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ABSTRACT. The class of (q, α, β)-metrics is an important subclass of (α, β)-metrics which
contains well-known metrics such as Randers, Berwald and Matsumoto metrics. In this
paper, we find the necessary and sufficient conditions under which two classes of (q, α, β)-
metrics are projectively related to a Kropina metric.
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1. INTRODUCTION

Two regular metrics are called projectively related if there is a diffeomorphism between
them such that the pull-back metric is pointwise projective to another one. In Riemann-
ian geometry, two Riemannian metrics α and ᾱ on a manifold M are projectively related
if and only if their spray coefficients have the relation Gi

α = Ḡi
ᾱ + P0yi, where P = P(x) is

a scalar function on M and P0 := Pxk yk. In Finsler geometry, two Finsler metrics F and F̄
on a manifold M are called projectively related if Gi = Ḡi + Pyi, where Gi and Ḡi are the
geodesic spray coefficients of F and F̄, respectively and P = P(x, y) is a scalar function
on the slit tangent bundle TM0. In this case, any geodesic of the first is also geodesic for
the second and vice versa.
In order to find explicit examples of projectively related Finsler metrics, we consider
(α, β)-metrics. An (α, β)-metric is defined by F := αφ(s), s = β/α where φ = φ(s) is a

C∞ scalar function on (−b0, b0) with certain regularity, α =
√

aij(x)yiyj is a Riemannian

metric and β = bi(x)yi is a 1-form on a manifold M. The projective changes between
two special (α, β)-metrics have been studied by many geometers [2] [6] [9]. Among the
(α, β)-metrics, Randers metric F = α + β and Kropina metric F = α2/β are important
and have deep geometric meaning [3] [10]. Then, Cui-Shen find necessary and sufficient
conditions under which the Berwald metric F = α + 2β + β2/α and a Randers metric
F̄ = ᾱ+ β̄ are projectively related [2]. In [6], Mu-Cheng get the conditions that a Randers-
Kropina metric F = α + ǫβ + κα2/β is projectively equivalent to a Kropina metric F =
ᾱ2/β̄.
There exists a special subclass of (α, β)-metrics, namely (q, α, β)-metrics. Let φ : [−1, 1] →
R, φ(s) = (1 + s)q, 1 ≤ q ≤ 2 and ||β||α < 1. It is easy to see that

φ′ = q(1 + s)q−1, φ′′ = q(q − 1)(1 + s)q−2
> 0.
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Since φ(s) = (1 + s)q
> 0, then φ − sφ′ = (1 + s)q−1[1 + s(1 − q)] > 0, (|s| < 1). Thus

F := αφ( β
α ) =

(α+β)q

αq−1 is a Finsler metric. We call it (q, α, β)-metric. When q = 1 or q = 2,
F becomes Randers metric and Berwald metric, respectively. If we substitute β with −β
and take q = −1, the resulting metric is Matsumoto metric. In this paper, we are going

to find the conditions under which the (q, α, β)-metric F = (α+β)q

αq−1 and a Kropina metric

F̄ = ᾱ2

β̄
being projectively related.

Theorem 1. Let F = (α+β)q

αq−1 (q 6= 1) be a (q, α, β)-metric and F̄ = ᾱ2/β̄ be a Kropina metric

on a n-dimensional manifold M (n ≥ 3), where α and ᾱ are two Riemannian metrics, β and β̄
are two non-zero collinear 1-forms on M. Then F is projectively related to F̄ if and only if they
are Douglas metrics and the geodesic coefficients of α and ᾱ have the following relation

Gi
α − Ḡi

ᾱ = θyi +
1

2b̄2
(ᾱ2s̄i + r̄00b̄i)−

1

2

q(q − 1)α2r00

(1 − q2)β2 + (2 − q)αβ + [1 + (q2 − q)b2]α2
bi,(1.1)

where bi := aijbj, b̄i := āijb̄j, b̄2 := ‖β̄‖ᾱ and θ := θiy
i is a 1-form on M.

