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HOMOGENEOUS FINSLER SPACES WITH SPECIAL

NON-RIEMANNIAN CURVATURES

ZEYNAB DIDEHKHANI AND BEHZAD NAJAFI, BEHROZ BIDABAD

ABSTRACT. We prove that relatively isotropic J-curvature homogeneous
Finsler space with negative scalar function is Riemannian. Secondly, we
show that a generalized symmetric Finsler space has almost vanishing
Ξ-curvature if and only if it has vanishing Ξ-curvature.

1. INTRODUCTION

We know that in Riemannian geometry, inner product spaces in any
dimension up to isomorphism are unique, but such is not the case for
Minkowski’s norms. Therefore, various Finsler metrics on tangent space of
a Finsler manifold are not isomorphic, in the words of Shen, a Finsler man-
ifold is usually colorful. Thus, it is attractive to study Finsler manifolds
with single color. Y. Ichijyo in [7] has studied these manifolds as the title
Finsler metrics modeled on a Minkowski space. Homogeneous Finsler spaces
are examples of these spaces which by S. Deng, D. Latifi and some oth-
ers have studied [3], [8]. Non-Riemannian curvatures such as Cartan tor-
sion, Landsberg curvature, mean Landsberg curvature, Berwald curvature,
S-curvature, stretch curvature, weakly stretch curvature and Ξ-curvature
have been introduced and examined [3], [11], [12]. All these quantities
vanishes for Riemannian case. It is important to understand the geomet-
ric meanings of these quantities. Some theorems in the Finsler geometry
can be proved for a Finslerian homgeneous space with less assumptions.

Theorem 1.1. Let (M, F) be a homogeneous connected Finsler manifold satisfying
J + c(x)FI = 0. Suppose that c(x) ≤ c0 < 0. Then F is Riemannian.

The study of the role and effect of non-Riemannian quantities in the
Finslerian homogeneous space can help us to understand these spaces pro-
foundly. We examine some of these quantities on special homogeneous
Finsler spaces.

Theorem 1.2. Let (M, F) be a generalized symmetric Finsler space. Then (M, F)
has almost vanishing Ξ-curvature if and only if F has vanishing Ξ-curvature.
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2. PRELIMINARIES

Let M be an n-dimensional C∞ manifold. Denote by Tx M the tangent
space at x ∈ M, and by TM = ∪x∈MTx M the tangent bundle of M. A Finsler
metric on M is a function F : TM → [0, ∞) which has the following proper-
ties:
(i) F is C∞ on TM0 (ii) F is positively 1-homogeneous on the fibers of tan-
gent bundle TM, and (iii) for each y ∈ Tx M, the following quadratic form
gy on Tx M is positive definite,

gy(u, v) :=
1

2

∂2

∂s∂t

[

F2(y + su + tv)
]

|s,t=0, u, v ∈ Tx M.

Let x ∈ M and Fx := F |Tx M. Cartan introduced a quantity to measure the
non-Euclidean feature of Fx as follows Cy : Tx M ⊗ Tx M ⊗ Tx M −→ R by

Cy(u, v, w) :=
1

2

d

dt
[gy+tw(u, v)] |t=0, u, v, w ∈ Tx M.

The family C :=
{

Cy

}

y∈TM0
is called the Cartan torsion. Deicke showed

that C = 0 if and only if F is Riemannian. For y ∈ Tx M0, define the mean

Cartan torsion Iy by Iy := Ii(y)u
i, where Ii := gjkCijk [9].

There is a notion of distortion τ = τ(x, y) on TM associated with the
Busemann-Hausdorff volume form dV = σ(x)dx of the Finsler metric F,

which is defined by τ(x, y) = ln

√
det(gij(x,y))

σ(x)
. We have Ii =

∂τ
∂yi [8].

The rate of change of the distortion along geodesics is called S-curvature
and defined by S(x, y) = τ|i y

i, where | is horizontal covariant deriva-
tive with respect to the Chern connection. A Finsler metric F on an n-
dimensional manifold M is said to have almost isotropic S-curvature if
there is a scalar function c = c(x) on M such that

S = (n + 1){cF + η}

where η = ηi(x)yi is a closed 1-form. F is said to have isotropic S-curvature
if η = 0 [2]. Another non-Riemannian quantity defined as,

Ξ = Ξidxi

where Ξi := S.i|mym − S|i, “.” and “ | ” denote the vertical and horizontal
covariant derivatives, respectively, with respect to the Chern connection.
We say a Finsler metric have almost vanishing Ξ-curvature if Ξi = −(n +
1)F2( θ

F )yi where θ = θi(x)yi is a 1-form on M [11].

