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PROJECTABLE CONFORMAL VECTOR FIELDS ON TANGENT BUNDLE

S. M. ZAMANZADEH, B. NAJAFI, AND M. TOOMANIAN

ABSTRACT. In this paper, we establish a Lie algebra homomorphism between the Lie algebra of
projectable conformal vector fields of (TM, G) and the Lie algebra of homothetic vector fields
of (M, g), where G is a special lift of the Riemannian metric g to the tangent space of M.
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1. INTRODUCTION

Let g be a Riemannian metric on a simply connected manifold M with Levi-Civita connection
∇ and (TM, π, M) be its tangent bundle. The Riemannian metric g has components gij which
are functions of variables xi on M. Suppose that (∂i, ∂ī) be the natural vector fields associated
to a natural coordinate (xi, yi) on TM. Let δi = ∂i − N j

i ∂ j̄, where N j
i are the components of the

non-linear connection of g. In a local co-frame (dxi, δyi) dual of adapted non-holonomic frame
(δi, ∂ī) on TM, we define a tensor field G as follows

G(x, y) = αhij(x, y)dxidxj + 2βhij(x, y)dxiδyj + γhij(x, y)δyiδyj, (1.1)

where α, β and γ are real numbers and hij are given by hij(x, y) = σgij(x), where σ is a positive
smooth function on TM. One can see that G is a global Riemannian metric on TM if and only
if αγ − β2 > 0. In this case, G is said to be the lift metric of g to TM. This lift metric G, in
some sense, is a generalization of those of introduced in [2]- [5].

A vector field X on TM which is π-related to a vector field on M is called projectble. For a
vector field V = Vi ∂

∂xi on (M, g), its complete lift VC := Viδi +∇0Vi∂ī is projectble, where
the index 0 denotes contraction with y. It is easy to see that X = vhδh + vh̄∂h̄ is projectble if
and only if vh depend only on position [5]. In this case, the vector field X̂ := vi ∂

∂xi is called
the induced vector field of X. Using the relations [δi, δj] = yrKjir

m∂m̄, [δi, ∂ j̄] = Γm
ji∂m̄ and

integrability of the vertical distribution, we get that the mapping X → X̂ is a surjective Lie
algebra homomorphism.
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2. PROJECTBLE CONFORMAL VECTOR FIELDS OF (TM, G)

For shortness, we set g1 = hijdxidxj, g2 = 2hijdxiδyj and g3 = hijδyiδyj. To find the
conformal vector fields of G, we compute the Lie derivatives £Xg1, £Xg2 and £Xg3 by a lengthy
computation.

Lemma 1. ( [5]) Let X = vhδh + vh̄∂h̄ be a projectble vector field on TM. Then the followings
hold

(1) £Xg1 = σ(2φ̄gij + £X̂gij)dxidxj,
(2) £Xg2 = 2σ[−gjm(ybvcK m

icb − vb̄Γm
bi − δi(vm̄))dxidxj +(£X̂gij − gjm∇ivm + gjm∂ī(v

m̄)+

2φ̄gij)dxjδyi],
(3) £Xg3 = σ[−2gmi(ybvcK m

jcb − vb̄Γm
bj − δj(vm̄))dxjδyi +(£X̂gij − 2gjm∇ivm + 2gjm∂ī(v

m̄)+

2φ̄gij)δyiδyj],

where φ̄ := 1
2 £X ln(σ) and £X̂gij denote the components of £X̂g.

Let X = VC be a conformal vector field of G, i.e., £XG = 2ρ̄G, which, using Lemma 1, is
equivalent to the followings

a) α(£V gij − 2Ωgij) = β[gim(ybvcK jcb
m − vb̄Γm

bj − δj(vm̄) + gjm(ybvcK icb
m − vb̄Γm

bi −
δi(vm̄)],

b) β(£V gij − 2Ωgij) = βgim(∇jvm − ∂ j̄v
m̄) + γgjm(ybvcK icb

m −
vb̄Γm

bi − δivm̄),
c) 2Ωgij = gmj∂ī(v

m̄) + gmi∂ j̄(v
m̄),

where Ω := ρ̄ − φ̄. Here, we use the fact £V gij = ∇iVj +∇jVi. Substituting vm̄ = ∇0Vm into
(c), then taking the vertical derivative ∂k̄, we get ∂k̄Ω = 0. Thus, we have the following.