Let us define φ(s) := s( s
s−1 )

q−1. By a simple calculation, we get φ − sφ′
> 0. Then

F = βq

(β−α)q−1 is a Finsler metric. This metric is another (q, α, β)-metric, also.

Theorem 2. Let F = βq

(β−α)q−1 (q 6= 1,−1) be a (q, α, β)-metric and F̄ = ᾱ2/β̄ be a Kropina

metric on a n-dimensional manifold M (n ≥ 3), where α and ᾱ are two Riemannian metrics, β
and β̄ are two non-zero collinear 1-forms on M. Then F is projectively related to F̄ if and only if
they are Douglas metrics and the geodesic coefficients of α and ᾱ have the following relation

Gi
α − Ḡi

ᾱ = θyi +
1

2b̄2
(ᾱ2s̄i + r̄00b̄i)−

qα3r00

2
[

β2(β − α) + q(b2α2 − β2)α
]bi, (1.2)

where bi := aijbj, b̄i := āijb̄j, b̄2 := ‖β̄‖ᾱ and θ := θiy
i is a 1-form on M.

2. PRELIMINARY

The geodesic curves of a Finsler metric F = F(x, y) on a smooth manifold M, are deter-
mined by the system of second order differential equations

d2xi

dt2
+ 2Gi

(

x,
dx

dt

)

= 0,

where the local functions Gi = Gi(x, y) are called the spray coefficients, and given by

Gi =
1

4
gil

{ ∂2F2

∂xk∂yl
yk −

∂F2

∂xl

}

.

A Finsler metric F is called a Berwald metric, if Gi are quadratic in y ∈ Tx M for any
x ∈ M.
Let

Di
j kl :=

∂3

∂yj∂yk∂yl

(

Gi −
1

n + 1

∂Gm

∂ym
yi
)

. (2.1)
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It is easy to verify that D := Di
j kldxj ⊗ ∂i ⊗ dxk ⊗ dxl is a well-defined tensor on slit

tangent bundle TM0. We call D the Douglas tensor. The Douglas tensor D is a non-
Riemannian projective invariant, namely, if two Finsler metrics F and F̄ are projectively
equivalent, Gi = Ḡi + Pyi, where P = P(x, y) is positively y-homogeneous of degree
one, then the Douglas tensor of F is same as that of F̄. Finsler metrics with vanishing
Douglas tensor are called Douglas metrics [7] [8]. The notion of Douglas metrics was
first proposed by Bácsó-Matsumoto as a generalization of Berwald metrics [1].
An (α, β)-metric is a Finsler metric on a manifold M defined by F := αφ(s), s = β/α,
where φ = φ(s) is a C∞ function on the interval (−b0, b0) with certain regularity, α =
√

aijyiyj is a Riemannian metric and β = bi(x)yi is a 1-form on M. For an (α, β)-metric,

let us define bi|j by bi|jθ
j := dbi − bjθ

j
i , where θi := dxi and θ

j
i := Γ

j
ikdxk denote the

Levi-Civita connection form of α. Let

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i).

Clearly, β is closed if and only if sij = 0. An (α, β)-metric is said to be trivial if rij = sij =
0. Put

ri0 := rijy
j, r00 := rijy

iyj, rj := birij, r0 := rjy
j

si0 := sijy
j, sj := bisij, s0 := sjy

j.

For an (α, β)-metric F = αφ(s), put

Q :=
φ′

φ − sφ′
.

Let Gi = Gi(x, y) and Ḡi
α = Ḡi

α(x, y) denote the coefficients of F and α respectively in the
same coordinate system. By definition, we have

Gi = Gi
α + αQsi

0 + (−2Qαs0 + r00)(Θ
yi

α
+ Ψbi), (2.2)

where

Θ :=
φφ′ − s(φφ′′ + φ′φ′)

2φ
[

(φ − sφ′) + (b2 − s2)φ′′
] , Ψ :=

1

2

φ′′

(φ − sφ′) + (b2 − s2)φ′′
.

By (2.2), it follows that every trivial (α, β)-metric satisfies Gi = Gi
α and then it reduces to

a Berwald metric.