The horizontal covariant derivatives of C along geodesics gives rise to
the Landsberg curvature Ly : Tx M ⊗ Tx M ⊗ Tx M −→ R defined by

Ly(u, v, w) := Lijk(y)u
ivjwk,

where Lijk := Cijk|sy
s. The family L :=

{

Ly

}

y∈TM0
is called the Landsberg

curvature. A Finsler metric is called a Landsberg metric if L = 0.
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Given a Finsler manifold (M, F), then a global vector field G is induced by
F on TM0, which in a standard coordinate (xi, yi) for TM0 is given by

G = yi ∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where Gi(x, y) are local functions on TM given by

Gi(x, y) :=
1

4
gil

{

∂2F2

∂xk∂yl
yk − ∂F2

∂xl

}

.

The vector field G is called the associated spray to (M, F) [9]. In local
coordinates, a curve c = c(t) is a geodesic if and only if its coordinates
(ci(t)) satisfy c̈i + 2Gi(ċ) = 0. A Finsler manifold is said to be forward
geodesically complete if every geodesic c(t), a ≤ t ≤ b, parametrized to
have constant Finslerian speed, can be extended to a geodesic defined on
a ≤ t < ∞ [8].

The horizontal covariant derivatives of I along geodesic gives rise to the

mean Landsberg curvature Jy(u) := Ji(y)u
i, where Ji := gjkLijk = Ii|sy

s. A

Finsler metric is said to be weakly Landsbergian if J = 0. The Finsler metric
F is said to be of relatively isotropic L-curvature (resp. relatively isotropic
J-curvature) if there is a scalar function c(x) on M such that L+ c(x)FC = 0
(resp. J + c(x)FI = 0) [9].

Define the stretch curvature Σy : Tx M ⊗ Tx M ⊗ Tx M ⊗ Tx M −→ R by

Σy(u, v, w, z) := Σijkl(y)u
ivjwkzl , where

Σijkl := 2(Lijk|l − Lijl|k).

A Finsler metric is said to be stretch metric if Σ = 0. For y ∈ Tx M0, define
Σ̄y : Tx M ⊗ Tx M → R by Σ̄y(u, v) := Σ̄ij(y)u

ivj, where Σ̄ij := gkl ∑klij. A

Finsler metric is said to be a weakly stretch metric if Σ̄ = 0 [12].
For y ∈ Tx M0, define By : Tx M ⊗ Tx M ⊗ Tx M −→ Tx M and Ey : Tx M ⊗

Tx M −→ R by

By(u, v, w) := Bi
jkl(y)u

jvkwl ∂

∂xi
|x and Ey(u, v) := Ejk(y)u

jvk

where Bi
jkl := ∂3Gi

∂yj∂yk∂yl , Ejk := 1
2 Bm

jkm. The tensors B and E are called Berwald

curvature and mean Berwald curvature, respectively. Then F is called a
Berwald metric and weakly Berwald metric if B = 0 and E = 0, respec-
tively [9].

2.1. Homogeneous Finsler space. Many works by some authors like Ak-
barzadeh, Shen had done on the geometric properties of Finsler geome-
try but group aspects of this space had been neglected. It was Deng who
proved that group of isometries I(M, F) of M is a Lie transformation group
of M and since then, many works have been done about group aspect in
Finsler geometry. Let φ : (M, F) −→ (M, F) be a diffeomorphism. Then φ
is called an isometry of (M, F) if

F(φ(x), dφx(X)) = F(x, X), ∀x ∈ M, X ∈ Tx M.
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A Finsler space (M, F) is called Finslerian homogeneous space if the group
of isometries, i.e., I(M, F) acts transitively on M. Hence, in homogeneous
Finsler space the tangent Minkowski spaces (Tx M, Fx) are all linearly iso-
metric to each other. Every Finslerian homogeneous space is forward com-
plete [8].

An isometry of (M, F) with x as an isolated fixed point is called a sym-
metry at x, and will usually be denoted as sx. A family {sx | x ∈ M} of
symmetries on a connected Finsler manifold (M, F) is called an s-structure
on (M, F). An s-structure {sx | x ∈ M} is called of order k (k ≥ 2) if
(sx)k = id, for all x ∈ M and k is the least integer satisfying the above prop-
erty.
An s-structure {sx} on (M, F) is called regular if for every pair of points
x, y ∈ M,

sx ◦ sy = sz ◦ sx,

where z = sx(y).
A generalized symmetric Finsler space is a connected Finsler manifold (M, F)

admitting a regular s-structure. A Finsler space (M, F) is said to be k-
symmetric (k ≥ 2) if it admits a regular s-structure of order k [2]. A
connected Finsler space (M, F) is said to be symmetric if it is a regular s-
structure of order 2. Symmetric Finsler spaces are examples of reversible
homogeneous Finsler spaces [3].

