Global Journal of Advanced Research
on Classical and Modern Geometries

ISSN: 2284-5569, \Vol.6, (2017), Issue 1, pp.7-19

INTEGRAL FORMULAS FOR A METRIC-AFFINE MANIFOLD WITH TWO
COMPLEMENTARY ORTHOGONAL DISTRIBUTIONS

VLADIMIR ROVENSKI

ABSTRACT. We obtain integral formulas for a metric-affine space equipped with twapte-
mentary orthogonal distributions. The integrand depends on the Ridainéred scalar curva-
tures and invariants of the second fundamental forms and integrabilggref the distribu-
tions. The formulas under some conditions yield splitting of manifolds (inetudubmersions
and twisted products) and provide geometrical obstructions for exestehdistributions and
foliations (or compact leaves of them).
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INTRODUCTION

Integral formulas provide obstructions for existence of distributionsfalations (or com-
pact leaves of them) with given geometric properties and have applicatidliffeirent areas of
geometry and analysis, see survey in [1, 13]. Distributions on manifolgksaapn various situ-
ations, e.g. as fields of tangent planes of foliations or kernels of diffietdorms [3]. The first
known integral formula by G. Reeb [11] for a codimension-1 foliated dd®mannian man-
ifold (M, g) tells us that the total mean curvatuteof the leaves is zero (thus, eithEr = 0
or H(x)H(y) < 0 for some pointst,y € M). The proof is based on the divergence theorem
and the identitydiv N = (dim M) hs, whereN is a unit normal to the leaves arg. their
scalar second fundamental form. The formula poses a generalizatiach(ista consequence
of Green’s theorem applied f¥) to the case of second order mean curvature

/M(z o5 — Ricy y) d volg = 0. (1)

Moreover, (1) admits a leaf-wise counterpart for a closed Mafvith induced metrig’. Both
formulas have many applications: e.g., (1) implies nonexistence of umbilicatidoisaon a
closed manifold of negative curvature. Later on [2] extended (1) toifefseries of formulas
with higher order mean curvatureg (k > 2). In further generalizations for complementary or-
thogonal distributions of any dimension [9,12,16], the integrand depemdecond fundamental
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forms and integrability tensors of the distributions, their derivatives andhtwre invariants, e.g.
the Ricci curvature and the mixed scalar curvature.

No attempt has been made to develop integral formulas for general médimie-apaces
equipped with distributions. The Metric-Affine Geometry founded by Et&@auses an asym-
metric connectiorV with torsion (instead of the Levi-Civita connecti@r); it generalizes Rie-
mannian Geometry and appears in such context as homogeneous andHdmoisian mani-
folds. The important distinguished cases are: Riemann-Cartan manifdidss wetric connec-
tions, i.e.,.Vg = 0, are used, see e.g. [7], and statistical manifolds, see [4, 6], whetertiien
is zero and the tensdv ¢ is symmetric in all its entries. The theory of affine hypersurfaces
R"*1 is a natural source of statistical manifolds, see [8]. Riemann-Cartaespae central in
gauge theory of gravity, where the torsion is represented by the spur teihmatter.

In this paper, we obtain integral formulas for general metric-affineegpaquipped with dis-
tributions and for two distinguished classes. The formulas naturally gereerasults for Rie-
mannian case [9, 14—-16] with the Ricci and mixed scalar curvaturest sode conditions they
yield splitting of ambient manifolds (including submersions and twisted prodants)rovide
geometrical obstructions for existence of distributions and foliations or aotigaves of them.

in

1. PRELIMINARIES

Let M"*? be a connected smooth manifold with a pseudo-Riemannian rgetfindexq and
complementary orthogonal non-degenerate distribut®hsandD- (subbundles of the tangent
bundleTM of ranksdimg D, = n anddimg Dy = p for everyx € M). A distributionD"
is non-degenerate, i, (x € M) is a non-degenerate bilinear form & C T, M for every
x € M; in this caseD+ is also non-degenerate. Wher= 0, g is a Riemannian metric (resp. a
Lorentz metric whery = 1), see [3]. Let' and denoteg-orthogonal projections ont® " and
D+, respectively; for an € ¥y we write X = X + X*. We will define several tensors for
one of distributions (sayp " ; similar tensors for the second distribution can be defined using
notation). The following convention is adopted for the range of indices:

ab...e{l...n}, ij...e{l...p}.