3. PROOF OF THEOREM 1

For an (q, α, β)-metric F = (α+β)q

αq−1 , the following hold

Q =
q

s(1 − q) + 1
,

Θ =
1

2

q(1 − 2(q − 1)s)

s2(1 − q2) + s(2 − q) + 1 + b2q(q − 1)
,

Ψ :=
1

2

q(q − 1)

s2(1 − q2) + s(2 − q) + 1 + b2q(q − 1)
. (3.1)
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In the following, we shall denote the quantities for F̄ by the same letters with the bar and
the corresponding indices. Then for a Kropina metric F̄ = ᾱ + β̄, we have

Q̄ := −
1

2s̄
, Θ̄ := −

s̄

2b̄2
, Ψ̄ :=

1

2b̄2
. (3.2)

To prove Theorem 1, we remark the following.

Lemma 1. [5] Let F = α2

β be a Kropina metric on a n-dimensional manifold M. Then

(1) (n ≥ 3) Kropina metric F with (b2 6= 0) is a Douglas metric if and only if

s̄ij =
1

b̄2
(b̄i s̄j − b̄j s̄i); (3.3)

(2) (n = 2) Kropina metric F is a Douglas metric.

For an (α, β)-metric , the Douglas tensor is determined by

Di
j kl :=

∂3

∂yj∂yk∂yl

(

Ti −
1

n + 1

∂Tm

∂ym
yi
)

, (3.4)

where

Ti := αQsi
0 + Ψ(r00 − 2αQs0)b

i, (3.5)

Tm
ym = Q′s0 + Ψ′α−1(b2 − s2)(r00 − 2αQs0) + 2Ψ

[

r0 − Q′(b2 − s2)s0 − Qss0

]

.(3.6)

Now, let F and F̄ be two (α, β)-metrics which have the same Douglas tensor, i.e., Di
jkl =

D̄i
jkl . From (2.1) and (3.4), we have

∂3

∂yi∂yj∂yk

[

Ti − T̄i −
1

n + 1
(Tm

ym − T̄m
ym)yi

]

= 0. (3.7)

Then there exists a class of scalar function Hi
jk := Hi

jk(x) such that

Ti − T̄i −
1

n + 1
(Tm

ym − T̄m
ym)yi = Hi

00, (3.8)

where Hi
00 = Hi

jk(x)yiyj, Ti and Tm
ym are given by (3.5) and (3.6) respectively. In this paper,

we assume that λ := 1
n+1 .

Lemma 2. Let F = (α+β)q

αq−1 (q 6= 1) be a (q, α, β)-metric and F̄ = ᾱ2/β̄ be a Kropina metric on a

n-dimensional manifold M (n ≥ 3), where α and ᾱ are two Riemannian metrics and β and β̄ are
two non-zero collinear 1-forms on M. Then F and F̄ have the same Douglas tensor if and only if
they are all Douglas metrics.

Proof. The sufficiency is obvious. Suppose that F and F̄ have the same Douglas tensor
on an n-dimensional manifold M when n ≥ 3. Then (3.8) holds. By plugging (3.1) and
(3.2) into (3.8), we obtain

Aiα6 + Biα5 + Ciα4 + Diα3 + Eiα2 + Fiα + Hi

Iα5 + Jα4 + Kα3 + Lα2 + Mα + N
+

Āiᾱ2 + B̄i

2b̄2 β̄
= Hi

00, (3.9)
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where

Ai :=−2q(1 − qb2 + q2b2)
[

(1 − qb2 + q2b2)si
0 − q(q − 1)s0bi

]

,

Bi :=q
[

2(p − 1)λ(1 + qb2)s0yi − 2q(q − 1)(q − 2)βs0bi

+4β(q − 2)(q2b2 − qb2 + 1)si
0 + 2λ(q − 1)(q2b2 − qb2 + 1)r0yi

−(q − 1)(q2b2 − qb2 + 1)r00bi
]

