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INTEGRAL FORMULAS FOR A METRIC-AFFINE MANIFOLD WITH TWO
COMPLEMENTARY ORTHOGONAL DISTRIBUTIONS
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ABSTRACT. We obtain integral formulas for a metric-affine space equipped with two comple-
mentary orthogonal distributions. The integrand depends on the Ricci and mixed scalar curva-
tures and invariants of the second fundamental forms and integrability tensors of the distribu-
tions. The formulas under some conditions yield splitting of manifolds (including submersions
and twisted products) and provide geometrical obstructions for existence of distributions and
foliations (or compact leaves of them).
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INTRODUCTION

Integral formulas provide obstructions for existence of distributions andfoliations (or com-
pact leaves of them) with given geometric properties and have applications indifferent areas of
geometry and analysis, see survey in [1, 13]. Distributions on manifolds appear in various situ-
ations, e.g. as fields of tangent planes of foliations or kernels of differential forms [3]. The first
known integral formula by G. Reeb [11] for a codimension-1 foliated closed Riemannian man-
ifold (M, g) tells us that the total mean curvatureH of the leaves is zero (thus, eitherH ≡ 0
or H(x)H(y) < 0 for some pointsx, y ∈ M). The proof is based on the divergence theorem
and the identitydiv N = (dim M) hsc, whereN is a unit normal to the leaves andhsc their
scalar second fundamental form. The formula poses a generalization (which is a consequence
of Green’s theorem applied toN) to the case of second order mean curvatureσ2:

∫

M
(2 σ2 − RicN,N)d volg = 0. (1)

Moreover, (1) admits a leaf-wise counterpart for a closed leafM′ with induced metricg′. Both
formulas have many applications: e.g., (1) implies nonexistence of umbilical foliations on a
closed manifold of negative curvature. Later on [2] extended (1) to infinite series of formulas
with higher order mean curvaturesσk (k ≥ 2). In further generalizations for complementary or-
thogonal distributions of any dimension [9,12,16], the integrand depends on second fundamental
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forms and integrability tensors of the distributions, their derivatives and curvature invariants, e.g.
the Ricci curvature and the mixed scalar curvature.

No attempt has been made to develop integral formulas for general metric-affine spaces
equipped with distributions. The Metric-Affine Geometry founded by E. Cartan uses an asym-
metric connection∇ with torsion (instead of the Levi-Civita connection∇); it generalizes Rie-
mannian Geometry and appears in such context as homogeneous and almostHermitian mani-
folds. The important distinguished cases are: Riemann-Cartan manifolds, where metric connec-
tions, i.e.,∇g = 0, are used, see e.g. [7], and statistical manifolds, see [4,6], where thetorsion
is zero and the tensor∇g is symmetric in all its entries. The theory of affine hypersurfaces in
R

n+1 is a natural source of statistical manifolds, see [8]. Riemann-Cartan spaces are central in
gauge theory of gravity, where the torsion is represented by the spin tensor of matter.

In this paper, we obtain integral formulas for general metric-affine spaces equipped with dis-
tributions and for two distinguished classes. The formulas naturally generalize results for Rie-
mannian case [9,14–16] with the Ricci and mixed scalar curvatures, under some conditions they
yield splitting of ambient manifolds (including submersions and twisted products)and provide
geometrical obstructions for existence of distributions and foliations or compact leaves of them.

1. PRELIMINARIES

Let Mn+p be a connected smooth manifold with a pseudo-Riemannian metricg of indexq and
complementary orthogonal non-degenerate distributionsD⊤ andD⊥ (subbundles of the tangent
bundleTM of ranksdim R D⊤

x = n anddim R D⊥
x = p for everyx ∈ M). A distributionD⊤

is non-degenerate, ifgx (x ∈ M) is a non-degenerate bilinear form onD⊤
x ⊂ Tx M for every

x ∈ M; in this case,D⊥ is also non-degenerate. Whenq = 0, g is a Riemannian metric (resp. a
Lorentz metric whenq = 1), see [3]. Let⊤ and⊥ denoteg-orthogonal projections ontoD⊤ and
D⊥, respectively; for anyX ∈ XM we writeX = X⊤ + X⊥. We will define several tensors for
one of distributions (say,D⊤; similar tensors for the second distribution can be defined using⊥

notation). The following convention is adopted for the range of indices:

a, b . . .∈{1 . . . n}, i, j . . .∈{1 . . . p}.

One may show that the local adapted orthonormal frame{Ea, Ei}, where{Ea} ⊂ D⊤, and
ǫi = g(Ei, Ei) ∈ {−1, 1}, ǫa = g(Ea, Ea) ∈ {−1, 1}, always exists onM.

Let T⊤, h⊤ : D⊤ ×D⊤ → D⊥ be the integrability tensor and the second fundamental form
of D⊤,

T⊤(X, Y) := (1/2) [X, Y]⊥, h⊤(X, Y) := (1/2) (∇XY +∇YX)⊥.

The mean curvature vector ofD⊤ is H⊤ = ∑a ǫah⊤(Ea, Ea). We callD⊤ umbilical, harmonic,
or totally geodesic, if h⊤ = 1

n H⊤ g⊤, H⊤ = 0, or h⊤ = 0, resp. The Weingarten operatorA⊤

(of D⊤) and the operatorT⊤♯ are defined by

g(A⊤
Z X, Y) = g(h⊤(X⊤, Y⊤), Z⊥), g(T⊤♯

Z X, Y) = g(T⊤(X⊤, Y⊤), Z⊥).