Lemma 2. Let X = VC be a conformal vector field of G with associated function ρ̄. Then
Ω := ρ̄ − φ̄ is constant on every fiber of TM, where φ̄ := 1

2 £Xln(σ).

Further, we are going to show that the function Ω is constant on TM. We put Am
i := ∇iVm

and Aji := gmj Am
i . Then, one can rewrite (b) as follows

β(£V gij − 2Ωgij) = γya(vcKicaj − gmj∇i Am
a). (2.1)

Lemma 2 implies that the left hand side of (b) depends only on position. Thus, we get

vcKicaj = ∇i Aja, (2.2)

which yields
∇k Aij +∇k Aji = 0. (2.3)

On the other hand, rewriting (c), we have

2Ωgij = Aji + Aij. (2.4)

Taking covariant derivative ∇k from (2.4) and using (2.3) imply that ∇kΩ = 0. Here, we use
the compatibility of ∇ with g. Summarizing up, we get the following proposition.

Property 1. Let X = VC be a conformal vector field of G with associated function ρ̄. Then
Ω := ρ̄ − φ̄ is constant on TM, where φ̄ := 1

2 £Xln(σ).
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Suppose that X = VC is a conformal vector field of G. Then (2.4), shows that £V gij = 2Ωgij.
It means that V is a homothetic vector field of g. A straightforward computation proves that the
converse is true. Hence, we get the following theorem.

Theorem 3. A vector field V on M is a homothetic of g if and only if VC is a conformal of G.

A conformal vector field of G with associated function ρ̄ is called conformal affine vector
field, if Ω := ρ̄ − φ̄ depends only on position. In continue, we extend the Proposition 1 to
projectble conformal affine vector fields of G. Suppose that X = vhδh + vh̄∂h̄ is a projectble
conformal affine vector field of G with associated function ρ̄. Then, (a)-(c) hold, replacing V
with X̂. Putting i = j in (c), we get Ωgii = gmi∂ī(v

m̄). Applying ∂ j̄ to last relation, we get
∂ j̄∂ī(v

m̄) = 0. Therefore, vm̄ are as follows:

vm̄ = Dm
a(xi)ya + Bm(xi). (2.5)

Replacing (2.5) into (b), we have

β(£X̂gij − 2Ωgij − gim(∇jvm − Dm
j )) + γgjm∇iBm = γgjmya(vcK ica

m −∇iDm
a). (2.6)

The left hand side of (2.6) depends only on position. Thus, we get

vcKicaj = ∇iDja, (2.7)

which yields

∇kDij +∇kDji = 0. (2.8)

Plugging (2.5) into (c) and then taking covariant derivative ∇k and using (2.8), we get Ω is
constant.

Theorem 4. Let X be a projectble conformal affine vector field of G with associated function ρ̄.
Then Ω = ρ̄ − φ̄ is constant on TM.

Suppose that X = vhδh + vh̄∂h̄ is a projectble conformal vector field of G. Let us put V := X̂
and Aij := ∇ivj. Comparing (2.2) to (2.7) implies that ∇k(Dij − Aij) = 0. Hence Dij are in
the form

Dij = Aij + Tij, (2.9)

where T is a parallel (1, 1)-tensor with respect to g. For the (1, 1)-tensor T, the natural lift of
T is defined by Tn := Tm

0∂m̄. The vertical lift of a vector field B = Bm ∂
∂xm on the M is given

by BV := Bm∂m̄. Then, we are led to a decomposition of X as follows:

X = VC + Tn + BV , (2.10)

where T and B are given in (2.5) and (2.9).

Corollary 5. Let X be a projectble conformal affine vector field of G. Then X̂ is a homothetic
of g if and only if T = µg for some constant real number µ.
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