,

Ci :=q
[

(q − 1)(q3b2 − 2q2b2 + qb2 + 2q − 3)βr00bi + λ(q − 1)(q − 2)b2r00yi

−2(q − 1)λ(q3b2 − 2q2b2 + qb2 + 2q − 3)βr0yi

+
[

4qb2(q + 1)(q − 1)2 + (2q2 + 8q − 12)
]

β2si
0

−2λ(q − 1)(3q3b2 − 2b2q2 + 2q − b2q − 3)βs0yi

−2q(q + 1)(q − 1)2β2s0bi
]

,

Di :=q(q − 1)β
[

(2q2 − 10q + 6)λβs0yi − 4(q + 1)(q − 2)β2si
0

−(q + 4)(q − 1)b2r00yi + 3(q − 1)βr00bi
]

,

Ei :=−q(q − 1)β2
[

2(q − 1)(q + 1)2β2si
0 + λ

[

2b2(q + 1)(q − 1)2 + (q − 2)
]

r00yi

−2λ(q − 1)(3q − 1)(q + 1)βs0yi − 2λ(q + 1)(q − 1)2r0yi + (q + 1)(q − 1)2βr00bi
]

,

Fi :=−λq(q + 4)(q − 1)2β3r00yi,

Hi :=2λq(q + 1)(p − 1)3β4r00yi.

and

I :=−2(−qb2 + q2b2 + 1)2,

J :=2β(−qb2 + q2b2 + 1)(qb2 − 2q2b2 + q3b2 + 3q − 5),

K :=2β2(−10 − q2 + 10q + 6q3b2 − 12q2b2 + 6qb2),

L :=−2(q − 1)β3(2q4b2 − 2q3b2 + 3q2 − 2q2b2 + 2q + 2qb2 − 10),

M :=2β4(q + 1)(q − 5)(q − 1)2,

N :=2β5(q + 1)2(q − 1)3.

and

Āi := b̄2s̄i
0 − b̄i s̄0, B̄i := β̄[2λyi(r̄0 + s̄0)− b̄i r̄00].

(3.9) is equivalent to following

2b̄2 β̄(Aiα6 +Biα5 + Ciα4 + Diα3 + Eiα2 + Fiα + Hi)

+(Āiᾱ2 + B̄i)(Iα5 + Jα4 + Kα3 + Lα2 + Mα + N)

= 2b̄2 β̄(Iα5 + Jα4 + Kα3 + Lα2 + Mα + N)Hi
00. (3.10)

First we show that Āi can be divide by β̄.
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By replacing yi with −yi in (3.10), we get the following

−2b̄2 β̄(−Aiα6 +Biα5 − Ciα4 + Diα3 − Eiα2 + Fiα − Hi)

−(Āiᾱ2 + B̄i)(Iα5 − Jα4 + Kα3 − Lα2 + Mα − N)

= −2b̄2 β̄(Iα5 − Jα4 + Kα3 − Lα2 + Mα − N)Hi
00. (3.11)

(3.10) + (3.11) yields

2b̄2 β̄(Aiα6 + Ciα4 + Eiα2 + Hi) +(Āiᾱ2 + B̄i)(Jα4 + Lα2 + N)

= 2b̄2 β̄(Jα4 + Lα2 + N)Hi
00. (3.12)

(3.10)− (3.11) implies that

(Biα4 + Diα2 + Fi)(2b̄2 β̄) +(Āiᾱ2 + B̄i)(Iα4 + Kα2 + M)

= 2b̄2 β̄(Iα4 + Kα2 + M)Hi
00. (3.13)

If q = −1 then Hi = N = M = 0. Thus (3.12) and (3.13) are equivalent to

2b̄2 β̄(Aiα4 + Ciα2 + Ei) + (Āiᾱ2 + B̄i)(Jα2 + L) = 2b̄2 β̄(Jα2 + L)Hi
00 (3.14)

and

2b̄2 β̄(Biα4 + Diα2 + Fi) + (Āiᾱ2 + B̄i)(Iα4 + Kα2) = 2b̄2 β̄(Iα4 + Kα2)Hi
00. (3.15)

