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1. INTRODUCTION

With their natural two dimensional vector representations, complex numbers are often
used to obtain results in plane geometry [1–3]. Plane transformations as homotheties,
translations, symmetries, and similarities can also be described using complex num-
bers [2–6]. In some complex analysis textbooks two other operations well defined for
vectors in two and three dimensions, the dot and cross products, are extended to com-
plex numbers [7, 8]. To our knowledge, these two operations on complex numbers are
presented as a curiosity and are not used to obtain results in plane geometry. We will use
these two operations here to establish a new proof of Erdös-Mordell inequality. Another
proof of Erdös-Mordell inequality recently published in [9] is based on vector analysis
and has motivated the present paper. For the history of Erdös-Mordell inequality and
references about other proofs see [10].

2. THE SETTING

Let ∆ABC be a triangle and O a point in it. Consider a coordinate system with O as it
origin and A is on the positive direction of the X-axis, B is in the first or second quadrant,
and C is in the third or fourth quadrant. We associate to the vertices A, B, and C their
corresponding complex numbers

A = |A|eiθA , θA = 0,
B = |B|eiθB , θB ∈ (0, π),
C = |C|eiθC , θC ∈ [π, 2π), and θC − θB ∈ (0, π).

(1)

The conditions (1) on the angles imply that O is in the triangle. We also associate to the
foot of the perpendiculars from O to the sides their corresponding complex numbers : P
for the side joining the vertices B and C, Q for C and A, and R for A and B. With this
notation, the Erdös-Mordell inequality is

2(|P|+ |Q|+ |R|) ≤ |A|+ |B|+ |C|. (2)
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3. DOT AND CROSS PRODUCTS OF COMPLEX NUMBERS

The dot and cross products of complex numbers are two real numbers defined by the
dot and cross products of their corresponding vectors in the plane, or in the space with a
null third component. For z1 = x1 + iy1 and z2 = x2 + iy2, they are respectively defined
by

z1 ⊙ z2 = x1x2 + y1y2 = Re{z̄1z2} =
z̄1z2 + z1z̄2

2
,

and

z1 ⊗ z2 = x1y2 − x2y1 = Im{z̄1z2} =
z̄1z2 − z1z̄2

2i
,

where Re{z} = x and Im{z} = y stands respectively for the real part and the imaginary
part of z = x + iy. So we have

z̄1z2 = z1 ⊙ z2 + i z1 ⊗ z2. (3)

and z1 ⊙ z2 = z2 ⊙ z1, z1 ⊗ z2 = −z2 ⊗ z1, z̄z = z ⊙ z = |z|2, z ⊗ z = 0, z̄(iz) =
i [z ⊗ (iz)] = i |z|2, and z ⊙ (iz) = 0.

Considering (3) and (z̄1z2)n = zn
1 zn

2 , we obtain

zn
1 ⊙ zn

2 =
⌊ n

2 ⌋

∑
l=0

(−1)l

(

n
2l

)

(z1 ⊙ z2)
n−2l (z1 ⊗ z2)

2l

and

zn
1 ⊗ zn

2 =
⌊ n−1

2 ⌋

∑
l=0

(−1)l

(

n
2l + 1

)

(z1 ⊙ z2)
n−2l−1 (z1 ⊗ z2)

2l+1

which is another form of De Moivre’s Theorem. For the special case n = 2 we obtain

z2
1 ⊙ z2

2 = (z1 ⊙ z2)
2 − (z1 ⊗ z2)

2 , (4)

and

z2
1 ⊗ z2

2 = 2 (z1 ⊙ z2) (z1 ⊗ z2) . (5)

A useful relation for our purpose is obtained from the identity

(z1 − z2)(z1 + z2) = (z1 − z2)⊙ (z1 + z2) + i (z1 − z2)⊗ (z1 + z2)

=
(

|z1|
2 − |z2|

2
)

+ 2i z1 ⊗ z2,

combined to the fact that |(z1 − z2)(z1 + z2)| = |(z1 − z2)(z1 + z2)| = |z2
1 − z2

2|, leads to

|z2
1 − z2

2|
2 =

(

|z1|
2 − |z2|

2
)2

+ (2 z1 ⊗ z2)
2 . (6)

It follows that

|z2
1 − z2

2| ≥ 2 |z1 ⊗ z2| (7)

with equality if and only if |z1| = |z2|.
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4. THE AREA OF A TRIANGLE