We use the following convention for various tensors:T⊤♯
i := T⊤♯

Ei
, A⊤

i := A⊤
Ei

, Ti = TEi
etc.

One of the simplest curvature invariants of a pseudo-Riemannian manifold(M, g) endowed
with two complementary orthogonal distributions(D⊤,D⊥) is themixed scalar curvature, i.e.,
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an averaged sectional curvature of planes that non-trivially intersectthe distributionD⊤ and its
orthogonal complementD⊥, see [16]:

S mix = ∑ a,i
ǫaǫi g(Ra,iEa, Ei). (2)

HereRX,Y = [∇Y,∇X] +∇[X,Y] is the curvature tensor of∇. The following formula [16] has
found many applications:

div(H⊥ + H⊤) = S mix + 〈h⊥, h⊥〉 − g(H⊥, H⊥)− 〈T⊥, T⊥〉

+ 〈h⊤, h⊤〉 − g(H⊤, H⊤)− 〈T⊤, T⊤〉 , (3)

see survey in [1,13]. We use inner products of tensors, e.g.

〈h⊤, h⊤〉 = ∑ i,j
ǫiǫj g(h⊤(Ei, Ej), h⊤(Ei, Ej)),

〈T⊤, T⊤〉 = ∑ i,j
ǫiǫj g(T⊤(Ei, Ej), T⊤(Ei, Ej)) .

Let XM (resp.,XD⊤) be the module overC∞(M) of all vector fields onM (resp. onD⊤). A
metric-affine spaceis a manifoldM endowed with a metricg of certain signature and a linear
connection∇ : XM ×XM → XM on TM that is

∇ f X1+X2
Y = f∇X1

Y +∇X2
Y, ∇X( f Y + Z) = X( f )Y + f∇XY +∇XZ .

The Levi-Civita connection∇ is a unique torsion free connection on(M, g) preservingg. It can
be taken as a center of affine space of all connections onM. The differenceT := ∇−∇ is
called thecontorsion tensor. Define the (1,2)-tensorsT ∗ andT̂ by

g(T ∗
X Y, Z) = g(TXZ, Y), T̂XY = TYX, X, Y, Z ∈ XM .

Remark that generally(T̂ )∗ 6= T̂ ∗. Indeed,

g((T̂ )∗XY, Z) = g(T̂XZ, Y) = g(TZX, Y), g(T̂ ∗
X Y, Z) = g(T ∗

Y X, Z) = g(TYZ, X).

A connection∇ = ∇+ T is metric compatibleif ∇g = 0; in this case,

T ∗ = −T .

If ∇ is torsionless and tensor∇g is symmetric in all its entries then∇ is called astatistical
connectionin literature. In this case, the contorsion tensor has the following symmetries:

T̂ = T , T ∗ = T .

Comparing the curvature tensorR̄X,Y = [∇Y,∇X] +∇[X,Y] of ∇ with R, we find

R̄X,Y − RX,Y = (∇YT )X − (∇XT )Y + [TY, TX], X, Y ∈ XM . (4)

Define twomean curvature type vectors ofT by H⊤
T := ∑a ǫaTaEa andH⊥

T := ∑i ǫiTiEi.

Remark.One can examine the extrinsic geometry also in terms of∇. For example,

h̄⊤(X, Y) = h⊤(X, Y) +
1

2
(TXY + TYX)⊥, X, Y ∈ D⊤,

is the second fundamental form ofD⊤ w.r.t. ∇, andH̄⊤ = H⊤ + (H⊤
T )

⊥ is its mean curvature
vector.
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Definition. The following function on a metric-affine manifold(M, g,∇) endowed with two
complementary orthogonal distributions(D⊤,D⊥):

S̄ mix =
1

2 ∑a,i
ǫa ǫi

(
g(R̄a,iEa, Ei) + g(R̄i,a Ei, Ea)

)
(5)

is called themixed scalar curvaturew.r.t.∇, see (2) for the Riemannian case.

Definition (5) does not depend on the order of distributions and the choiceof a frame. Thus,
by (4) and (2),

S̄ mix =
1

2 ∑a,i
ǫaǫi

(
g((∇iT )aEa, Ei)− g((∇aT )iEa, Ei) + g((∇aT )i Ei, Ea)

− g((∇iT )a Ei, Ea) + g([Ti, Ta]Ea, Ei) + g([Ta, Ti] Ei, Ea)
)
+ S mix. (6)

The Divergence Theorem for a vector fieldξ on (M, g) states that
∫

M
(div ξ)d volg = 0, (7)

when eitherξ has compact support orM is closed. TheD⊥-divergenceof ξ is defined by
div⊥ ξ = ∑i ǫi g(∇i ξ, Ei), and forξ ∈ XD⊥ we havediv⊥ξ = div ξ + g(ξ, H⊤).

2. INTEGRAL FORMULAS

The main idea of proving integral formulas (as in the case of formulas discussed in the intro-
duction) is to calculate the divergence of a vector field and use the Stokes Theorem. In [9], this
approach was applied to vector fieldsZk = (A⊤

H⊤)
kH⊥ + (A⊥

H⊥)
k H⊤, on a Riemannian space,

namely, fork = 0, 1. We add toZ0 = H⊥+ H⊤ (in Section 2.1) andZ1 = A⊤
H⊤ H⊥+ A⊥

H⊥ H⊤

(in Section 2.2) certain vector fields on a metric-affine space, compute their divergence and find
integral formulas. We also work with a closed manifoldM equipped with vector fields, distribu-
tions, etc. defined on the complement to the “set of singularities”Σ, which is a (possibly empty)
union of closed submanifolds of variable codimension≥ 2. The singular case is important since
many manifolds admit no smooth (e.g. codimension-one) distributions, while they admit such
distributions and tensors outside someΣ. Example of such distributions provide “open book
decompositions” on manifolds, see discussion in [9].

