangent to M at p, such that U is not proportional to ξp, we de-
note by 0 ≤ θ(U) ≤ π/2, the angle between ϕU and Tp M is called the Wirtinger angle.
If the angle θ(U) is constant for all U ∈ Tp M− < ξ > and p ∈ M, then M is said to be a
slant submanifold (see [19]) and the angle θ is called slant angle of M. Obviously if θ = 0,
M is invariant and if θ = π/2, M is anti-invariant submanifold. A slant submanifold is
said to be proper slant if it is neither invariant nor anti-invariant.

In [11], the following proposition was given by J. L Cabrerizo for almost contact
manifolds.

Proposition 2.1. Let M be a submanifold of an almost contact metric manifold M̃ such that
ξ ∈ TM. Then M is slant if and only if there exists a constant λ ∈ [0, 1] such that

P2 = λ(−I + η ⊗ ξ). (2.14)

Furthermore, in such a case, if θ is slant angle, then it satisfies that λ = cos2 θ.

Hence, for a slant submanifold M of an almost contact metric manifold M̃, we have
the following relations which are consequences of the above Proposition 2.1

g(PU, PV) = cos2 θ{g(U, V)− η(U)η(V)}. (2.15)

g(FU, FV) = sin2 θ{g(U, V)− η(U)η(V)}. (2.16)
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for any U, V ∈ Γ(TM). Also, we proceed to give an another characterization which is
directly related the consequence of the Proposition 2.1:

Proposition 2.2. Let M be a slant submanifold of an almost contact metric manifold M̃ such
that ξ ∈ TM. Then

(i) tFX = − sin2 θ(X − η(X)ξ) and (ii) f FX = −FPX, (2.17)

for any X ∈ Γ(TM).

3. PSEUDO-SLANT SUBMANIFOLDS OF NEARLY COSYMPLECTIC MANIFOLDS

In this section, we define pseudo-slant submanifolds of almost contact manifolds
by using the slant distribution given in [10]. We investigate the geometry of leaves of
distributions containing in the definition of pseudo-slant submanifolds. We also con-
struct some necessary and sufficient conditions for such sub-immersions to be totally
geodesic foliations for which later usage in characterization theorem. Further the study
of pseudo-slant we refer [15]. First, we give the definition of pseudo-slant submanifold:

Definition 3.1. A submanifold M of an almost contact metric manifold M̃ is said to be pseudo-
slant submanifold, if there exist two orthogonal distributions D⊥ and Dθ such that

(i) TM = Dθ ⊕D⊥ ⊕ 〈ξ〉, where < ξ > is 1-dimensional distribution spanned by ξ.
(ii) D⊥ is an anti invariant distribution under ϕ i.e., ϕD⊥ ⊆ T⊥M.

(iii) Dθ is slant distribution with slant angle θ 6= 0, π
2 .

Let m1 and m2 are dimensions of distributions D⊥ and Dθ , respectively. If m2=0,
then M is anti invariant submanifold. If m1=0 and θ = 0, then M is invariant submani-
fold. If m1=0 and θ 6= 0, π

2 , then M is proper-slant submanifold, or if θ = π
2 , then M is

anti invariant submanifold and if θ = 0, then M is semi-invariant submanifold. If µ is
an invariant subspace of normal bundle T⊥M , then for pseudo-slant case, the normal

bundle T⊥M can be decomposed as follows:

T⊥M = ϕD⊥ ⊕ FDθ ⊕ µ, (3.1)

where µ is even dimensional invariant sub bundle of T⊥M. Now, we obtain the follow-
ing productive theorems for later usage:

Theorem 3.1. Let M be a pseudo-slant submanifold of a nearly cosymplectic manifold M̃. Then
the distribution D⊥ ⊕ ξ defines as totally geodesic foliation in M if and only if

g(h(Z, W), FPZ) =
1

2

{
g(AϕZW, PX) + g(AϕW Z, PX)

}

for any Z, W ∈ Γ(D⊥ ⊕ ξ) and X ∈ Γ(Dθ).