One may show that the local adapted orthonormal frdiig &;}, where{E,} C D', and
€ =g(&,&) € {-1,1}, e, = g(E,, Eq) € {—1,1}, always exists oM.

Let TT,hT : DT x DT — D' be the integrability tensor and the second fundamental form
of DT,

T'(X,Y):=(1/2)[X, Y]*, h'(X,Y):=(1/2) (VxY + VyX)" .

The mean curvature vector 8" isH' =Y, e,h" (E,, E;). We callD " umbilical, harmonig
or totally geodesicif h" = 1HT ¢T HT =0, orh" = 0, resp. The Weingarten operatar’
(of DT) and the operatdf '? are defined by

g(AJX,Y)=gn"(X",Y"),ZY), o(T,"X,Y)=g(T"(X",YT"),Z%).

We use the following convention for various tensdfs? := T¢ ¥, Al := AL, Ti = Tz, etc.
One of the simplest curvature invariants of a pseudo-Riemannian mati¥lg) endowed
with two complementary orthogonal distributiof® ", D) is themixed scalar curvaturg.e.,
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an averaged sectional curvature of planes that non-trivially intetisedistributionD " and its
orthogonal complemerf®, see [16]:

Smix = Za i €q€; g(Ra,iEu/ gz) (2)

HereRxy = [Vy, Vx| + V[x,y] is the curvature tensor 6F . The following formula [16] has
found many applications:

div(H- +H") = Spix+ (b, ht) —g(H, HY) — (T4, T)
+ (h',n") —g(H',H") —(T',TT), ©)
see survey in [1,13]. We use inner products of tensors, e.g.
(h",n"y = Zi’jeie]-g(hT(&,Ej),hT(Ei,Sj)),
(r",T") = i,jeiejg(TT(gi,gj),TT(a,ej)).
Let X (resp.,Xpr) be the module ove€* (M) of all vector fields onM (resp. onD ). A

metric-affine spaces a manifoldM endowed with a metrig of certain signature and a linear
connectionV : X X ¥y — X onTM that is

valJerY = fV)QY —|—VX2Y, Vx(fY + Z) = X(f)Y —|—va¥ + ﬁxz.

The Levi-Civita connectiolV is a unique torsion free connection M, g) preserving. It can
be taken as a center of affine space of all connectiondlorThe difference] := V — V is
called thecontorsion tensarDefine the (1,2)-tensof™ and7 by

(7Y, Z) = g(TxZ,Y), TxY=TX, XY,Z€Xum.
Remark that generalIWA')* # T*. Indeed,
A connectionV = V + 7T is metric compatibléf V¢ = 0; in this case,
T =-T.

If V is torsionless and tens&fg is symmetric in all its entries theW is called astatistical
connectiorin literature. In this case, the contorsion tensor has the following symmetries:

T=T, T =T.
Comparing the curvature tensBk y = [Vy, Vx] + Vx y of V with R, we find
Rxy —Rxy = (VyT)x — (VxT)y + [Ty, Tx|, X,Y € Xu. 4)

Define twomean curvature type vectors ofby H} =Y ,€.T.E, andH% =Y. €T
Remark.One can examine the extrinsic geometry also in tern ofFor example,

_ 1

FT(X,Y)=h"(X,Y)+ 5 (TxY + TvX)t, X,yeD',

is the second fundamental form®f" w.r.t. V, andA" = H' + (H;)" is its mean curvature
vector.
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Definition. The following function on a metric-affine manifold, ¢, V) endowed with two
complementary orthogonal distributiof® ", D+ ):

_ 1 _ _
Smix = 5 ), €a i (8(RyEa, &) + &(Riy Eiv Ea)) ®)

is called themixed scalar curvaturev.r.t. V, see (2) for the Riemannian case.