Lemma 1 (see Lemma 2 in [9]). Let Σ1, codim Σ1 ≥ 2, be a closed submanifold of a Rie-
mannian manifold(M, g), andξ a vector field onM \ Σ1 such that‖ξ‖g ∈ L2(M, g). Then(7)
holds.

2.1. Integral formulas with S̄ mix. The divergence ofZ0, see (3), was calculated in [16] and
the integral formula

∫

M

{
S mix − ‖T⊤‖2 − ‖T⊥‖2 + ‖h⊤‖2 + ‖h⊥‖2 − ‖H⊤‖2 − ‖H⊥‖2

}
d volg = 0 (8)

was obtained for a closed Riemannian manifoldM. We will denote by〈B, C〉|V the inner product

of tensorsB, C restricted onV = (D⊤ ×D⊥) ∪ (D⊥ ×D⊤).
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Lemma 2. We have

div
(
(H⊤

T − H⊤
T ∗)⊥ + (H⊥

T − H⊥
T ∗)⊤

)
= 2 (S̄ mix − S mix)

− g(H⊤
T , H⊥

T ∗)− g(H⊥
T , H⊤

T ∗)− g(H⊤
T − H⊥

T + H⊥
T ∗ − H⊤

T ∗ , H⊤ − H⊥)

− 〈T − T ∗ + T̂ − T̂ ∗, A⊥− T⊥♯+ A⊤− T⊤♯〉+ 〈T ∗, T̂ 〉 |V . (9)

For statistical manifolds,(9) reads

S̄ mix − S mix − g(H⊤
T , H⊥

T ) + (1/2) 〈T , T 〉 |V = 0.

For Riemann-Cartan manifolds,(9) reads

div
(
(H⊤

T )
⊥ + (H⊥

T )
⊤
)
= S̄ mix − S mix − g(H⊤

T − H⊥
T , H⊤ − H⊥)

+ g(H⊤
T , H⊥

T )− 〈T + T̂ , A⊥ − T⊥♯ + A⊤ − T⊤♯〉 − (1/2) 〈T , T̂ 〉 |V .

Proof. Using (6) we get̄S mix − S mix = 1
2 (Q1 + Q2), where

Q1 = ∑a,i
ǫa ǫi [ g((∇iT )aEa, Ei)− g((∇aT )iEa, Ei) + g([Ti, Ta]Ea, Ei) ],

Q2 = ∑a,i
ǫa ǫi [ g((∇aT )iEi, Ea)− g((∇iT )aEi, Ea) + g([Ta, Ti] Ei, Ea) ].

Let (∇iEa)⊤ = 0 and (∇aEi)
⊥ = 0 at a pointx ∈ M, thus−∇iEa = ∑j ǫj g((A⊥

a +

T⊥♯
a )Ei, Ej)Ej and−∇a Ei = ∑b ǫb g((A⊤

i + T⊤♯
i )Ea, Eb)Eb. We calculate atx:

g((∇iT )aEa, Ei) = g(TiEa + TaEi, (A⊥
a − T⊥♯

a )Ei) + div⊥(H⊤
T ),

g((∇aT )iEa, Ei) = g(T ∗
a Ei + T ∗

i Ea, (A⊤
i − T⊤♯

i )Ea) + div⊤(H⊥
T ∗),

g((∇aT )iEi, Ea) = g(TaEi + TiEa, (A⊤
i − T⊤♯

i )Ea) + div⊤(H⊥
T ),

g((∇iT )aEi, Ea) = g(T ∗
i Ea + T ∗

a Ei, (A⊥
a − T⊥♯

a )Ei) + div⊥(H⊤
T ∗),

g([Ti, Ta]Ea, Ei) = g(H⊤
T , H⊥

T ∗)− g(TiEa, T ∗
a Ei),

g([Ta, Ti] Ei, Ea) = g(H⊥
T , H⊤

T ∗)− g(T ∗
i Ea, TaEi),

(omitting ∑a,i ǫa ǫi) and find

Q1 = div⊥(H⊤
T )− div⊤(H⊥

T ∗) + ∑a,i
ǫa ǫi

[
g(TiEa + TaEi, (A⊥

a − T⊥♯
a )Ei)

− g(T ∗
a Ei + T ∗

i Ea, (A⊤
i − T⊤♯

i )Ea)− g(TiEa, T ∗
a Ei)

]
+ g(H⊤

T , H⊥
T ∗),

Q2 = div⊤(H⊥
T )− div⊥(H⊤

T ∗) + ∑a,i
ǫa ǫi

[
g(TaEi + TiEa, (A⊤

i − T⊤♯
i )Ea)

− g(T ∗
i Ea + T ∗

a Ei, (A⊥
a − T⊥♯

a )Ei)− g(TaEi, T
∗

i Ea)
]
+ g(H⊥

T , H⊤
T ∗). (10)