Proof. From the property of Riemannian metric and using fact that ξ is orthogonal to Dθ ,
i.e., η(X) = 0, for every X ∈ Γ(Dθ), we have

g(∇ZW, X) = g(ϕ∇̃ZW, ϕX),
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for Z, W ∈ Γ(D⊥ ⊕ ξ). Taking account of (2.12), ones derives

g(∇ZW, X) = g(ϕ∇̃ZW, PX) + g(ϕ∇̃ZW, FX).

It follow from the covariant derivative ϕ and the property of Riemannian metric, we
obtain

g(∇ZW, X) = g(∇̃Z ϕW, PX)− g((∇̃Z ϕ)W, PX)− g(∇̃ZW, ϕFX).

From (2.3), (2.10), we have

g(∇ZW, X) = g((∇̃W ϕ)Z, PX)− g(∇̃ZW, tFX)− g(∇̃ZW, f FX)

−g(AϕW Z, PX).

Again from the covariant derivative of endomorphism ϕ and Proposition 2.2, it is easily
seen that

g(∇ZW, X) = g(∇̃W ϕZ, PX)− g(∇̃W Z, ϕPX) + sin2 θg(∇̃ZW, X)

+g(∇̃ZW, FPX)− g(AϕW Z, PX).

Then, from (2.10) and (2.12), the above equation becomes

cos2 θg(∇ZW, X) = 2g(h(Z, W), FPX)− g(AϕW Z, PX)− g(AϕZW, PX)

+g(∇̃W Z, P2X).

The above equation can be written in the new form by using (2.14)

cos2 θg(∇ZW, X) = 2g(h(Z, W), FPZ)− g(AϕZW, PX)− g(AϕW Z, PX)

− cos2 θg(∇̃W Z, X).

The assumption is followed from the last equation. It makes the complete proof of the
theorem.�

Theorem 3.2. On a pseudo-slant submanifold M of a nearly cosymplectic manifold M̃. The
distribution Dθ is integrable if and only if

2g(∇XY, Z) = sec2 θ

{
g(h(X, PY) + h(Y, PX), ϕZ)− g(h(X, Z), FPY)

−g(h(Y, Z), FPX)− η(Z)g(∇̃Xξ, Y)

}
,

for any Z ∈ Γ(D⊥ ⊕ ξ) and X, Y ∈ Γ(Dθ).

Proof. By using the properties of symmetric torsion and Riemannian metric g, we have

g([X, Y], Z) = g(ϕ∇̃XY, ϕZ) + η(Z)g(∇̃XY, ξ)− g(∇̃YX, Z).

From the covariant derivative of endomorphism ϕ in the first term, we get

g([X, Y], Z) = g(∇̃XφY, ϕZ)− g((∇̃X ϕ)Y, ϕZ)

−g(∇̃YX, Z)− η(Z)g(∇̃Xξ, Y).

Taking account of (2.3) in the second term and (2.12), we derive

g([X, Y], Z) = g(∇̃XPY, ϕZ) + g(∇̃XFY, ϕZ) + g((∇̃Y ϕ)X, ϕZ)

−g(∇̃YX, Z)− η(Z)g(∇̃Xξ, Y).
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Since, FY and ϕZ are orthogonal then considering the property of Riemannian connec-
tion and (2.2), we have

g([X, Y], Z) = g(h(X, PY), ϕZ)− g(FY, ∇̃X ϕZ) + g(∇̃YφX, ϕZ)

−2g(∇̃YX, Z)− η(Z)g(∇̃Xξ, Y).

From (2.5) and the property of Riemannian metric, we can modify as

g([X, Y], Z) = g(h(X, PY), ϕZ)− g(FY, (∇̃X ϕ)Z)

+g(ϕFY, ∇̃XZ) + g(∇̃YPX, ϕZ) + g(∇̃YFX, ϕZ)

−2g(∇̃YX, Z)− η(Z)g(∇̃Xξ, Y).

Using (2.5) in the second term of the above equation from (2.9), (2.13), it follows that

g([X, Y], Z) = g(h(X, PY), ϕZ) + g(h(PX, Y), ϕZ) + g(FY,QXZ)

+g(tFY, ∇̃XZ) + g( f FY, ∇̃XZ)− g(FX, ∇̃YφZ)

−2g(∇̃YX, Z)− η(Z)g(∇̃Xξ, Y).

