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ABSTRACT. We will use the British flag theorem to prove an elegant theorem for two
similarly oriented regular polygons-2n.
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1. INTRODUCTION

The British flag theorem is one of the simplest theorems in plane geometry.

Theorem 1.1 (British flag). If ABCD be a rectangle and P be any point on the plane, then

PA2 + PC2 = PB2 + PD2 (1)

Theorem 1.1 could easily be given as an assignment for secondary school students after
they have learnt the Pythagoras theorem. Theorem 1.1 can be found in [1,p.87]. It is
impossible to list all the applications of theorem 1.1. In this article, by proving a new
theorem, an elegant theorem for two similarly oriented regular polygons-2n, we will be
introducing another interesting application of theorem 1.1.
The new theorem is stated using the concept of signed area of a quadrilateral.

Definition 1.1. The signed area of a quadrangle XYZT is a number, denoted as S [XYZT],
and defined as S [XYZT] = 1

2 XZ ∧ YT, where notation a ∧ b refers to the cross product of two
vectors a and b, i.e. a ∧ b = 1

2 |a| |b| sin(a, b), where (a, b) is the directional angle between
two vectors a and b.

Apparently, S [XYZT] = S [YZTX] = S [ZTXY] = S [TXYZ].
Denote the area of a polygon as S(.).
• S [XYZT] = S (XYZT) if quadrangle XYZT is convex and positively orientated (f.1a);
• S [XYZT] = S (XYZ)− S (XTZ) if quadrangle XYZT is concave at T and triangle XYZ
is positively orientated (f.1b);
• S [XYZT] = S (XYO)− S (ZTO) if quadrangle XYZT cuts itself at O = XT ∩YZ and
triangle XYO is positively orientated (f.1c);
• S [XYZT] = S (ZTO)− S (XYO) if quadrangle XYZT cuts itself at O = XT ∩ YZ and
triangle XYO is negatively orientated (f.1.d).
The yellow triangles on figures 1 are positively orientated (1.a, 1.b, 1.c, 1.d) and the green
ones are negatively orientated (1.b, 1,c, 1.d). Definition 1.1 can be found in [2, pp. 178-
184].
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Theorem 1.2. If A1A2...A2n and B1B2...B2n are two similarly oriented regular polygons, then
S [Ai Ai+1Bi+1Bi] + S [An+i An+i+1Bn+i+1Bn+i] is constant for any i ∈ {1; 2; ...; 2n}, assum-
ing that A2n+1 = A1 and B2n+1 = B1.

Due to the concept of signed area in theorem 1.2, regular polygon B1B2...B2n does not
have to lie inside regular polygon A1A2...A2n; quadrangles Ai Ai+1Bi+1Bi and
An+i An+i+1Bn+i+1Bn+i can cut themselves for any i ∈ {1; 2; ...; 2n}, assuming that A2n+1 =
A1 and B2n+1 = B1.

2. PROOF OF THE THEOREM 1.2

First, we need one lemma.

Lemma 2.1. If ABCD and A0B0C0D0 are two similar and similarly oriented rectangles, then

S [ABB0A0] + S [CDD0C0] =
1
2
(AB∧AC − A0B0 ∧A0C0) .

Proof of lemma 2.1. Because ABCD and A0B0C0D0 are similar and similarly oriented,
there exist a point P, which is the centre of spiral similarity transforming ABCD into
A0B0C0D0 and real numbers k and α such that (f.2).

PA0
PA = PB0

PB = PC0
PC = PD0

PD = k;
(PA, PA0) ≡ (PB, PB0) ≡ (PC, PC0) ≡ (PD, PD0) ≡ α (mod2π).

Thus, by theorem 1.1, noting that CD = −AB; C0D0 = −A0B0, we have
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2 (S [ABB0A0] + S [CDD0C0])
= AB0 ∧ BA0 + CD0 ∧DC0
= (PB0 − PA) ∧ (PA0 − PB) + (PD0 − PC) ∧ (PC0 − PD)
= −PB0 ∧ PB− PA∧ PA0 + PA∧ PB + PB0 ∧ PA0
−PD0 ∧ PD− PC∧ PC0 + PC∧ PD + PD0 ∧ PC0

= PB0 · PB sin α − PA · PA0 sin α + PD0 · PD sin α − PC · PC0 sin α
+PA∧ (PA + AB) + PC∧ (PC + CD) + (PA0 + A0B0) ∧ PA0 + (PC0 + C0D0) ∧ PC0
= k sin α

(
PB2 + PD2 − PA2 − PC2)+ PA∧AB + PC∧CD + A0B0 ∧ PA0 + C0D0 ∧ PC0

= −AB∧ PA + AB∧ PC + A0B0 ∧ PA0 − A0B0 ∧ PC0
= AB∧ (PC− PA)−A0B0 ∧ (PC0 − PA0)
= (AB∧AC − A0B0 ∧A0C0) .

Therefore, S[ABB0A0] + S [CDD0C0] =
1
2 (AB∧AC − A0B0 ∧A0C0) . 2

Note. A Spiral similarity with center P, rotation angle α and similarity coefficient k is the
sum of a central similarity with center P and similarity coefficient k and a rotation about
P through the angle α, taken in either order [3, p.36].
Next, we are going to prove theorem 1.2 (f.3.a, f.3.b).
Without the loss of generality, assume that A1A2...A2n and B1B2...B2n are positively ori-
ented.
Let Oa and Ob are the centres of A1A2...A2n and B1B2...B2n respectively.

Because A1A2...A2n and B1B2...B2n are regular polygons that share a positive orientation,
Ai Ai+1 Ai+n Ai+1+n and BiBi+1Bi+nBi+1+n are similar and positively oriented rectangles
for any i ∈ {1; 2; ...; n}, assuming that A2n+1 = A1 and B2n+1 = B1.
Hence, by the lemma 2.1, we have

S [Ai Ai+1Bi+1Bi] + S [Ai+n Ai+1+nBi+1+nBi+n]
= 1

2 (AiAi+1 ∧AiAi+n − BiBi+1 ∧ BiBi+n)
= 1

2 (Ai Ai+1.Ai Ai+n sin(AiAi+1, AiAi+n)− BiBi+1.BiBi+n sin(BiBi+1, BiBi+n))

= 1
2

(
Ai Ai+1.Ai Ai+n sin ̂Ai+1Ai Ai+n − BiBi+1.BiBi+n sin ̂Bi+1BiBi+n

)
= 1

2 (2S(Ai Ai+1Ai+n)− 2S(BiBi+1Bi+n))
= 1

2 (4S(Oa Ai Ai+1)− 4S(ObBiBi+1))
= 2 (S(Oa Ai Ai+1)− S(ObBiBi+1))
= 2

( 1
2n S (A1A2...A2n)− 1

2n S (B1B2...B2n)
)

= 1
n (S (A1A2...A2n)− S (B1B2...B2n)) .
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This means that S [Ai Ai+1Bi+1Bi] + S [An+i An+i+1Bn+i+1Bn+i] is constant for any i ∈
{1; 2; ...; 2n} , assuming that A2n+1 = A1 and B2n+1 = B1.
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