From (10), using equalities

div⊥(H⊤
T ) = div((H⊤

T )
⊥) + g(H⊤

T , H⊤ − H⊥),

div⊤(H⊥
T ∗) = div((H⊥

T ∗)⊤)− g(H⊥
T ∗ , H⊤ − H⊥),

div⊥(H⊤
T ∗) = div((H⊤

T ∗)⊥) + g(H⊤
T ∗ , H⊤−H⊥),

div⊤(H⊥
T ) = div((H⊥

T )
⊤)− g(H⊥

T , H⊤−H⊥),
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we obtain

div
(
(H⊤

T − H⊤
T ∗)⊥ + (H⊥

T − H⊥
T ∗)⊤

)
= 2 (S̄ mix − S mix)

− g(H⊤
T , H⊥

T ∗)− g(H⊥
T , H⊤

T ∗)− g(H⊤
T − H⊥

T + H⊥
T ∗ − H⊤

T ∗ , H⊤ − H⊥)

−∑a,i
ǫa ǫi

[
g((Ti − T ∗

i )Ea + (Ta − T ∗
a )Ei, (A⊥

a − T⊥♯
a ) Ei + (A⊤

i − T⊤♯
i )Ea)

− g(Ta Ei, T
∗

i Ea)− g(T ∗
a Ei, Ti Ea)

]
,

and hence, (9). �

In the next theorem we generalize (8).

Theorem 3. Let (M, g,∇) be a closed metric-affine space andD⊤ a distribution defined on
the complement to the “set of singularities”Σ, see Section 1. If‖ξ‖g ∈ L2(M, g), whereξ =

H⊥ + H⊤+ 1
2 (H⊤

T − H⊤
T ∗)⊥ + 1

2 (H⊥
T − H⊥

T ∗)⊤, then the following integral formula holds:
∫

M

{
S̄mix−〈T⊤, T⊤〉 − 〈T⊥, T⊥〉+ 〈h⊤, h⊤〉+ 〈h⊥, h⊥〉 − g(H⊤, H⊤)− g(H⊥, H⊥)

−
1

2

[
g(H⊤

T , H⊥
T ∗) + g(H⊥

T , H⊤
T ∗) + g(H⊤

T − H⊥
T + H⊥

T ∗ − H⊤
T ∗ , H⊤ − H⊥)

]

−
1

2
〈T − T ∗ + T̂ − T̂ ∗, A⊥− T⊥♯+ A⊤− T⊤♯〉+

1

2
〈T ∗, T̂ 〉 |V

}
d volg = 0.

Proof. By (3) and Lemma 2, we have onM \ Σ:

div ξ = S̄mix−〈T⊤, T⊤〉 − 〈T⊥, T⊥〉+ 〈h⊤, h⊤〉+ 〈h⊥, h⊥〉 − g(H⊤, H⊤)− g(H⊥, H⊥)

−
1

2

[
g(H⊤

T , H⊥
T ∗) + g(H⊥

T , H⊤
T ∗) + g(H⊤

T − H⊥
T + H⊥

T ∗ − H⊤
T ∗ , H⊤ − H⊥)

]

−
1

2
〈T − T ∗ + T̂ − T̂ ∗, A⊥− T⊥♯+ A⊤− T⊤♯〉+

1

2
〈T ∗, T̂ 〉 |V . (11)

Thus, the claim follows from (11) and Lemma 1. �

Corollary 4. Let (M, g,∇) be a closed statistical manifold andD⊤ a distribution defined on
the complement to the “set of singularities”Σ. If ‖H⊥ + H⊤‖g ∈ L2(M, g) then

∫

M

{
S̄ mix − 〈T⊤, T⊤〉 − 〈T⊥, T⊥〉+ 〈h⊤, h⊤〉+ 〈h⊥, h⊥〉

− g(H⊤, H⊤)− g(H⊥, H⊥)− g(H⊤
T , H⊥

T ) + (1/2) 〈T , T 〉 |V

}
d volg = 0.

Corollary 5. Let (M, g,∇) be a closed Riemann-Cartan manifold andD⊤ a distribution de-
fined on the complement to the “set of singularities”Σ. If ‖H̄⊥ + H̄⊤‖g ∈ L2(M, g) then

∫

M

{
S̄ mix − 〈T⊤, T⊤〉 − 〈T⊥, T⊥〉+ 〈h⊤, h⊤〉+ 〈h⊥, h⊥〉

− g(H⊤, H⊤)− g(H⊥, H⊥) + g(H⊤
T , H⊥

T )− g(H⊤
T − H⊥

T , H⊤ − H⊥)

− 〈T − T̂ , A⊥ − T⊥♯ + A⊤ − T⊤♯〉 − (1/2) 〈T , T̂ 〉 |V

}
d volg = 0.

Definition. We say that(M′, g′) is a leaf of a distributionD on (M, g) if M′ is a submanifold
of M with induced metricg′ andTx M′ = Dx for anyx ∈ M′. A leaf (M′, g′) of D is said to be
umbilical, harmonic, or totally geodesic, if h⊤ = 1

n H⊤g⊤, H⊤ = 0, or h⊤ = 0, resp., onM′.
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The next theorem generalizes result in [16].