Definition (5) does not depend on the order of distributions and the cbbEdérame. Thus,
by (4) and (2),

Smix = % Zu,i €4€i(§((ViT )aEa, &) — §((VaT )iEa, &) + (VT )i Ei, Ea)
- g((VzT)u gir Eu) +8([77/ %]Ea/ gz) +g([7:1/ 77] 51‘/ Ea)) + Smix- (6)

The Divergence Theorem for a vector fiélan (M, g) states that
/ (div &) dvolg =0, )
M

when either has compact support av! is closed. TheD--divergenceof ¢ is defined by
divt ¢ =Y, €, ¢(ViE &), and foré € Xp. we havediv' ¢ = divé+g(& H').

2. INTEGRAL FORMULAS

The main idea of proving integral formulas (as in the case of formulas diedus the intro-
duction) is to calculate the divergence of a vector field and use the Stbleeséim. In [9], this
approach was applied to vector fieldg = (A, )*H*- + (A3, )*H', on a Riemannian space,
namely, fork = 0,1. We add taZg = H- + H' (in Section2.1) and; = A} H- + A;; HT
(in Section 2.2) certain vector fields on a metric-affine space, compute thetigence and find
integral formulas. We also work with a closed maniféllequipped with vector fields, distribu-
tions, etc. defined on the complement to the “set of singularifiesthich is a (possibly empty)
union of closed submanifolds of variable codimensiR. The singular case is important since
many manifolds admit no smooth (e.g. codimension-one) distributions, while tmeiy sgch
distributions and tensors outside sole Example of such distributions provide “open book
decompositions” on manifolds, see discussion in [9].

Lemma 1 (see Lemma 2 in [9]) Let £, codimX; > 2, be a closed submanifold of a Rie-
mannian manifold M, g), and¢ a vector field onVl \ £; such that|¢||, € L?(M, g). Then(7)
holds.

2.1. Integral formulas with S.;.. The divergence o, see (3), was calculated in [16] and
the integral formula

/M {Smix = [ITT 12 = ITH + B2 + |12 = [|H || = [|[H[*} dvoly =0 (8)

was obtained for a closed Riemannian manifeld\We will denote by(B, C) |, the inner product
of tensorsB, C restricted oV = (D' x D) U (D+ x DT).
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Lemma 2. We have
div ((Hf — Hj)* + (Hf — H7.) ") = 2 (Smix — Smix)
—g(Hy, Hy.) —g(Hy, Hy.) — g(H — Hy + Hy. —Hy., H' —H")
(T =T +T =T A = TH+ AT T (T, T) . 9)
For statistical manifolds(9) reads
Smix — Smix _S(H’;/ H”Jf) + (1/2) <T, T> |V — 0.
For Riemann-Cartan manifold¢9) reads
div ((Hr)" + (H7)") = Smix = Smix — §(Hy — Hy, H' — H™)
+g(HF, HE) — (T +T, A = TH 4 AT T — (1/2)(T, T) v
Proof. Using (6) we g6 mix — Smix = » (Q1 + Q2), where
Qr = ) ,€€i[8((ViT)aEa, &) — g((VaT)iEa, &) + 8([Ti) TalEa, Ei) |,
Q= ), €¢€i[8((VaT)i&i Ea) — §((ViT )a&i, Ea) + 8([Ta, Ti] €, Ea) |-

Let (ViE,)" = 0and (V&) = 0 atapointx € M, thus—V,E, = Y€ 8((A; +
TH)éE, ENEjand—V, & =Y, 6 8((A + TZU)E“, Ey)E,. We calculate at:

S((ViT)eEa &) = (TiEa+ T, (Af — TiH)&) + div' (HF),
S((VaT)iEa, &) = (T &+ T Eq, (Al — T/H)E,) + div' (H#.),
S((VaT)i€i Ea) = (Tai+ TiEa, (Al — T'H)E,) +div' (HF),
S((ViT)eli Ea) = (T Ea+ T2, (Ar — Ti9)E) + div (HT),
g([Ti, TJEw, &) = g(Hy, Hy.) — ¢(TiEa, T,°E1),

