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AN INSCRIBED SQUARE OF A RIGHT TRIANGLE ASSOCIATED WITH AN
ARBELOS

HIROSHI OKUMURA

Abstract. The inscribed square of a right triangle with a side along the hypotenuse is constructed
from an arbelos. The arbelos with the square yields several dozens of congruent circles, which
are not Archimedean circles of the arbelos, but Archimedean circles of several generalized arbeloi
called an arbelos with overhang, a collinear arbelos, an arbelos in n-aliquot parts, and a skewed
arbelos associated with the arbelos and the square.
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1. INTRODUCTION

Let us consider an arbelos consisting of three semicircles α, β and γ with diameters AO,
BO and AB, respectively for a point O on the segment AB in the plane. We denote the
arbelos by (α, β, γ). There are two inscribed squares of a right triangle, one with two
sides lying on sides of the triangle, and the other with a side lying on the hypotenuse. In
[1], we have considered the inscribed square of an arbelos, which are also the inscribed
square of a right triangle in the former case.

Let a and b be the radii of α and β, respectively. Circles of radius rA = ab/(a + b) form
a special class of circles and are called Archimedean circles of (α, β, γ). Archimedean
circles are also defined for several generalized arbeloi, such as an arbelos with overhang
[2], an arbelos in n-aliquot parts [6], a collinear arbelos [3, 4], and a skewed arbelos
[3, 5, 7]. Let I be the point of intersection of the semicircle γ and the radical axis of the
semicircles α and β. In this article we consider the inscribed square of the right triangle
ABI in the latter case, i.e., its one side lies on the segment AB. We show that the arbelos
with the square yields several dozens of congruent circles, which are not Archimedean
circles of (α, β, γ), but Archimedean circles of the four generalized arbeloi just mentioned
above associated with (α, β, γ) and the square.
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2. SOME PROPERTIES OF PENCILS OF CIRCLES

In this section we consider some properties of the arbelos and pencil of circles, which
will be needed in later sections. We use a rectangular coordinate system with origin O
such that the points A and B have coordinates (2a, 0) and (−2b, 0), respectively, where
we assume that the semicircles α, β and γ are constructed in the region y > 0. For two
points P and Q, (PQ) and P(Q) denote the circle with diameter PQ and the circle with
center P passing through Q, respectively. However if their centers lie on AB, we regard
them as semicircles with their diameters lying along AB constructed in the region y > 0.

For two circles δ1 and δ2, one of which may be a line, we denote the pencil of circles
determined by δ1 and δ2 by P(δ1, δ2). The concept of pencil of circles is also valid for
semicircles if we consider them as circles. The other concepts on circles are also valid
for semicircles in a similar way. In this section we assume that V and W are points
on the semicircle γ having the x-coordinates v and w, and V ′ and W ′ are the feet of
perpendiculars from V and W to the line AB, respectively. Let yw be the y-coordinate of
W. Then

yw =
√
(2a − w)(w + 2b), (1)

and the line AW has the equation

y = (x − 2a)yw/(w − 2a). (2)

The perpendicular from a point X to AB is denoted by PX.
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Theorem 1. If δ is a circle touching the semicircle γ and the line PW from the side op-
posite to A or B according as it touches γ externally or internally, and Y is the point of
intersection of the line AW and the diameter of δ parallel to AB, then Y is one of the
limiting points of the pencil P(δ,PA).

Proof. We assume that δ touches γ externally (see Figure 1). If r and yd are the radius
and the y-coordinate of the center of δ, then y2

d = (r + a + b)2 − ((a − b)− (w − r))2 =

(2b + w)(2a + 2r − w). Therefore Y has the x-coordinates 2a −
√
(2a − w)(2a + 2r − w)

by (2). Hence if Z is the foot of perpendicular from Y to the line PA, then |YZ|2 =
(2a − w)(2a + 2r − w). On the other hand, the power of Z with respect to δ also equals
(2a − (w − r))2 − r2 = (2a − w)(2a + 2r − w). Therefore Y is one of the limiting points
of P(δ,PA). The case δ touching γ internally is proved similarly. □
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A point D is said to generate circles of radius r with a circle δ, if two congruent circles of
radius r touch externally at D and also touch δ at points different from D. The definition
is also valid in the case δ being a semicircle, if we regard it as a circle. We use the next
theorem [3, Theorem 7] (see Figure 2).

Theorem 2. Let δ be a circle of radius r touching the semicircle γ and the lines PV and
PW . The following statements are true.
(i) The perpendicular bisector of V ′W ′ is the radical axis of the semicircles A(V) and
B(W).
(ii) If A(V) and B(W) intersect and the point of intersection and δ lies on the same side
of γ, the point generates circles of radius r with any circle with center on AB touching δ.