Theorem 6. Let a distributionD⊤ on a metric-affine space(M, g,∇) has a compact leaf
(M′, g′) with condition

2H⊤ = (H⊤
T ∗ − H⊤

T )
⊥ (12)

on its neighborhood. Then the following integral formula along the leaf holds:

∫

M′

{
S̄ mix − 〈T⊥, T⊥〉+ 〈h⊥, h⊥〉+ 〈h⊤, h⊤〉+

1

2

[
g(H⊤

T − H⊤
T ∗ , H⊥)

+ g(H⊥
T − H⊥

T ∗ , H⊤)− g(H⊤
T , H⊥

T ∗)− g(H⊥
T , H⊤

T ∗) + 〈T ∗, T̂ 〉 |V

− 〈T − T ∗ + T̂ − T̂ ∗, A⊥ − T⊥♯ + A⊤〉
]}

d volg′ = 0. (13)

Proof. UsingT⊤ = 0, (3), Lemma 2 and equalities

div⊥(H⊥) = −g(H⊥, H⊥), div⊤(H⊤) = −g(H⊤, H⊤),

div⊥((H⊥
T − H⊥

T ∗)⊤) = −g(H⊥
T − H⊥

T ∗ , H⊥),

div⊤((H⊤
T − H⊤

T ∗)⊥) = −g(H⊤
T − H⊤

T ∗ , H⊤),

we have

div⊤ (
H⊥ +

1

2
(H⊥

T − H⊥
T ∗)⊤

)
+ div⊥ (

H⊤ +
1

2
(H⊤

T − H⊤
T ∗)⊥

)

= S̄ mix + 〈h⊥, h⊥〉+ 〈h⊤, h⊤〉 − 〈T⊥, T⊥〉

+
1

2

[
g(H⊤

T − H⊤
T ∗ , H⊥) + g(H⊥

T − H⊥
T ∗ , H⊤)− g(H⊤

T , H⊥
T ∗)

− g(H⊥
T , H⊤

T ∗) + 〈T ∗, T̂ 〉 |V − 〈T − T ∗ + T̂ − T̂ ∗, A⊥− T⊥♯+ A⊤〉
]
. (14)

By conditions (12), thediv⊥-term in (14) vanishes alongM′. Thus, (13) follows from the
Divergence theorem forξ = H⊥ + 1

2 (H⊥
T − H⊥

T ∗)⊤ on M′. �

Corollary 7. Let a distributionD⊤ on a statistical manifold(M, g,∇) admits a compact leaf
(M′, g′) with H⊤ = 0 on its neighborhood. Then the following integral formula holds:

∫

M′

{
S̄mix − 〈T⊥, T⊥〉+ 〈h⊥, h⊥〉+ 〈h⊤, h⊤〉

− g(H⊤
T , H⊥

T ) + (1/2) 〈T , T 〉|V

}
d volg′ = 0.

Corollary 8. Let a distributionD⊤ on a Riemann-Cartan manifold(M, g,∇) admits a compact
leaf (M′, g′) with H̄⊤ = 0 on its neighborhood. Then the following integral formula holds:

∫

M′

{
S̄ mix − 〈T⊥, T⊥〉+ 〈h⊥, h⊥〉+ 〈h⊤, h⊤〉+ g(H⊤

T , H⊥
T ) + g(H⊥

T , H⊤)

+ g(H⊤
T , H⊥)− 〈T + T̂ , A⊥ − T⊥♯ + A⊤〉 − (1/2) 〈T , T̂ 〉 |V

}
d volg′ = 0.
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Remark.ForD⊥ spanned by a unit vector fieldN, setRicN,N = ∑a ǫa g(R̄N,Ea N, Ea). Note
that generallyg(R̄N,Ea N, Ea) 6= g(R̄Ea,NEa, N). Let ǫN = 1. Similarly to Lemma 2, we have

div((TN N)⊤ − (H⊤
T ∗)⊥ ) = RicN,N − RicN,N + Q ,

Q = g(H⊤
T ∗ + TN N, H⊥ − (Tr A⊤)N)− 〈(T̂ )∗N + T ∗

N , A⊤
N + T⊤♯

N 〉 |D⊤

+ g((T̂ )∗N N + TN N, H⊥)− g(H⊤
T ∗ , TN N) + 〈T̂N , T ∗

N〉 |D⊤ .

The above yield the integral formula, which forT = 0 reduces to (1) withσ2 = Tr (A⊤
N)

2:
∫

M
(2 σ2 − RicN,N − Q)d volg = 0.

2.2. Integral formula with the Ricci curvature RicH⊤,H⊥ . The divergence ofZ1 for a Rie-
mannian manifold endowed with orthogonal complementary distributionsD⊤ andD⊥ has been
calculated in [9]:

div(A⊤
H⊤ H⊥ + A⊥

H⊥ H⊤) = RicH⊤,H⊥ + Q1, (15)

where

Q1 = g(H⊤,∇H⊥ H⊤) + g(H⊥,∇H⊤ H⊥)

+ g(Tr ⊥
g (∇� T⊤)(· , H⊥), H⊤) + g(Tr ⊤

g (∇� T⊥)(· , H⊤), H⊥)

+ 〈A⊤
H⊤ ,∇� H⊥〉+ 〈A⊥

H⊥ ,∇� H⊤〉 − g(A⊤
H⊥ H⊤, H⊤)− g(A⊥

H⊤ H⊥, H⊥)

+ 2 ∑a
ǫa

[
g(A⊤

(∇a H⊤)⊥ H⊥, Ea) + g(∇T⊤(H⊥, Ea)Ea, H⊤)
]

+ 2 ∑i
ǫi

[
g(A⊥

(∇i H⊥)⊤ H⊤, Ei) + g(∇T⊥(H⊤, Ei)
Ei, H⊥)

]
. (16)

Thus, on a closed manifold(M, g) one has the integral formula, see [9, Theorem 1],
∫

M
(RicH⊤,H⊥ + Q1)d volg = 0. (17)

If the distributions are umbilical, integrable and have constant mean curvature then (16) reads

Q1 = −(1/n + 1/p) g(H⊤, H⊤) g(H⊥, H⊥).