([T, TN € Ea) = g(Hy, Hy) — (T 'Ea, TuE)),

(omitting ), ; €, €;) and find
Q1 = divi(Hy) —div' (HF.) +Z €0 €[g(TiEa+ Tai, (A — TiHE)
- (7-*5 +7-* ar (AT ) ) g('ﬁEu,T* )] ‘|‘8(H7‘/ HT*)
Q: = div' (H¥) —divt(HJ.) +Z €, €[g(Taki + TiEa, (Al — TH)E,)
— Q(TFE. 4+ T &, (AF — lﬁ)5) ¢(Ta&, TP Ea)] + g(H¥, HE.).  (10)

From (10), using equalities

div* (Hy) = div((Hy)") + ¢(Hr, H' — H"),
div' (H#.) = div((H+)") — ¢(H#,H" — HY),
divt(H}.) = div((Hf-)*') + g(Hf, H —H"Y),
div' (Hy) = div((Hf)") — g(Hf, H' —H%),
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we obtain
div ((Hy — Hy)™ + (HF — H7.) ") =2 (Smix — Smix)
—§(Hy, Hy.) — g(Hy, Hy) — g(Hy — Hy + Hy. —Hp, H' — H')
~ Y[ 8((Ti = T)Ea+ (T = TE, (A = To%) &+ (A = T,F)En)
—8(Ta &, TEa) — (T, €i, TiEa) |,
and hence, (9). ([l
In the next theorem we generalize (8).

Theorem 3. Let (M, g, V) be a closed metric-affine space afd a distribution defined on
the complement to the “set of singularitieX, see Section 1. If¢||; € L*(M, g), where¢ =

H' +H"+ % (H} — H.)* + 3 (Hf — H#.) T, then the following integral formula holds:
/M{Smix—<TT, TTY (T4, T 4 (0T, hTY + (bt by — o(HT,HT) — ¢(H*, HY)

1
— 5 [8(H7, H7.) +8(H7, Hy.) + g(Hr — Hy + Hy. —Hp., H' — H")]

T T T T AN TR AT T £ L (T, )y dvolg =0
Proof. By (3) and Lemma 2, we have aff \ X:
divE = Spin—(TT, TT) — (T4, T + (0,17 + (h', 0ty — g(HT, HT) - g(H*, HY)
—% (¢(Hf, Hy.) + g(HF, Hp.) + §(Hy — Hf + Hf. — Hy., H' — H*) ]
T T+ T =T AN T AT T8 (T, T (11)
Thus, the claim follows from (11) and Lemma 1. U

Corollary 4. Let (M, g, V) be a closed statistical manifold arfd" a distribution defined on
the complement to the “set of singularitieX: If |[H- + H'|[|; € L?(M, g) then

/M {Smix — (TT,TT) = (T4, T4 + (0T, 1) + (b, bt
— g(H',H")—g(H",H") — ¢(Hy, Hy) + (1/2) (T, T) |y} dvolg = 0.

Corollary 5. Let(M, g, V) be a closed Riemann-Cartan manifold abd a distribution de-
fined on the complement to the “set of singularities”If | A+ + H' ||, € L?(M, g) then

/M [ — (TT,TT) — (T, T4 + (0T, KT + (b
— g¢(H',H") —g(H", H") +g(Hy, Hy) —g(Hy —Hy, H' — H")
— (T =T, AT =TY 4+ AT =T — (1/2)(T, T) v} dvoly = 0.

Definition. We say tha{ M’, ¢’) is aleaf of a distributionD on (M, g) if M’ is a submanifold
of M with induced metrig’ andT, M’ = D, foranyx € M'. Aleaf (M’, ¢') of D is said to be
umbilical, harmonic or totally geodesicif h" = L H¢", HT =0, 0rh" = 0, resp., onM!".
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The next theorem generalizes result in [16].