From (2.10) and Proposition 2.2, then the above equation is going on to be taken new
form

g([X, Y], Z) = g(h(X, PY), ϕZ) + g(h(PX, Y), ϕZ) + g(ϕY,QXZ)

− sin2 θg(Y, ∇̃XZ)− g(h(X, Z), FPY)− g(FX, (∇̃Y ϕ)Z)

+g(ϕFX, ∇̃YZ)− 2g(∇̃YX, Z)− η(Z)g(∇̃Xξ, Y).

Moreover, it is also known as Q is a normal part of structure equation, then g(ϕY,QXZ) =
−g(Y, ϕQXZ) = 0 and (2.13), we derive

g([X, Y], Z) = g(h(X, PY), ϕZ) + g(h(PX, Y), ϕZ)− sin2 θg(Y, ∇̃XZ)

−g(h(X, Z), FPY) + g(tFX, ∇̃YZ) + g( f FX, ∇̃YZ)

−2g(∇̃YX, Z)− η(Z)g(∇̃Xξ, Y).

Taking into an account that X, Y are orthogonal to Z and Proposition 2.2 which gives us

sin2 θg([X, Y], Z) = g(h(X, PY) + h(PX, Y), ϕZ)− 2 cos2 θg(Z, ∇̃XY)

−g(h(X, Z), FPY)− g(h(Y, Z), FPX)− η(Z)g(∇̃Xξ, Y).

Let Dθ is integrable, we modified by

2 cos2 θg(∇XY, Z) = g(h(X, PY) + h(PX, Y), ϕZ)− g(h(X, Z), FPY)

−g(FPX, h(Y, Z))− η(Z)g(∇̃Xξ, Y),

which proves our assumption. Converse part of the theorem follows from the above us-
ing by directly. Thus the proof of the theorem is going to be completed.�
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4. WARPED PRODUCT SUBMANIFOLDS OF THE FROM M⊥ × f Mθ

The most constructive generalizations of Riemannian product manifolds are warped
products with warping function f . It was initiated by Bishop and Neil in (see [9]). They
have described these manifolds as follows: Suppose that f be a positive differentiable
function which always be defined on leaves and (M1, g1) and (M2, g2) are two Riemann-
ian manifolds. Then the warped product of M1 and M2 are the Riemannian manifolds
M1 × f M2 = (M1 × f M2, g), where g = g1 + f 2g2. For a warped product, we have

∇XZ = ∇ZX = X ln f Z, (4.1)

for any vector fields X, Z and tangents M1 and M2, respectively, where ∇ denotes the
Levi-Civita connection on M (see [9]). On the other hand, ∇ ln f is the gradient of ln f
which is defined as g(∇ ln f , U) = U ln f . If the warping function f is constant then a
warped product manifold M = M1 × f M2 is called simply Riemannian product or trivial
warped product manifold. For a warped product manifold M = M1 × f M2 , M1 is called
totally geodesic and M2 is called totally umbilical submanifolds of M, respectively. Now,
we obtain some preparatory propositions.

Proposition 4.1. Let M = M⊥ × f Mθ be a warped product pseudo-slant submanifold of a

nearly cosymplectic manifold M̃ such that structure vector field ξ is tangent to M⊥. Then

2g(h(X, Z), FPX) = (Z ln f ) cos2 θ||X||2 + g(h(X, PX), ϕZ)

+g(h(Z, PX), FX),

for any X ∈ Γ(TMθ) and Z ∈ Γ(TM⊥).

Proof. Suppose that M = M⊥ × f Mθ be a warped product pseudo-slant submanifold of

a nearly cosymplectic manifold M̃, then from (2.9), we find that

g(h(X, Z), FPX) = g(∇̃ZX, FPX).

It is well-known that ξ is tangent to M⊥, then from (2.12) and (2.14), we obtain

g(h(X, Z), FPX) = −g(ϕ∇̃ZX, PX) + cos2 θg(∇ZX, X).

Then from the definition of covariant derivative of tensor field ϕ and (4.1), we can derive

g(h(X, Z), FPX) = g((∇̃Z ϕ)X, PX)− g(∇̃ZφX, PX)

+ cos2 θ(Z ln f )||X||2.

Using (2.3) and the (2.12), then the above equation becomes

g(h(X, Z), FPX) = −g((∇̃X ϕ)Z, PX)− g(∇ZPX, PX)

−g(∇̃ZFX, PX) + cos2 θ(X ln f )||Z||2.