Lemma 9. For the metric-affine case we have

div(TH⊥ H⊤ + TH⊤ H⊥) = −(RicH⊤,H⊥ − RicH⊤,H⊥) + Q2, (18)

whereRicH⊤,H⊥ = Sym
(

∑a ǫa g(R̄H⊥, Ea
H⊤, Ea) + ∑i ǫi g(R̄H⊤, Ei

H⊥, Ei)
)

and

Q2 = Sym
(

g(∇H⊥ H⊤, H⊤
T ∗) + g(∇H⊤ H⊥, H⊥

T ∗)− g(TH⊥ H⊤, H⊥)− g(TH⊤ H⊥, H⊤)

−∑a
ǫa g

(
∇H⊥(TaH⊤)− T(h⊤+T⊤)(H⊥,Ea)+∇a H⊥ H⊤ + TH⊥(∇aH⊤), Ea

)

−∑i
ǫi g

(
∇H⊤(Ti H

⊥)− T(h⊥+T⊥)(H⊤,Ei)+∇i H⊤ H⊥ + TH⊤(∇i H
⊥), Ei

))
. (19)
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Proof. Using (4), we calculate

∑a
ǫa g(R̄H⊥, Ea

H⊤ − RH⊥, Ea
H⊤, Ea) =

= Sym
(

div⊤(TH⊥ H⊤) + g(∇H⊥ H⊤, H⊤
T ∗) + g(TH⊥ H⊤, H⊤

T ∗)

−∑a
ǫa

[
g(∇H⊥(TaH⊤), Ea)− g(T(h⊤+T⊤)(H⊥,Ea)H

⊤, Ea)

− g(T∇a H⊥ H⊤, Ea) + g(TH⊥(∇aH⊤), Ea) + g(TH⊥(TaH⊤), Ea)
])

. (20)

Summing (20) with similar formula for∑i ǫi g(R̄Ei ,H⊤ H⊥− REi ,H⊤ H⊥, Ei) and using equalities

div⊥(TH⊤ H⊥) = div(TH⊤ H⊥)− g(H⊤, TH⊤ H⊥),

div⊤(TH⊥ H⊤) = div(TH⊥ H⊤)− g(H⊥, TH⊥ H⊤),

yield (18)–(19). �

Theorem 10. Let (M, g,∇) be a closed metric-affine space andD⊤ a distribution defined on
the complement to the “set of singularities”Σ. If ‖ξ‖g ∈ L2(M, g), whereξ = A⊤

H⊤ H⊥+

A⊥
H⊥ H⊤+ TH⊤ H⊥ + TH⊥ H⊤, then

∫

M

{
RicH⊤,H⊥ + Q1 + Q2

}
d volg = 0. (21)

Proof. From (15) and (18) we obtain

div(A⊤
H⊤ H⊥ + A⊥

H⊥ H⊤ + TH⊥ H⊤ + TH⊤ H⊥) = −RicH⊤,H⊥ + Q1 + Q2.

Applying Lemma 1 to (16), (18) and (19), we obtain (21). �

For T = 0, we haveQ2 = 0, and (21) reduces to (17). One may get a number of formulas
from (21). The next one generalizes Proposition 3 in [9].

Recall thatD⊤ has constant mean curvature whenever its mean curvature vectorH⊤ obeys
∇⊥H⊤ = 0, where∇⊥ is the connection inD⊥ induced by the Levi-Civita connection onM.

Corollary 11. Let in conditions of Theorem 10, distributionsD⊤ andD⊥ be umbilical, inte-
grable and have constant mean curvature. Then(21) reads

∫

M

{
RicH⊤,H⊥ − (

1

n
+

1

p
) g(H⊤, H⊤) g(H⊥, H⊥) + Sym

(
g(∇H⊤ H⊥, H⊥

T ∗)

+ g(∇H⊥ H⊤, H⊤
T ∗)− g(H⊥, TH⊥−H⊤ H⊤)− g(H⊤, TH⊤−H⊥ H⊥)

−∑a
ǫa g(∇H⊥(TaH⊤)− T∇a H⊥ H⊤ + TH⊥(∇aH⊤), Ea)

−∑i
ǫi g(∇H⊤(Ti H

⊥)− T∇i H⊤ H⊥ + TH⊤(∇i H
⊥), Ei)

)}
d volg = 0.

3. SPLITTING RESULTS

In this section, we consider distributions(D⊤,D⊥) on a metric-affine manifold(M, g,∇),
satisfying some geometrical conditions, and prove non-existence and splitting results, which
follow from integral formulas of Section 2. In the sequel, we assume thatg > 0. We omit
similar results for (co)dimension one distributions and foliations and consequences for harmonic
and Riemannian submersions, which follow from results below.
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We say that(M, g) endowed with a distributionD⊤ splits if M is locally isometric to a
product with canonical foliations tangent toD⊤ andD⊥. Remark that if a simply connected
manifold splits then it is the direct product.