By (3.14) and (3.15), it results that (Āiᾱ2 + B̄i)(Jα2 + L) and (Āiᾱ2 + B̄i)(Iα4 + Kα2) can
be divided by β̄. Thus β = µβ̄ and Āiᾱ2 Iα4 can be divided by β̄. Since β̄ is prime with
respect to α and ᾱ, therefore Āi := b̄2 s̄i

0 − b̄i s̄0 can be divided by β̄. If q 6= 1,−1, then (3.12)

and (3.13) implies that (Āiᾱ2 + B̄i)(Jα4 + Lα2 + N) and (Āiᾱ2 + B̄i)(Iα4 + Kα2 + M) can
be divided by β̄. Since β̄ is prime with respect to α and ᾱ, then Āi := b̄2 s̄i

0 − b̄i s̄0 can be

divided by β̄. Hence, there is a scaler function ψi(x) such that

b̄2 s̄i
0 − b̄i s̄0 = ψi β̄. (3.16)

Contracting (3.16) with ȳi := āijy
j yields

ψi(x) = −s̄i.

Then we have

s̄ij =
1

b̄2
(b̄i s̄j − b̄j s̄i). (3.17)

Now, suppose that n ≥ 3. Then by Lemma 1, F̄ = ᾱ2/β̄ is a Douglas metric. Since F and
F̄ have the same Douglas tensor, then both of them are Douglas metrics.
If n = 2, then F̄ = ᾱ2/β̄ is a Douglas metric by Lemma 1. Thus F and F̄ having the same
Douglas tensors. This means that they are all Douglas metrics. This completes the proof
of Lemma 2.

On the other hand, the following holds.

Lemma 3. [4] Suppose that Q/s 6= constant for an (α, β)-metric F = φ(s) on a manifold
M of dimension n ≥ 3. If F is a Douglas metric and b := ‖βx‖α 6= 0, then β is closed.
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Now, we are in the position to prove Theorem 1.

Proof of Theorem 1: We prove the theorem in two cases, as follows.

Case (1): q = −1.
First we proof the necessity. If F is projectively equivalent to F̄, then they have the same

Douglas tensor. By Lemma 2, F and F̄ are both Douglas metrics. F = α2

α+β is a Douglas

metric if and only if bi|j = 0. Thus by (2.2), we have

Gi = Gi
α. (3.18)

On the other hand, plugging (3.2) and (3.17) in (2.2) yields

Ḡi = Ḡi
ᾱ −

1

2b̄2

[

− ᾱ2 s̄i + (2s̄0yi − r̄00b̄i) + 2
r̄00 β̄yi

ᾱ2

]

. (3.19)

By the projective equivalence of F and F̄ again, there is a scalar function P = P(x, y) on
TM0 such that Gi = Ḡi + Pyi. From (3.18) and (3.19) we have

[

P −
1

b̄2
(s̄0 +

r̄00 β̄

ᾱ2
)
]

yi = Gi
α − Ḡi

ᾱ −
1

2b̄2
(ᾱ2s̄i + r̄00b̄i). (3.20)

Note that the right side of (3.20) is a quadratic in y. Then there exists a 1-form θ = θi(x)yi

on M such that

P −
1

b̄2
(s̄0 +

r̄00 β̄

ᾱ2
) = θ. (3.21)

Thus we have

Gi
α = Ḡi

ᾱ +
1

2b̄2
(ᾱ2s̄i + r̄00b̄i) + θyi. (3.22)

This completes the proof of the necessity.
Conversely, because of r00 = 0 and from (1.1), (3.18) and (3.19) we have

Gi = Ḡi +
[

θ +
1

2b̄2
(s̄0 +

r̄00 β̄

ᾱ2
)
]

yi. (3.23)

In this case, F is projectively related to F̄.