We investigate further properties of the figure of Theorem 2. Let e = a + b.

Theorem 3. If we assume the hypothesis of (ii) of Theorem 2 in the situation of the
theorem, the point of intersection of A(V) and B(W) is one of the limiting points of the
pencil P(δ, AB).

Proof. Since |AV|2 = |AV ′|2 + |VV ′|2 = (2a − v)2 + (2a − v)(v + 2b) = 2e(2a − v), the
semicircle A(V) has the equation

(x − 2a)2 + y2 = 2e(2a − v). (3)

The point of intersection of A(V) and B(W) has the x-coordinate m = (v + w)/2 by (i)
of Theorem 2. Therefore the square of the distance between this point and AB equals

2e(2a − v)− (m − 2a)2 . (4)

If v > w, then r = (v − w)/2 and δ touches γ internally and has center with coordinates
(m, l), where l satisfies l2 = (e − r)2 − (m − (a − b))2. If D is the foot of perpendicular
from the center of δ to AB, the power of D with respect to δ is l2 − r2, which also equals
(4). Therefore the theorem is proved. The case v < w is proved in a similar way. □

The center of a circle or a semicircle δ is denoted by Oδ.

Proposition 2.1. If r and yd are the radius and the y-coordinate of the center of the circle touching
the semicircles α externally γ internally and the line PW from the side opposite to B, then

r = b(2a − w)/(2e) and yd = yw
√

a/e. (5)

Proof. From the two right triangles formed by the segments joining two of the points Oα,
Oγ and Oδ and the perpendicular from Oδ to AB, we get (w + r − a)2 + y2

d = (a + r)2 and
(w + r − (a − b))2 + y2

d = (e − r)2. Solving the equation, we get (5). □

Theorem 4. If δ is the circle touching α externally γ internally and the line PW from the
side opposite to B, and X is a point of intersection of the semicircle α and the line PV ,
then the following statements are equivalent.
(i) The points A, X and W are collinear. (ii) |OβW| = |OβX|.
(iii) The line PV is the tangent of δ different from PW .
(iv) The line PW is the radical axis of the semicircles α and A(V).
(v) The diameter of δ parallel to AB and the line AW and A(V) meet in a point.
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Proof. The three points in (i) are collinear if and only if the triangles AW ′W and AV ′X are
similar, which is equivalent to (2a − v)/a = (2a − w)/e (see Figure 3). The last equation
is equivalent to

v = a(2b + w)/e. (6)

Since X has the y-coordinates yx =
√
(2a − v)v, |OβX|2 − |OβW|2 = (b + v)2 + y2

x −
((b + w)2 + y2

w) = 2e(v − a(2b + w)/e) by (1). Therefore (i) and (ii) are equivalent. If r is
the radius of δ, we get the left equation of (5). Hence (iii) holds if and only if w + b(2a −
w)/e = v. The last equation is also equivalent to (6), i.e., (i) and (iii) are equivalent.
Subtracting the equation (x − 2a)x + y2 = 0 of α from (3), we get x = v + b(v/a − 2).
The last equation expresses PW if and only if v + b(v/a − 2) = w, which is equivalent
to (6). Therefore (iv) and (i) are equivalent. If the point of intersection of AW and the
diameter of δ parallel to AB has the coordinates (xd, yd), then xd = 2a + (w − 2a)

√
a/e

and yd = yw
√

a/e by (2) and the right equation of (5). Then (xd − 2a)2 + y2
d − 2e(2a −

v) = 2e(v − a(2b + w)/e), which shows the equivalence of (v) and (i) by (3). □
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Figure 3.

3. THE INSCRIBED SQUARE OF THE TRIANGLE ABI

We call the radical axis of α and β the axis of (α, β, γ), which overlaps with the y-axis. Let
Q and R be points on the segment AI and BI, and let P and S be the feet of perpendiculars
from Q and R to AB, respectively. We assume that PQRS is a square (see Figure 4). Let
f =

√
ab, g = e + f . Since |IO| = 2 f and the triangles ABI and QRI are similar,

(|IO| − |PQ|) : |PQ| = |IO| : |AB| holds. This implies

|PQ| = 2e f /g. (7)
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Figure 4.
From the similar triangles AOI and APQ, and BOI and BSR, we have

|AP| = 2ae/g and |BS| = 2be/g. (8)
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Therefore we have
|OP| = 2a f /g and |OS| = 2b f /g. (9)