We derive the following by using (4.1), (2.15) and (2.10)

g(h(X, Z), FPX) = −g(∇̃X ϕZ, PX)− g(∇̃XZ, ϕPX)− cos2 θ(Z ln f )||X||2

+g(h(Z, PX), FX) + cos2 θ(Z ln f )||X||2.

From (2.10), (2.12) and (2.14) for slant submanifold, it is easily seen that

g(h(X, Z), FPX) = g(AϕZX, PX) + cos2 θg(∇XZ, X)
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−g(∇̃XZ, FPX) + g(h(Z, PX), FX).

Finally,(4.1) and (2.9) imply that

2g(h(X, Z), FPX) = (Z ln f ) cos2 θ||X||2 + g(h(X, PX), ϕZ)

+g(h(Z, PX), FX),

which gives our assertion. So it completes the proof of proposition.�

Proposition 4.2. Assume that M = M⊥ × f Mθ be a warped product pseudo-slant submanifold

of a nearly cosymplectic manifold M̃. Then

g(h(X, Z), FPX) = 2g(h(X, PX), ϕZ)− g(h(Z, PX), FX),

for any X ∈ Γ(TMθ) and Z ∈ Γ(TM⊥).

Proof. From (2.9), (2.12) and the fact that ξ is tangent to M⊥, we have

g(h(Z, PX), FX) = −g(ϕ∇̃ZPX, X)− g(∇̃ZPX, PX),

for X ∈ Γ(TMθ) and Z ∈ Γ(TM⊥). Then the covariant derivative of ϕ and (4.1), (2.15),
we modified as

g(h(Z, PX), FX) = g((∇̃Z ϕ)PX, X)− g(∇̃Z ϕPX, X)

− cos2 θ(Z ln f )||X||2.

Taking into account of (2.3) for nearly cosymplectic manifold and the virtues of (2.9),
(2.12) and (2.14), it follows that

g(h(Z, PX), FX) = g(h(X, Z), FPX)− cos2 θ(Z ln f )||X||2

−g((∇̃PX ϕ)Z, X) + cos2 θg(∇ZX, X).

Using (4.1) and the covariant derivative of ϕ, one has

g(h(Z, PX), FX) = g(h(X, Z), FPX)− g(∇̃PX ϕZ, X)

−g(∇̃PXZ, ϕX).

Then from (2.12) and (2.10), it is obvious that

2g(h(Z, PX), FX) = g(h(X, Z), FPX) + g(h(X, PX), ϕZ)

−g(∇̃PXZ, PX).

Again from (4.1) and (2.15), then last equation reduces in the new form, i.e.,

2g(h(Z, PX), FX) = g(h(X, Z), FPX)− (Z ln f ) cos2 θ||X||2

+g(h(X, PX), ϕZ). (4.2)

Now, interchanging X by PX in (4.2) and using (2.14), we get

−2 cos2 θg(h(X, Z), FPX) = −(Z ln f ) cos4 ||X||2 − cos2 θg(h(Z, PX), FX)

− cos2 θg(h(PX, X), ϕZ).

which implies

2g(h(X, Z), FPX) = (Z ln f ) cos2 ||X||2 + g(h(Z, PX), FX)

+g(h(PX, X), ϕZ). (4.3)
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From (4.2) and (4.3), it follows that

g(h(Z, PX), FX) = 2g(h(X, PX), ϕZ)− g(h(X, Z), FPX),

which completes the proof of proposition.�

Proposition 4.3. On a warped product pseudo-slant submanifold M = M⊥ × f Mθ of a nearly

cosymplectic manifold M̃. Then

g(h(PX, X), ϕZ) = g(h(X, Z), FPX)−
1

3
cos2 θ(Zλ)||X||2,

for any X ∈ Γ(TMθ) and Z ∈ Γ(TM⊥).

Proof. From Proposition 4.1 and Proposition 4.2, we can derive the proof of Proposition
4.3.