Case (2): q 6= 1,−1.
First we proof the necessity. If F is projectively equivalent to F̄, then they have the
same Douglas tensor. By Lemma 2, we know that F and F̄ are both Douglas metrics.
If q = 1,−1, then it is easy to prove that φ(s) = (1 + s)q satisfies Q/s 6= constant. By
Lemma 3, we have sij = 0. By (2.2), it follows that

Gi = Gi
α +

1

2

q(α − 2(q − 1)β)r00

(1 − q2)β2 + (2 − q)αβ + (1 + q(q − 1)b2)α2
yi

+
1

2

q(q − 1)α2r00

(1 − q2)β2 + (2 − q)αβ + (1 + q(q − 1)b2)α2
bi. (3.24)

Plugging (3.2) and (3.17) in (2.2) implies that

Ḡi = Ḡi
ᾱ −

1

2b̄2

[

− ᾱ2 s̄i + (2s̄0yi − r̄00b̄i) + 2
r̄00 β̄yi

ᾱ2

]

. (3.25)
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By the projective equivalence of F and F̄ again, there is a scalar function P = P(x, y) on
TM0 such that Gi = Ḡi + Pyi. By (3.24) and (3.25), we have

Ḡi
ᾱ − Gi

α +
[

P −
1

2b̄2
(s̄0 + r̄00b̄i)−

1

2

q[α − 2(q − 1)β]r00

(1 − q2)β2 + (2 − q)αβ + [1 + (q2 − q)b2]α2

]

yi

=
1

2

(q2 − q)α2r00

(1 − q2)β2 + (2 − q)αβ + [1 + q(q − 1)b2]α2
bi −

1

2b̄2
(ᾱ2s̄i + r̄00b̄i). (3.26)

Note that the right side of (3.26) is a quadratic in y. Then there exists a 1-form θ = θi(x)yi

on M such that

P −
1

2b̄2
(s̄0 + r̄00b̄i)−

1

2

q(α − 2(q − 1)β)r00

(1 − q2)β2 + (2 − q)αβ + (1 + q(q − 1)b2)α2
= θ. (3.27)

Thus we get

Gi
α +

1

2

q(q − 1)α2r00

(1 − q2)β2 + (2 − q)αβ + (1 + q(q − 1)b2)α2
bi = Ḡi

ᾱ +
1

2b̄2
(ᾱ2s̄i + r̄00b̄i) + θyi.

This completes the proof of the necessity.
Conversely, by (1.1), (3.18) and (3.19) we have

Gi − Ḡi =
[

θ +
1

2b̄2
(s̄0 + r̄00b̄i) +

1

2

q[α − 2(q − 1)β]r00

(1 − q2)β2 + (2 − q)αβ + [1 + (q2 − q)b2]α2

]

yi.

Thus F is projectively equivalent to F̄. This completes the proof.

By Lemma 1, Lemma 3 and Theorem 1, we have the following.

Corollary 1. Let F = (α+β)q

αq−1 (q 6= 1) be a (q, α, β) metric and F̄ = ᾱ2/β̄ be a Kropina metric

on a n-dimensional manifold M (n ≥ 3), where α and ᾱ are two Riemannian metrics, β and β̄
are two nonzero collinear 1-forms on M. Then F is projectively equivalent to F̄ if and only if .

Gi
α +

1

2

q(q − 1)α2r00

(1 − q2)β2 + (2 − q)αβ + [1 + q(q − 1)b2]α2
bi = Ḡi

ᾱ +
1

2b̄2
(ᾱ2s̄i + r̄00b̄i) + θyi,

sij = 0,

s̄ij :=
1

b̄2
{b̄i s̄j − b̄j s̄i}.

where bi|j denote the coefficients of the covariant derivatives of β with respect to α.

It is well known that the Berwald metric F = (α+β)2

α on a manifold M is a Douglas metric
if and only if

bi|j = 2τ[(1 + 2b2)aij − 3bibj], (3.28)

where τ = τ(x) is a scalar function on M. Thus by (3.28) and Theorem 1, we get the
following.
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Corollary 2. Let F = (α+β)2

α be a Berwald metric and F̄ = ᾱ2/β̄ be a Kropina metric on a

n-dimensional manifold M (n ≥ 3), where α and ᾱ are two Riemannian metrics, β and β̄ are
two non-zero collinear 1-forms on M. Then F is projectively related to F̄ if and only if they are
Douglas metrics and the following holds

Gi
α − Ḡi

ᾱ = θyi +
1

2b̄2
(ᾱ2s̄i + r̄00b̄i)− 2τα2bi,

where τ = τ(x) is a scalar function on M.