3. PROOF OF THEOREM 1.1

Symmetric Finsler spaces and locally symmetric Finsler spaces are Berwal-
dian and so have vanishing S-curvatures [3] [13]. Weakly symmetric and re-
strictively CW-homogeneous Finsler spaces must be a Finsler g.o space [3]
[4]. A Finsler g.o has vanishing S-curvature [3], therefore weakly symmet-
ric Finsler spaces and restrictively CW-homogeneous Finsler spaces have
vanishing S-curvatures. A generalized symmetric Finsler space has almost
isotropic S-curvature if and only if it has vanishing S-curvature [5]. It seems
that distorsion along geodesics in homogeneous Finsler spaces does not
have any changes and is constant. Therefore, two curvetures of Berwald
and Landsberg in the Finslerian homogeneous space play a decisive role.
Specially, Cartan and Landsberg tensors in homogeneous Finsler spaces are
bounded. We try to examine the behavior of these two curvetures and their
particular situations.

Lemma 3.1. Cartan tensor and its vertical derivative of homogeneous Finsler
spaces are bounded.

Proof. Let (M, F) be an n-dimensional Finsler manifold and ϕ a local
isometry of F, i.e., in a standard local coordinates, we have

F(xi, yi) = F(φi(x), yj ∂φi

∂xj
) (1)

Putting x̃i = ϕi(x) and ỹi = ỹj ∂φi

∂xj yields F(xi, yi) = F(x̃i, ỹi). Thus, we have

∂3F2

∂yi∂yj∂yk
=

∂ϕl

∂xi

∂ϕp

∂xj

∂ϕs

∂xk

∂3F2

∂ỹl∂ỹp∂ỹs
(2)
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which means that the Cartan tensor is invariant under isometries. Each
two points of a homogeneous Finsler space map to each other by an isom-
etry. Therefore, the norm of Cartan tensor of a homogeneous Finsler space,
which is defined by ‖C‖ = supx∈M‖Cx‖ is a constant function on the un-
derlying manifold. Thus the Cartan tensor of a homogeneous Finsler space
is bounded.
Taking a vertical derivative of (2), we conclude that the vertical derivative
of Cartan tensor is also invariant under isometries and a similar argument
shows that it is bounded for a homogeneous Finsler space. �

Corollary 3.1. Using Akbarzadeh theorem [1] we conclude that a complete ho-
mogeneous Finsler manifold (M, F) with constant zero sectional curvature, is a
locally Minkowskian. Moreover if F is of constant negative sectional curvature,
then it is a Riemannian.

Proposition 3.1. [8] Let (M, F) be a homogeneous Finsler manifold. Then F is
forward geodesically complete.

Proof of Theorem 1.1. Consider the arbitrary point p in M and vector y ∈
Tp M. Let c : [0,+∞) −→ M be the geodesic parametrized by arc length on
M with the initiating point c(0) = p and tangent vector c′(0) = y. Suppose
that U(t) is a parallel vector field along geodesic c(t) with U(0) = u. We
define I(t) = I(U(t)) and J(t) = J(U(t)). According to Ji = Ii|mym we

have J(t) = I ′(t). Restricting J + c(x)FI = 0 to the geodesic c, we get the
following ODE

I ′(t) + c(t)I(t) = 0,

which its general solution is I(t) = I(0)e−
∫ t

0 c(s)ds. By Lemma 3.1, the mean
Cartan tensor is bounded. Let I(0) 6= 0. Proposition 3.1 implies that M is
forward geodesically complete and the parameter t takes all the values in
[0,+∞). Letting t → +∞ we have I(t) is unbounded which is a contradic-
tion. Therefore I(0) = 0 and consequently I(t) = 0. Actually I(U(t)) = 0
along any geodesic, so I = 0. It follows from Deicke’s theorem F is a Rie-
mannian metric. �

Corollary 3.2. Every symmetric (also weakly symmetric) Finsler space with non-
zero negative constant isotropic J-cutrvature is Riemannian.

A Finsler metric Θ = Θ(x, y) on an open subset in R
n is called a Funk

metric if it satisfies Θxk = ΘΘyk . The Funk metric on a strongly convex do-

main in R
n is forward complete but not complete [8]. It is well-known that

Θ is of J-isotropic with constant flag curvature − 1
4 and is not Riemannian.

Therefore, Θ is not a homogeneous Finsler metric.

Theorem 3.2. Every weakly stretch homogeneous Finsler manifold is weakly Lands-
bergian.