Let the line PQ intersect α and γ at points T and J, and let the line RS intersect β and γ
at points U and K, respectively. By (9), the y-coordinates of the points J and K are

2e
√

a(b + f )/g and 2e
√

b(a + f )/g. (10)

4. CIRCLES OF RADIUS rs

Let H be the point of intersection of the axis and the segment QR. We denote the radius
of the circle (HI) by rs. Since |IO| = 2 f , rs = ab/g by (7). In this section we show
that more than a dozen of circles of radius rs are obtained from (α, β, γ) with the square
PQRS. Let δα (resp. δβ) be the circle touching α (resp. β) externally, γ internally, and
the line JP (resp. KS) from the side opposite to B (resp. A) (see Figure 5). Notice that
if we exchange the roles of A and B, then α and β, J and K, P and S, T and U are also
interchanged, respectively by their definitions.
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Figure 5.

Theorem 5. The following statements hold, and similar results are also true if we ex-
change the roles of A and B.
(i) The circles δα has radius rs.
(ii) The semicircles α, Oβ(J) and the line AJ meet in a point, and its distance from the line
JP equals 2rs. Also the distance between JP and the point of intersection of semicircles γ
and A(T) is 2rs. The diameter of δα parallel to AB, A(T) and AJ meet in a point, which
is one of the limiting points of the pencil P(δα,PA).
(iii) The point of intersection of the semicircles A(T) and B(J) is one of the limiting points
of the pencil P(δα, AB). The point generates circles of radius rs with each of γ and α.
(iv) The point of intersection of the semicircles Oα(J) and Oβ(K) is one of the limiting
points of the pencil P((HI), AB).

Proof. If w = 2a f /g, then b(2a − w)/(2e) = rs. This proves (i) by the left equation of
(5) and (9). The part (ii) is proved by (i) and Theorems 1 and 4. The first part of (iii)
is proved by Theorem 3. The rest of (iii) is proved by (ii) of Theorem 2. We prove (iv).
|Oα J|2 = (a − |OP|)2 + |JP|2 = a2 + 4ers by (9) and (10). Hence Oα(J) has the equation
(x − a)2 + y2 = a2 + 4ers. Therefore if M is the point of intersection of Oα(J) and the
axis, then |OM|2 = 4ers. Since the right side of the equation is symmetric in a and b, the
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semicircle Oβ(K) also passes through M. While the power of O with respect to (HI) also
equals (|IO| − rs)2 − r2

s = 4ers. This proves (iv). □

5. TWO GENERALIZED ARBELOI WITH ARCHIMEDEAN CIRCLES OF RADIUS rs

In this section and in the next two sections, we show that circles of radius rs are
Archimedean circles of some generalized arbeloi associated with (α, β, γ) with the square
PQRS. In this section we consider an arbelos with overhang and an arbelos in n-aliquot
parts. Let Ah and Bh be the points with coordinates (2(a + h), 0) and (−2(b + h), 0) for
a real number h > −min(a, b), respectively, and let αh = (AhO) and βh = (BhO). The
configuration consisting of the three semicircles αh, βh and γ is called an arbelos with
overhang h and is denoted by (αh, βh, γ). We use the next proposition [2, Propositions 1
and 6]. Recall that rA = ab/e.

Proposition 5.1. The following statements are true.
(i) The circle touching αh (resp. βh) externally γ internally and the axis of (α, β, γ) from the side
opposite to B (resp. A) has radius ab/(e + h).
(ii) If h > 0, the circle touching αh (resp. βh) and γ internally and α (resp. β) externally has
radius hrA/(h + rA).
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Figure 6.
Notice that |AAh| = |BBh| = |IO| in the case h = f .

Theorem 6. If h = f , the following statements hold.
(i) The circle touching αh (resp. βh) externally γ internally and the axis from the side
opposite to B (resp. A) has radius rs.
(ii) The circle touching αh (resp. βh) and γ internally, α (resp. β) externally coincides with
the circle δα (resp. δβ).
(iii) The circle touching αh and βh externally and γ internally is an Archimedean circle of
the arbelos (α, β, γ).