Theorem 6. Let a distributionD " on a metric-affine spac(aM,g,V) has a compact leaf
(M', ¢’) with condition

2H" = (H}. — Hy)* (12)

on its neighborhood. Then the following integral formula along the leaf holds:

[ B = (T, T5) 4 () 4+ (07T 4 L o(HF - HE. HY)

2
+g(Hy — Hy., HT) = g(Hy, Hy.) = g(Hy, HE) + (T, T) v
(T =T +T -T5 A =T 4 AT)] Y dvoly =0, (13)

Proof. UsingT " = 0, (3), Lemma 2 and equalities
divt(HY) = —¢(HY, HY), div (H')=—-g(HT,H"),
div*((Hf — Hy.)") = —g(HF — H., H*),
div' ((Hf — Hj)*) = —g(Hf — Hf., H'),

we have

div' (H* + % (Hf —Hf.) ") +div: (H' + % (Hj —HJ)b)
Smmix + (B, B + (0T, hT) — (T, T+)

1

5 [8(Hr = Hy., H") + g(HF — H., H') — g(Hr, Hr)

—g(HF, Hp )+ (T Ty — (T =T +T =T+ A =T + AT)]. (14

+

By conditions (12), theliv'-term in (14) vanishes alongy’. Thus, (13) follows from the
Divergence theorem faf = H* + § (H# — H+.) " on M’ O

Corollary 7. Let a distributionD " on a statistical manifold M, g, V) admits a compact leaf
(M’,¢") with H" = 0 on its neighborhood. Then the following integral formula holds:

/M/ {Smix — (T4, TH) + (B4, By + (07,07
—g(Hf, Hy) + (1/2) (T, T)v} dvoly =0.

Corollary 8. Leta distributionD " on a Riemann-Cartan manifoldV/, g, V) admits a compact
leaf (M’, g’') with H™ = 0 on its neighborhood. Then the following integral formula holds:

/M,{Smix — (T, T + (W, nty + (0", 0"y + g(Hf, HF) + g(Hy, H)

+g(Hy, HY) = (T+T, A =TH+ ATy — (1/2) (T, T) v} dvoly = 0.
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Remark.For D' spanned by a unit vector fiel, setRicy v = ¥, €. ¢(Rn g, N, E;). Note
that generallyg(Rn g, N, E;) # ¢(Rg, NEa, N). Letey = 1. Similarly to Lemma 2, we have

div((7TwN)" — (Hf.)* ) = Riey,n — Riewn + Q,
Q = g(Hf. + TN, H: — (Tr AT)N) = (T + T30, Ak + T®) 1o
+g((T)AN + TN, HY) — g(Hf., TuN) + (Tx, T 1o

The above yield the integral formula, which fgF = 0 reduces to (1) witlr, = Tr (A})?:
/ (20’2 — RiiCN/N — Q) dVOlg =0.
M

2.2. Integral formula with the Ricci curvature Ricyr ;1. The divergence of, for a Rie-

mannian manifold endowed with orthogonal complementary distribuihandD has been
calculated in [9]:

div(A},H- + A§ H") = Ricyr g1 + Q1 (15)
where
Qi =g(H",Vy H") +g(H, VyrH*)
+8(Trg (V.T) (-, H"),H") + g(Trg (V.T)(-,H"),H")
+ (A}, V. Hi> + (A4, V.H") —g(A, H" ,H") — g(A{+H HY)
+2) el 8(Alg,ury H Ea) + 8(Vrr (e, g Ee H') |
+2) e[ g(AfgpyH' E) +8(Vriar, ey HY) |- (16)

Thus, on a closed manifoldV], g) one has the integral formula, see [9, Theorem 1],