Now, we give the proof of first main characterization theorem of this note:

Theorem 4.1. Let M̃ be nearly cosymplectic manifold and M be a proper pseudo-slant submani-

fold of M̃ such that the slant distribution is integrable. Then M = M⊥× f Mθ is locally a warped
product of proper slant and anti-invariant submanifolds if and only if

AFPXZ − AϕZPX =
1

3
cos2 θ(Zλ)X, (4.4)

for any Z ∈ Γ(D⊥ ⊕ ξ) and any X ∈ Γ(Dθ). Moreover, for a differentiable function λ on M
such that Yλ = 0, for every Y ∈ Γ(Dθ).

Proof. If we consider that M = M⊥ × f Mθ be a non-trivial warped product proper

pseudo-slant submanifold of a nearly cosymplectic manifold M̃ such that Mθ and M⊥ are
proper slant and anti-invariant submanifolds, then direct part follows from the Proposi-
tion 4.3 and we take ln f = λ.

Conversely, suppose that M be a proper pseudo-slant submanifold in a nearly cosym-

plectic manifold M̃ with (4.4) holds. Let us take inner product in (4.4) with W ∈ Γ(D⊥ ⊕
ξ) and using fact that X and W are orthogonal, then we derive

g(h(Z, W), FPX) = g(h(PX, W), ϕZ). (4.5)

It is easily obtained the following by interchanging Z and W in (4.5)

g(h(Z, W), FPX) = g(h(PX, Z), ϕW). (4.6)

From (4.5) and (4.6), its follows that

2g(h(Z, W), FPX) = g(h(PX, W), ϕZ) + g(h(PX, Z), ϕW). (4.7)

The virtue of (4.7) and Theorem 3.1 indicates that (D⊥ ⊕ ξ) is totally geodesic foliation

in M, i.e., its leaves are totally geodesic into M of M̃. So far as the slant distribution
Dθ is concerned and it is integrable by hypothesis. Thus Theorem 3.2 signifies that the
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distribution Dθ is integrable if and only if

2g(∇XY, Z) = sec2 θ

{
g(h(X, PY) + h(Y, PX), ϕZ)

−g(h(X, Z), FPY)− g(h(Y, Z), FPX)− η(Z)g(∇̃Xξ, Y)

}
,

for X, Y ∈ Γ(Dθ) and Z ∈ Γ(D⊥ ⊕ ξ). Therefore, the above equation can be expressed in
the new form

g(∇XY, Z) = −
1

2
sec2 θ

{
g(AFPYZ − AϕZPY, X) + g(AFPXZ − AϕZPX, Y)

+η(Z)g(∇̃Xξ, Y)

}
.

Moreover, by hypothesis of the theorem we have considered that the distribution Dθ is
integrable. Then it is obvious we assume that Mθ is a leaf of Dθ or Mθ be a integral
manifold of Dθ and hθ be the second fundamental form of Mθ into M of the immersion
M̃. From (4.4), we obtain that

g(hθ(X, Y), Z) = −
1

3
(Zλ)g(X, Y)− η(Z)g(∇̃Xξ, Y). (4.8)

It is directly obtained the following by interchanging X and Y in the above equation, i.e.,

g(hθ(X, Y), Z) = −
1

3
(Zλ)g(X, Y)− η(Z)g(∇̃Yξ, X). (4.9)

Then from (4.8) and (4.9), it follows that

2g(hθ(X, Y), Z) = −
2

3
(Zλ)g(X, Y)− η(Z){g(∇̃Xξ, Y) + g(∇̃Xξ, Y)}

Thus, from (2.4), for killing vector field ξ, the above relation is reduced as

g(hθ(X, Y), Z) = −
1

3
g(X, Y)g(∇λ, Z).

Finally, the above equation implies that

hθ(X, Y) = −
1

3
g(X, Y)∇λ. (4.10)

The equation (4.10) indicates that the leaves of Dθ are totally umbilical in M such that

Hθ = − 1
3∇λ is a mean curvature vector of M. Moreover, the argument Xλ = 0, for ev-

ery X ∈ Γ(Dθ) suggest that the leaves of Dθ are extrinsic spheres in M. In distinct way,
the integral manifold Mθ of Dθ is totally umbilical and it’s mean curvature vector field
is non-zero parallel along Mθ and so from the result of Hiepko (see [17]), M is a warped

product submanifold of integral manifolds Mθ and M⊥ of Dθ and D⊥ ⊕ ξ, respectively.
This is complete the proof of the theorem.�
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