Proof. The parts (i) and (ii) follow from (i) and (ii) of Proposition 5.1. The circle in (iii)
is an Archimedean circle of (α, β, γ) if and only if both the pairs γ and αh and γ and βh
have the same external center of similitude [8, Theorem 3]. While they have the same
external center of similitude with x-coordinate 2 f (

√
a +

√
b)/(

√
b −

√
a). This proves

(iii). □
We call the two circles of radius ab/(e + h) in (i) of Proposition 5.1 the twin circles of
Archimedes of (αh, βh, γ), and circles of radius ab/(e + h) are called Archimedean cir-
cles of (αh, βh, γ). Hence if h = f , the two circles of radius rs in (i) of Theorem 6 are
the twin circles of Archimedes of (αh, βh, γ) and circles of radius rs are Archimedean
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circles of (αh, βh, γ) (see Figure 6). Notice that the semicircles (AhB) and (Bh A) have
radius g and (7) shows that |PQ| equals the diameter of Archimedean circles of the ar-
beloi ((AB), (AAh), (AhB)) and ((AB), (BBh), (Bh A)). By (ii) of Theorem 2, the point of
intersection of A(T) and B(J) also generates circles of radius rs with αh. Similar fact also
holds for B(U), A(K) and βh.

If we divide the area surrounded by α, β and γ by n − 1 semicircles constructed in the
region y > 0 belonging to P(α, β) (one of which may be the axis) into n areas, and all
their incircles are congruent, the configuration of n + 2 semicircles is called an arbelos
(α, β, γ) in n-aliquot parts. Circles congruent to those incircles are called Archimedean
circles in n-aliquot parts of (α, β, γ) [6]. Therefore if h = f , the configuration consisting
of α, αh, the axis, βh, β and γ form an arbelos (α, β, γ) in 4-aliquot parts, and circles of
radius rs are also Archimedean circles in 4-aliquot parts of (α, β, γ) (see Figure 6).

6. A COLLINEAR ARBELOS WITH ARCHIMEDEAN CIRCLES OF RADIUS rs

Let X (resp. Y) be a point on the half line with initial point A (resp. B) passing through B
(resp. A), and let s = |AY|/2 and t = |BX|/2. If X and Y lie inside γ, the circle touching
(AX) (resp. (BY)) externally γ internally and the radical axis of (AX) and (BY) from
the side opposite to B (resp. A) has radius st/(s + t). Also if X and Y lie outside γ, the
circle touching (AX) (resp. (BY)) internally γ externally and the radical axis of (AX)
and (BY) from the side opposite to A (resp. B) has radius st/(s + t) (see Figure 7). In
both the cases the configuration consisting of the semicircles (AX), (BY) and γ is called
a collinear arbelos and is denoted by ((AX), (BY), γ) [4]. The two congruent circles are
called the twin circles of Archimedes of ((AX), (BY), γ), and circles of radius st/(s + t)
are called Archimedean circles of it. Note that X and Y are interchanged, if we exchange
the roles of A and B.

O

γ

AB
YX

β α δ

Figure 7.
If X = S and Y = P, the radical axis of the two semicircles (AS) and (BP) coincides with
the axis of (α, β, γ) by (9), and s = |AP|/2 and t = |BS|/2. This implies st/(s + t) = rs
by (8). Therefore the two circles of radius rs in (i) of Theorem 6 coincide with the twin
circles of Archimedes of the collinear arbelos ((AS), (BP), γ), and circles of radius rs are
Archimedean circles of it (see Figure 8).

We have been giving many theorems that prove circles are Archimedean circles of some
generalized arbeloi [2, 3, 4, 5]. Thereby if circles of radius rs are Archimedean circles of
such a generalized arbelos, we can get circles of radius rs from those theorems. We con-
sider a brief example for the collinear arbelos. The next theorem gives new Archimedean
circles of the collinear arbelos.
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Theorem 7. The following statements hold for a collinear arbelos ((AX), (BY), γ), and
similar facts also hold if we exchange the roles of A and B.
(i) If the perpendicular bisector of the segment AY intersects the semicircle α, the point
of intersection generates circles of radius st/(s + t) with γ.
(ii) If a circle δ touches the tangent of β from A and also touches the semicircle (BY) exter-
nally or internally at Y according as Y lies inside or outside γ, then δ is an Archimedean
circle of ((AX), (BY), γ).

Proof. For points V and W on the line AB, if the semicircle (AV) and the line PW intersect,
the point of intersection generates circles of radius |AW||BV|/(2e) with γ [3, Lemma 3].
If W is the midpoint of AY and V = O, then using the fact ta = sb [4, (1)], we get

|AW||BV|
2e

=
(|AY|/2)|BO|

2e
=

s · 2b
2e

=
sb
e

=
sb

sb/t + b
=

st
s + t

.