/M(RicHT,HL + Q1) dvolg =0, (17)
If the distributions are umbilical, integrable and have constant mean cusvatem (16) reads
Qu=—-(1/n+1/p)g(H",H")g(H*, H").
Lemma 9. For the metric-affine case we have
div(Ty H' + Ty HY) = —(Ricy g1 — Ricyr 1) + Qa, (18)
whereRicyr i1 = Sym( Y, € g(RHL,EaHT, E,) + Y eig(RHrlgiHL,Si)) and
Q) = Sym(g(vHLHT, HF.) 4 g(Vyr HY HE) — g(Ty HY  HY) — g(Ty HS HT)
— Y €ag(Vy(TeH') = T yrry e ey evant H 4 T (VaH'), Eo)
— Y e g(Vir (THY) = Ty sy gy HE + Tor (ViHY), 51-)). (19)
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Proof. Using (4), we calculate
Y €ag(Ry. g, H — Ry p H',E,) =
= Sym(div' (T, H") +¢(VH' ,H) + ¢(Ty  H', Hy)
—Z ea[ (Vi ( (T.H'), Eq) _8(7-(hT+TT)(Hi,EJ)HT:Ea)
~8(To,u H' Ea) +8(Ty (VoH "), Ea) + 8(Ty (TH'), Ea)]). (20)
Summing (20) with similar formula foy’; €; g(I_{giﬂrHL — Rgi,HTHL, &;) and using equalities
div" (T HY) = div(TyHY) — g(H', Tyr HY),
div (TnH') = div(Tyn H') — g(HY, Ty HY),
yield (18)—(19). O

Theorem 10. Let (M, g, V) be a closed metric-affine space afd a distribution defined on
the complement to the “set of singularitieZ. If ||¢]|; € L*(M,g), where¢ = A H*+
AL H'+ TyrH- + T HT then

/M {Ric o + Q1+ Qa} dvoly = 0. (21)
Proof. From (15) and (18) we obtain
div(AH- + AL H' + T H' + Ty HY) = —Ricyr i+ Q1 + Qo
Applying Lemma 1 to (16), (18) and (19), we obtain (21). O

For7 = 0, we haveQ, = 0, and (21) reduces to (17). One may get a number of formulas
from (21). The next one generalizes Proposition 3 in [9].

Recall thatD " has constant mean curvature whenever its mean curvature Véctobeys
V1IH" =0, whereV+ is the connection iD+ induced by the Levi-Civita connection avi.

Corollary 11. Let in conditions of Theorem 10, distributiof’ and D be umbilical, inte-
grable and have constant mean curvature. T(&l) reads
. 1 1 _
/M {Ricyr yo — (H + E)g(HT/HT) g(H*, H*) +Sym(g(VyrH™, Hr)
+g(ﬁHLHT Hr;:*) —g(Hl, THLfHT HT) —g(HT, THTfHL HL)
—Z € 8(Vy (TLHT) - Ty, piH 4+ Ty (VoHT), Eq)
—Y eig(Vyr (TH") = Ty yr HE + Ty (ViHY), &)) } dvolg = 0.

3. SPLITTING RESULTS

In this section, we consider distributiot® ", D) on a metric-affine manifoldM, g, V),
satisfying some geometrical conditions, and prove non-existence and gptisalts, which
follow from integral formulas of Section 2. In the sequel, we assumeghat 0. We omit
similar results for (co)dimension one distributions and foliations and coesegs for harmonic
and Riemannian submersions, which follow from results below.



16 VLADIMIR ROVENSKI

We say that(M, g) endowed with a distributioD " splitsif M is locally isometric to a
product with canonical foliations tangent " andD. Remark that if a simply connected
manifold splits then it is the direct product.

The next conditions are introduced to simplify the presentation of results:

TxY=0=TX, T{Y=0=TyX (XeD',YecDh, (22)
g(Hy — Hy., H") =0. (23)
For example, (22) provides vanishing of last two lines in (11).

Recent extensions of (7) to non-compact case are discussed idg@lying S.T.Yau version
of Stokes’ theorem on a complete open Riemannian manifeldg) yields the following.

Lemma 12 (see Proposition 1 in [5])Let (M, g) be a complete open Riemannian manifold
endowed with a vector fiefisuch thatliv ¢ > 0. If the norm||||, € L' (M, g) thendiv ¢ = 0.

3.1. Harmonic distributions. Note that condition (12) oM when7 = 0 reducestd ' = 0,
i.e.,DT is harmonic. Next theorem generalizes Theorem 5 in [14].