The next conditions are introduced to simplify the presentation of results:

TXY = 0 = TYX, T ∗
X Y = 0 = T ∗

Y X (X ∈ D⊤, Y ∈ D⊥), (22)

g(H⊤
T − H⊤

T ∗ , H⊥) = 0. (23)

For example, (22) provides vanishing of last two lines in (11).
Recent extensions of (7) to non-compact case are discussed in [14].Applying S.T.Yau version

of Stokes’ theorem on a complete open Riemannian manifold(M, g) yields the following.

Lemma 12 (see Proposition 1 in [5]). Let (M, g) be a complete open Riemannian manifold
endowed with a vector fieldξ such thatdiv ξ ≥ 0. If the norm‖ξ‖g ∈ L1(M, g) thendiv ξ ≡ 0.

3.1. Harmonic distributions. Note that condition (12) onM whenT = 0 reduces toH⊤ = 0,
i.e.,D⊤ is harmonic. Next theorem generalizes Theorem 5 in [14].

Theorem 13. LetD⊤ andD⊥ be complementary orthogonal integrable distributions with con-
ditions (12), (22) and (23) on a complete open metric-affine space(M, g,∇). Suppose that
the leaves(M′, g′) of D⊤ obey condition‖ξ |M′‖g′ ∈ L1(M′, g′), whereξ = H⊥ + 1

2 (H⊥
T −

H⊥
T ∗)⊤. If S̄ mix ≥ 0 thenM splits.

Proof. By conditions, we have

div⊤ ξ = S̄ mix + 〈h⊥, h⊥〉+ 〈h⊤, h⊤〉. (24)

Applying Lemma 12 to each leaf (a complete open manifold), and sinceS̄ mix ≥ 0, we get
div ξ = 0. Thus,h⊤ = 0 = h⊥. By de Rham theorem,(M, g) splits. �

Note that condition‖ ξ|M′‖g′∈L1(M′, g′) is satisfied on any compact leaf(M′, g′) of D⊤.
Next two results generalize Theorem 2 and Corollary 4 in [16].

Corollary 14. Let (M, g,∇) be a metric-affine space endowed with a distributionD⊤ with
integrable normal bundle and conditions(12), (22) and (23). ThenD⊤ has no complete open
leaves(M′, g′) with the properties̄S mix |M′ > 0 and‖ξ |M′‖g′ ∈ L1(M′, g′), whereξ = H⊥ +
1
2 (H⊥

T − H⊥
T ∗)⊤. In particular, there are no compact leaves withS̄ mix |M′ > 0.

Proof. Let (M′, g′) be a complete open leaf obeying the conditions. By (14), we have (24) on
M′. Applying Lemma 12 to the leaf, and sinceS̄ mix > 0, we getdiv ξ = 0. The above yields
h⊤ = 0 = h⊥ andS̄ mix = 0 – a contradiction. �

Corollary 15. A codimension one distributionD⊤ of a metric-affine space(M, g,∇) with the
Ricci curvatureRic > 0 and the properties(12), (22)and (23)has no compact leaves.

Proof. For a codimension oneD⊤, we haveT⊤ = 0 andǫN RicN,N = S̄ mix, whereN is a unit
normal to the leaves. Hence, the claim follows from Corollary 14. �

Theorem 16. Let (M, g,∇) be a complete open (or closed) metric-affine space endowed with
complementary orthogonal harmonic foliations. Suppose that conditions(22), ‖ξ‖g ∈ L1(M, g)

with ξ = 1
2 (H⊤

T − H⊤
T ∗)⊥ + 1

2 (H⊥
T − H⊥

T ∗)⊤, and

g(H⊤
T , H⊥

T ∗) + g(H⊥
T , H⊤

T ∗) = 0
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are satisfied. IfS̄ mix ≥ 0 thenM splits.

Proof. Under conditions, from (11) we get

div ξ = S̄ mix + 〈h⊤, h⊤〉+ 〈h⊥, h⊥〉.

By Lemma 12 and sincēS mix ≥ 0, we obtaindiv ξ = 0. Thus,h⊤ = 0 = h⊥. Hence, by de
Rham decomposition theorem,(M, g) splits. �

3.2. Umbilical distributions.

Theorem 17.Let(M, g,∇) be a metric-affine space endowed with two complementary orthogo-
nal distributions(D⊤,D⊥) with conditions(12), (22)and(23). ThenD⊤ has no complete open
umbilical leaves(M′, g′) with the properties̄S mix |M′ < 0 and‖ξ |M′‖g′ ∈ L1(M′, g′), where

ξ = H⊥ + 1
2 (H⊥

T − H⊥
T ∗)⊤. In particular, there are no compact umbilical leaves(M′, g′) with

S̄ mix |M′ < 0.

Proof. Let (M′, g′) be a complete open umbilical leaf obeying the conditions. From (14) we get

div⊤ ξ = S̄ mix − 〈T⊥, T⊥〉 −
p − 1

p
g(H⊥, H⊥)−

n − 1

n
g(H⊤, H⊤) (25)

on M′. Thus, applying Lemma 12 to the leaf, and sinceS̄ mix |M′ < 0, we getdiv⊤ ξ = 0.

By the above,H⊤ = 0 = H⊥, T⊥ = 0 andS̄ mix = 0 – a contradiction. �

Corollary 18. A codimension one distributionD⊤ on a metric-affine space(M, g,∇) with the
Ricci curvatureRic < 0 and conditions(12), (22)and (23)has no compact umbilical leaves.

A submersionf : (M, g) → (M̃, g̃) is conformalif f∗ restricted to(ker f∗)⊥ is conformal
map, see [14].