Let ∆OFG be a triangle with vertices O (the origin of the axes), and two other vertices
noted F and G. Let H be the foot of the perpendicular from O to the side joining F and
G. Considering the area of the triangle ∆OFG and the complex numbers associated to F,
G, and H, we have

|H||F − G| = |F ⊗ G| = 2 Area(∆OFG),

from which we get

|H| =
|F ⊗ G|

|F − G|
=

|Im{F̄G}|

|F − G|
=

|F̄G − FḠ|

2|F − G|
. (8)

If F = f 2 and G = g2, using (5) and (7), (8) becomes

|H| =
| f 2 ⊗ g2|

| f 2 − g2|
=

2| f ⊙ g|| f ⊗ g|

| f 2 − g2|
≤

2| f ⊙ g|| f ⊗ g|

2| f ⊗ g|
= | f ⊙ g| (9)

with equality holding iff | f | = |g|.

5. PROOF OF THE INEQUALITY

We consider that A = a2, B = b2, and C = c2, where

a = |a|eiθa , θa = 0, and 2θa = θA,
b = |b|eiθb , θb ∈ (0, π/2), and 2θb = θB,
c = |c|eiθc , θc ∈ [π/2, π), and 2θc = θC.

(10)

It follows from (9) and (10) that

|A|+ |B|+ |C| − 2|P| − 2|Q| − 2|R| ≥ |a|2 + |b|2 + |c|2 − 2|b ⊙ c| − 2|c ⊙ a| − 2|a ⊙ b|

with equality iff |a| = |b| = |c|. Because a ⊙ b ≥ 0, b ⊙ c ≥ 0, and c ⊙ a ≤ 0, we obtain

|a|2 + |b|2 + |c|2 − 2|b ⊙ c| − 2|c ⊙ a| − 2|a ⊙ b|

= a ⊙ a + b ⊙ b + c ⊙ c − 2b ⊙ c + 2c ⊙ a − 2a ⊙ b

= (a − b + c)⊙ (a − b + c)

= |a − b + c|2

≥ 0,

with equality iff a − b + c = 0. Hence (2) holds.
Equality holds if and only if |a| = |b| = |c| and a − b + c = 0. In this case, using the dot
product successively with a, b, and c we obtain the following system of equations





1 0 −1
1 1 0
0 1 −1









a ⊙ b
b ⊙ c
c ⊙ a



 =





|a|2

|b|2

|c|2



 ,

and its solution is




a ⊙ b
b ⊙ c
c ⊙ a



 =
1

2





1 1 −1
−1 1 1
−1 1 −1









|a|2

|b|2

|c|2



 .
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If |a| = |b| = |c| = d, we get




a ⊙ b
b ⊙ c
c ⊙ a



 =





1/2
1/2

−1/2



 d2,

from which we conclude that θb = π/3 and θc = 2π/3. Then, in case of equality, ∆ABC
is an equilateral triangle.

6. OTHER FORMS OF THE ERDÖS-MORDELL INEQUALITY

Using (8), we can rewrite (2) as

|ĀB − AB̄|

|A − B|
+

|B̄C − BC̄|

|B − C|
+

|C̄A − CĀ|

|C − A|
≤ |A|+ |B|+ |C|. (11)

If we use inversion, which is the application z 7→ 1
z = z̄

|z|2
, the vertices become A′ = Ā

|A|2
,

B′ = B̄
|B|2

, and C′ = C̄
|C|2

, and the distances from O to the sides are now |P′| = |P|
|B||C|

,

|Q′| = |Q|
|C||A|

, and |R′| = |R|
|A||B|

, and we obtain

2
|A||P|+ |B||Q|+ |C||R|

|A||B||C|
≤

1

|A|
+

1

|B|
+

1

|C|
. (12)

Finally using the polar reciprocity with respect to the unit circle centered at O, which is
the application z 7→ z

|z|2
, the foot P, Q, and R are mapped to the vertices of the polar

triangle in A” = P
|P|2

, B” = Q
|Q|2

and C” = R
|R|2

, and the vertices A, B, and C are mapped

to the foot of the perpendiculars P” = A
|A|2

, Q” = Q
|Q|2

, and R” = R
|R|2

. Then we obtain

2

[

1

|A|
+

1

|B|
+

1

|C|

]

≤
1

|P|
+

1

|Q|
+

1

|R|
. (13)

Inequalities (11), (12), and (13) also appeared in [11].
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