Theorem 13. LetD " and D+ be complementary orthogonal integrable distributions with con-
ditions (12), (22) and (23) on a complete open metric-affine spadd, ¢, V). Suppose that
the leave{M’, ¢’) of D" obey condition|& ,y||¢ € L'(M',¢), wheref = H+ + 3 (HF —
H#.) " If Spix > 0 thenM splits.

Proof. By conditions, we have

div' & =Smix+ (B 0 + (1T, hT). (24)
Applying Lemma 12 to each leaf (a complete open manifold), and Spge > 0, we get
divZ = 0. Thus,h" = 0 = h*. By de Rham theoren{M, g) splits. a

Note that conditiorj| &y || €L (M’, g') is satisfied on any compact le@t1’, g’) of D'
Next two results generalize Theorem 2 and Corollary 4 in [16].

Corollary 14. Let (M, g, V) be a metric-affine space endowed with a distributidn with
integrable normal bundle and conditioii$2), (22) and (23). ThenD " has no complete open
leaves(M’, ') with the properties$ .y > 0 and |||y [l € L'(M',¢’), where¢ = H+ +

5 (HF — H.) ™. In particular, there are no compact leaves Wil > 0.

Proof. Let (M, ¢’) be a complete open leaf obeying the conditions. By (14), we have (24) on
M'. Applying Lemma 12 to the leaf, and sinBg,;x > 0, we getdiv& = 0. The above yields
h" =0 = k't andS,, = 0 — a contradiction. O

Corollary 15. A codimension one distributic® " of a metric-affine spacéM, g, V) with the
Ricci curvatureRic > 0 and the propertie§12), (22) and (23) has no compact leaves.

Proof. For a codimension on® ", we haveT ' = 0 andey Ricy n = Smix, WhereN is a unit
normal to the leaves. Hence, the claim follows from Corollary 14. O

Theorem 16. Let (M, g, V) be a complete open (or closed) metric-affine space endowed with
complementary orthogonal harmonic foliations. Suppose that condi@®s|¢||, € L'(M, g)

with& = 3 (Hf — HJ.)* + 5 (Hf — H7.) ", and
g(Hy, Hy.) + g(HF, Hy-) =0
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are satisfied. IfS ;, > 0 thenM splits.
Proof. Under conditions, from (11) we get
divé =S+ (', h") 4+ (bt hh).
By Lemma 12 and sincBn;x > 0, we obtaindiv & = 0. Thus,h" = 0 = h'. Hence, by de
Rham decomposition theoreifiy, g) splits. O

3.2. Umbilical distributions.

Theorem 17.Let(M, g, V) be a metric-affine space endowed with two complementary orthogo-
nal distributions(D ", D) with conditiong(12), (22) and(23). ThenD " has no complete open
umbilical leaves M, ¢) with the properties . |,y < 0 and [|& |y lly € L'(M', '), where

¢ =H' +1(H# — H#)". In particular, there are no compact umbilical leavigel’, g’) with

S mix |M’ <0.

Proof. Let (M, ¢') be a complete open umbilical leaf obeying the conditions. From (14) we get

div' & = S — (T, T4 = P g1t 1Y) — S g (T HT)(29)
on M’'. Thus, applying Lemma 12 to the leaf, and sil‘iqu‘M/ < 0, we getdingf = 0.
By the aboveH" = 0 = H', T+ = 0 andS nix = 0 — a contradiction. O

Corollary 18. A codimension one distributioP " on a metric-affine spac@M, g, V) with the
Ricci curvatureRic < 0 and conditiong12), (22) and (23) has no compact umbilical leaves.

A submersionf : (M,g) — (M, §) is conformalif f, restricted to(ker f.)* is conformal
map, see [14].

Theorem 19(For 7 = 0, see Corollary 5 in [14]) Let (M, g, V) be a complete open metric-
affine spacef : (M, g) — (M, §) a conformal submersion with umbilical fibres and conditions
(12), (22)and (23). If Smix < 0and [|&r[lg €L (M, ¢'), whereg = H- + 3 (HF — Hy.) ",

on any fibre(M’g’) then(ker f.)* is integrable andV splits.