This proves (i). If we regard β as a circle, A is one the center of similitude of β and δ (see
Figure 7). Hence if r is the radius of δ, we get b/|AB| = r/|AY|, i.e., r = st/(s + t). □
Therefore the point of intersection of α and the perpendicular bisector of AP generates
circles of radius rs with γ by (i) of this theorem. (see Figure 8). Also the circle touching
the tangent of β from A and (BP) externally at P has radius rs by (ii). Similar results hold
if we exchange the roles of A and B.
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Figure 8.

7. A SKEWED ARBELOS WITH ARCHIMEDEAN CIRCLES OF RADIUS rs

In this section we consider α and β as circles. Let us consider the circle γz expressed by
the equation (

x − b − a
z2 − 1

)2

+

(
y − 2z

√
ab

z2 − 1

)2

=

(
e

z2 − 1

)2

(11)

for a real number z ̸= ±1. It touches α and β internally if |z| < 1 and externally if |z| > 1.
The configuration consisting of α, β and γz is also denoted by (α, β, γz) and is called a
skewed arbelos [7].
Let Az (resp. Bz) be the point of tangency of the circles γz and α (resp. β). Let δα

z be the
circle different from β and touching α and the tangents of β from Az. The circle δ

β
z is

defined similarly. The circles δα
z and δ

β
z have common radius |1 − z2|rA [5], and circles

of the same radius are called Archimedean circles of (α, β, γz) [3]. While the product of
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the radius of γz and |1 − z2|rA equals ab by (11). Therefore (α, β, γz) has Archimedean
circles of radius rs if and only if γz has radius g, which is also equivalent to z2 = f /g or
z2 = 2 − f /g (see Figure 9). Notice that γz has the same radius as the semicircles (AhB)
and (Bh A) with h = f in this event.
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Figure 9: z =
√

f /g

8. SOME MORE CIRCLES OF RADIUS rs

In this section we show that some more circles of radius rs are obtained from the arbelos
(α, β, γ) with the square PQRS.

Theorem 8. The semicircles α and Oβ(K) and the line AK meet in a point L. If M is
the point of intersection of the segment KP and the axis, then ML is parallel to AB and
|ML| = 2rs. Similar results are also true if we exchange the roles of A and B.

Proof. The first part of (i) follows from Theorem 4. The y-coordinate of L equals |SK|a/e
by the similar triangles ABK and AOL (see Figure 10). While M has y-coordinate
|SK||OP|/|PQ| = |SK|a/e by the similar triangles PSK and POM. Therefore ML is
parallel to AB, and |ML| = |BS|a/e = 2rs by (8). □
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Oβ(K)
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Figure 10.

Let C be the center of the square PQRS, and let E, F and G be the images of the point I
by the rotations about C through −90◦, −180◦ and −270◦, respectively. Hence the three
points lie on the circle C(I). Also let E′ and G′ be the reflections of the points E and G in
the line PC, respectively (see Figure 11).
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Theorem 9. The following statement hold.
(i) The distance from the segment QR (resp. SP) to each of the points of intersection of
the axis and the circle (QR) (resp. (SP)) equals 2rs, and one of the points lies on the circle
C(I). Similar facts also hold for the lines EE′, PF, and GG′ and the corresponding sides
of PQRS.
(ii) The circles C(I) and (PQ) and the semicircle (AP) and the line AI, meet in the point
E, and its distance from PQ is 2rs. The circle (RS) and the semicircle P(I) meet in the
point E′, and its distance from RS is 2rs. Similar facts hold for the points G and G′.

Proof. The part (i) is obvious, because I lies on the circle (QR). Let E′′ be the the point
of intersection of (AP) and AI. The distance between PQ and E′′ is 2b|AP|/|AB| = 2rs
by the similar triangles ABI and APE′′. While rotating the line BI and the segment
QR about C through −90◦, we get the line AI and the segment PQ. Therefore E lies
on AI, and whose distance from PQ equals 2rs, i.e., E and E′′ coincide. Let D be the
point of intersection of EE′ and PQ. Since |OP| = |DP|, the triangles IOP and E′DP are
congruent. Hence |E′P| = |IP|, i.e., E′ lies on P(I). The rest of (ii) is obvious. □
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γ
P(I)I

AB
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H

P
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Q

C(I)

E

G

E′

F
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Figure 11.

9. CONCLUSION

We get many circles of radius rs from the arbelos (α, β, γ) with the square PQRS. The
circles are not Archimedean circles of (α, β, γ), but Archimedean circles of several gen-
eralized arbeloi associated with (α, β, γ). Our result suggests that if we find several
circles of certain radius associated with (α, β, γ), and they are not Archimedean circles of
(α, β, γ), then they might be Archimedean circles of some generalized arbelos associated
with (α, β, γ).
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