Theorem 19(For T = 0, see Corollary 5 in [14]). Let (M, g,∇) be a complete open metric-
affine space,f : (M, g) → (M̃, g̃) a conformal submersion with umbilical fibres and conditions
(12), (22) and (23). If S̄ mix ≤ 0 and‖ξ|M′‖g′∈L1(M′, g′), whereξ = H⊥ + 1

2 (H⊥
T − H⊥

T ∗)⊤,

on any fibre(M′g′) then(ker f∗)⊥ is integrable andM splits.

Proof. SetD⊤ = ker f . Under conditions, we have (25). Applying Lemma 12 to every fibre (a
complete open manifold), and sinceS̄ mix ≤ 0, we getdiv ξ = 0. The above yields vanishing of
H⊤, H⊥ andT⊥. By de Rham decomposition theorem,(M, g) splits. �

Theorem 20(ForT = 0, see Theorem 4 in [14]). Let(M, g,∇) be a complete open (or closed)
metric-affine space endowed with complementary orthogonal umbilical distributionsD⊤ and
D⊥ defined on the complement to the “set of singularities”Σ. If conditions(22),

H⊤
T = 0 = H⊥

T , H⊤
T ∗ = 0 = H⊥

T ∗ (26)

and‖ξ‖g ∈ L1(M, g), whereξ = H⊥ + H⊤, are satisfies and̄S mix ≤ 0 thenM splits.

Proof. Under conditions, from (11) we get

div ξ = S̄ mix − 〈T⊤, T⊤〉 − 〈T⊥, T⊥〉 −
p − 1

p
g(H⊥, H⊥)−

n − 1

n
g(H⊤, H⊤). (27)

From (27) and Lemma 12 and sinceS̄ mix ≤ 0, we getdiv ξ = 0. The above yields vanishing of
T⊤, T⊥, H⊤, H⊥. Hence, by de Rham decomposition theorem,(M, g) splits. �
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Umbilical integrable distributions appear on double-twisted products, see [10].

Definition. A doubly-twisted productB ×(v,u) F of two metric-affine spaces(B, gB, TB) and

(F, gF, TF) is a manifoldM = B × F with metric g = g⊤ + g⊥ and contorsion tensorT =
T ⊤ + T ⊥, where

g⊤(X, Y) = v2gB(X⊤, Y⊤), g⊥(X, Y) = u2gF(X⊥, Y⊥),

(T ⊤)XY = u2(TB)X⊤Y⊤, (T ⊥)XY = v2(TF)X⊥Y⊥,

and the warping functionsu, v ∈ C∞(M) are positive. Indeed,T ∗ = T ∗⊤ + T ∗⊥, where

(T ∗⊤)XY = u2(T ∗
B )X⊤Y⊤, (T ∗⊥)XY = v2(T ∗

F )X⊥Y⊥.

Let D⊤ be tangent to thefibers{x} × F andD⊥ tangent to theleavesB × {y}. The second
fundamental forms and the mean curvature vectors ofB ×(v,u) F are given by, see [10],

h⊥ = −∇⊤(log u) g⊥, h⊤ = −∇⊥(log v) g⊤,

H⊥ = −n∇⊤(log u), H⊤ = −p∇⊥(log v).

Thus, the leaves and the fibers ofB ×(v,u) F are umbilical w.r.t.∇ and∇. Conditions (22) are
obviously satisfied forB ×(v,u) F. Next corollaries extend results in [15].

Corollary 21 (of Theorem 17). Let (12), (23) and‖ξ |M′‖g′ ∈ L1(M′, g′), whereξ = H⊥ +
1
2 (H⊥

T − H⊥
T ∗)⊤, are satisfied along the fibres ofB ×(v,u) F, where(F, gF) is complete open (or

closed). IfS̄ mix ≤ 0 thenM is the direct product.

Proof. Under conditions, from (25) we get

div⊤ ξ = S̄ mix −
p − 1

p
g(H⊥, H⊥)−

n − 1

n
g(H⊤, H⊤).

Applying Lemma 12 to each fibre (a complete manifold), and sinceS̄ mix ≤ 0, we getdiv ξ = 0.
Hence,S̄ mix = 0 and H⊤ = 0 = H⊥, i.e., ∇⊤u = 0 = ∇⊥v. By the above,S mix = 0;
thus,u andv are constant. By de Rham decomposition theorem,(M, g) splits with the factors
(B, c1 · gB) and(F, c2 · gF) for somec1, c2 > 0. �

Corollary 22 (of Theorem 20). Let M = B×(v,u) F be complete open (or closed) and conditions

(23), (26)and‖ξ‖g ∈ L1(M, g), whereξ = H⊥ + H⊤ are satisfied. If̄S mix ≤ 0 thenM is the
direct product.

Proof. SetD⊤ = π∗(TF). Under conditions, we get, see (27),

div ξ = S̄ mix −
p − 1

p
g(H⊥, H⊥)−

n − 1

n
g(H⊤, H⊤).

Applying Lemma 12 toM, and sincēS mix ≤ 0, we getdiv ξ = 0. Hence,S̄ mix = 0 and
H⊤ = 0 = H⊥, i.e.,∇⊤u = 0 = ∇⊥v. By the above,S mix = 0; thus,u andv are constant.
By de Rham decomposition theorem,(M, g) splits with the factors(B, c1 · gB) and(F, c2 · gF)
for some positivec1, c2 ∈ R. �
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