Proof. SetD" = ker f. Under conditions, we have (25). Applying Lemma 12 to every fibre (a
complete open manifold), and sinBg,x < 0, we getdiv & = 0. The above yields vanishing of
H', H*- andT+. By de Rham decomposition theore(@, g) splits. O

Theorem 20(For7 = 0, see Theorem 4 in [14])Let(M, g, V) be a complete open (or closed)
metric-affine space endowed with complementary orthogonal umbilisalbditions D" and
D+ defined on the complement to the “set of singulariti&s’lf conditions(22),

Hy =0=Hzy, Hj.=0=Hz (26)
and||¢|l, € L'(M, g), where¢ = H+ + H', are satisfies anf mix < 0 thenM splits.
Proof. Under conditions, from (11) we get

divE = Smix — (T, TT) — (T, T4 — ’Tg(HL,HL) - ”n;l

gH',H"). (27)

From (27) and Lemma 12 and sing,;x < 0, we getdiv ¢ = 0. The above yields vanishing of
T',T+,H', H'. Hence, by de Rham decomposition theoréM, g) splits. O
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Umbilical integrable distributions appear on double-twisted products, e [1

Definition. A doubly-twisted producB x, ) F of two metric-affine space&B, g5, 75) and
(F,gr, Tr) is @a manifoldM = B x F with metricg = ¢' + ¢ and contorsion tens6f =
T + T+, where
g (X,Y) = gp(X,Y"), gH(X,Y)=ulgr(XH, YT,
(THxY = X (Te)x Y, (THxY =0*(Tr)x Y,
and the warping functiong, v € C*(M) are positive. Indeed] * = 7*" + T*+, where
(T )xY =u?(T)x YT, (TH)xY = (Tf)x Y

LetD ' be tangent to thébers{x} x F andD~ tangent to théeavesB x {y}. The second
fundamental forms and the mean curvature vectoi »f, ) F are given by, see [10],

Wt =-V'(logu)gt, h' =-Vt(logv)g',
H* = -nV'(logu), H' = —pVi(logo).

Thus, the leaves and the fibersk®ix , ,) F are umbilical w.r.t.V andV. Conditions (22) are
obviously satisfied foB x , ) F. Next corollaries extend results in [15].

Corollary 21 (of Theorem 17) Let (12), (23)and ||Z v |l € L' (M, g'), whered = H+ +
1 (H# — H#.) ", are satisfied along the fibres Bfx (o,u) F» Where(F, gr) is complete open (or
closed). IfS ix < 0thenM is the direct product.

Proof. Under conditions, from (25) we get

div & = Spmix — P;lg(HL,Hi) - ”T_lg(HT,HT).
Applying Lemma 12 to each fibre (a complete manifold), and sthgg < 0, we getdiv & = 0.
HenceSmix = 0andH' = 0 = H*,ie.,V'u = 0 = V+o. By the aboveSix = 0;
thus,u andv are constant. By de Rham decomposition theorigh, ¢) splits with the factors
(B,c1-gg) and(F,c, - gr) for somecy, c; > 0. O

Corollary 22 (of Theorem 20) LetM = B x (, ,,) F be complete open (or closed) and conditions

(23), (26)and ||&||, € L'(M, g), where¢ = HL + H" are satisfied. 15 mix < 0thenM is the
direct product.

Proof. SetD" = m,(TF). Under conditions, we get, see (27),
i - -1 n—1
divE = Smix — ppg(HL,HL) —=——g(H,H).
Applying Lemma 12 toM, and sinceS,;x < 0, we getdivé = 0. Hence,Snix = 0 and
H' =0=H"',i.e.,V'u =0 = V+o. By the aboveS iy = 0; thus,u andv are constant.
By de Rham decomposition theore(@, g) splits with the factor§B, c¢; - ¢p) and(F, ¢z - gr)
for some positiver, c; € R. O
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