Proof. Take an arbitrary unit vector y ∈ Tx M and an arbitrary vector
v ∈ Tx M. Suppose that c = c(t) is a geodesic with c(0) = x and ċ(0) = y
and V(t) be the parallel vector field along c with V(0) = v. According to
( [12],Lemma 3.1) we have I(t) = tJ(0) + I(0), as Proposition 3.1, I(t) is a
bounded function on [0, ∞). Letting t → ∞ in the equation, implies that
Jy(v) = J(0) = 0. Thus F is a weakly Landsberg metric. �
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4. PROOF OF THEOREM 1.2

Since (M, F) is a generalized symmetric, for any x ∈ M, there is an sym-
metry sx with x as an isolated fixed point. Suppose (M, F) has almost van-
ishing Ξ-curvature then

Ξi(x, y) = −(n + 1)F2(x, y)(
θ(x, y)

F(x, y)
)yi , x ∈ M, y ∈ Tx M (3)

where θ(x, y) := θi(x)yi. Since sx is a diffeomorphism, dsx is a linear isom-
etry. We have Ξi(x, y) = Ξi(sx(x), dsx(y)). Thus,

−(n+ 1)F2(x, y)(
θ(x, y)

F(x, y)
)yi = −(n+ 1)F2(sx(x), dsx(y))(

θ(sx(x), dsx(y))

F(sx(x), dsx(y))
)yi

(4)

Since F(x, y) = F(sx(x), dsx(y)) so ( θ(x,y)
F(x,y)

)yi = ( θ(sx(x),dsx(y))
F(sx(x),dsx(y))

)yi , and

θi(x)F(x, y)− θ(x, y)F(x, y)yi = θi(x, dsx(y))F(x, y)− θ(x, dsx(y))F(x, y)yi ,

We have θ((dsx − id)(y)) = 0, where id is the identity transformation on
Tx M. Choose a basis y1, y2, ..., yn of Tx M so we have θ((dsx − id)(yi)) = 0,
for all i.
Base on Theorem 3.2 in [6] thus (dsx − id) is also a non-singular transforma-
tion on Tx M and (dsx − id)(y1), (dsx − id)(y2), ..., (dsx − id)(yn) is a basis of
Tx M. This implies that θ = 0.

REFERENCES

[1] H. Akbar-Zadeh, Sur les espaces de Finsler a‘ courbures sectionnelles constantes, Acad.
Roy. Bel. Cl. Sci. (5) 74 (1988), 281-322.

[2] S.S. Chern, Z. Shen, Riemann-Finsler Geometry. World Scientific, Singapore (2004)
[3] S. Deng, Homogeneous Finsler Spaces, Springer, New York (2012)
[4] S. Deng, Z. Yan, Finsler spaces whose geodesics are orbits, Diff-Geo 36(2014)1-23.
[5] S. Deng, L. Zhang, On generalized symmetric Finsler spaces, Balkan J. Geom. Appl.

21, no.1, (2016) 113-123.
[6] P. Habibi , A. Razavi, On generalized symmetric Finsler spaces, Geom. Dedicata, 149

(2010), 121-127.
[7] Y. Ichijyo, Finsler manifolds modeled on a Minkowski space, J. Math. Kyoto Univ.,

16(3)(1976), 639-652.
[8] D. Latifi, A. Razavi, On homogeneous Finsler spaces, Rep. Math. Phys. 57(2006), 357-

366.
[9] Z. Shen, Differential geometry of spray and Finsler spaces, Kluwer Academic Publish-

ers, Dordrecht, (2001)
[10] Z. Shen, Finsler manifolds with nonpositive flag curvature and constant S-curvature,

Math. Z., 249, (2005) 625-639.
[11] Z. Shen, On some non-Riemannian quantities in Finsler geometry ,Canad. Math. Bull.

56. no. 1, (2013) 184-193
[12] A. Tayebi, B. Najafi,Weakly stretch Finsler metrics, Publ. Math. Debercen 7761(2017),

1-14.
[13] M. Troyanov, V. S. Matveev, The Binet-Legendre metric in Finsler geometry,Geom.

Topol. 16. no. 4, (2012) 2135 -2170.



HOMOGENEOUS FINSLER SPACES WITH SPECIAL NON-RIEMANNIAN CURVATURES 43

FACULTY OF SCIENCE, DEPARTMENT OF MATHEMATICS, SHAHED UNIVERSITY, TEHRAN.
IRAN.

E-mail address: z.khani@shahed.ac.ir

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, AMIRKABIR UNIVERSITY,
TEHRAN. IRAN.

E-mail address: behzad.najafi@aut.ac.ir
E-mail address: bidabad@aut.ac.ir