4. PROOF OF THEOREM 2

In this section, we are going to prove the Theorem 2. More precisely, we find the con-

ditions that an (q, α, β)-metric F = βq

(β−α)q−1 being projectively equivalent to a Kropina

metric. For the (q, α, β)-metric F = βq

(β−α)q−1 , the following are hold

Q =
s − q

(q − 1)s
, Ψ =

q

2[s2(s − 1) + q(b2 − s2)]
, Θ =

s(s − 2q)

2[s2(s − 1) + q(b2 − s2)]
. (4.1)

First we prove the following.

Lemma 4. Let F = βq

(β−α)q−1 be an (q, α, β)-metric and F̄ = ᾱ2/β̄ be a Kropina metric on a

n-dimensional manifold M (n ≥ 3) where α and ᾱ are two Riemannian metrics and β and β̄ are
two non-zero collinear 1-forms. Then F and F̄ have the same Douglas tensor if and only if they
are all Douglas metrics.

Proof. The sufficiency is obvious. Suppose that F and F̄ have the same Douglas tensor
on a manifold M of dimension n ≥ 3. Then (3.8) holds. By plugging (3.2) and (4.1) into
(3.8), we obtain

∑
8
j=1 Ai

jα
j

∑
6
j=0 Bjαj

+
Āiᾱ2 + B̄i

2b̄2 β̄
= Hi

00, (4.2)

where

Ai
1 = 2β7si

0 − 3λq(q − 1)β5r00yi

Ai
2 = 6λβ5s0yi − 2(3q + 2)β6si

0 + 2q(q2 − 1)λβ4r00yi

Ai
3 = 2[(q + 1)2 + 2q(q + 1)]β5si

0 − 2q(6q + 1)λβ4s0yi + q(q − 1)β4r00bi

+q(q − 1)[3λb2β3r00yi − 2λβ4r0yi],

Ai
4 = [2q(q + 1)(3q − 1)− 6qb2]λβ3s0yi + 2q(q2 − 1)λβ2[βr0 − b2r00]y

i

−2qβ4[(q + 1)2 − 2b2]si
0 − qβ3[2βs0 + (q2 − 1)r00]b

i,

Ai
5 = 2q(5q + 2)λb2β2s0yi − 2q(2q + 1)β3[2b2si

0 − s0bi],

Ai
6 = 2q2(q + 1)β2[2b2si

0 − s0bi]− 2q2(3q + 1)λb2βs0yi

−q2(q − 1)λb2β[2r0yi − r00bi],

Ai
7 = 2q2b2β(b2si

0 − s0bi),

Ai
8 = −2q3b2(b2si

0 − s0bi). (4.3)
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and

B0 = 2(q − 1)β7,

B1 = −4(q − 1)(q + 1)β6,

B2 = 2(q − 1)(q + 1)2β5,

B3 = 4q(q − 1)b2β4,

B4 = −4q(q2 − 1)b2β3,

B5 = 0,

B6 = 2q2(q − 1)b4β, (4.4)

and

Āi := b̄2 s̄i
0 − b̄i s̄0, B̄i := β̄[2λyi(r̄0 + s̄0)− b̄i r̄00].

(4.2) is equivalent to

(
8

∑
j=1

Ai
jα

j)(2b̄2 β̄) + (Āiᾱ2 + B̄i)(
6

∑
j=0

Bjα
j) = (2b̄2 β̄)(

6

∑
j=0

Bjα
j)Hi

00. (4.5)

By replacing yi with −yi in (4.5), we get

(
3

∑
j=0

Ai
(2j+1)α

(2j+1) −
4

∑
j=1

Ai
(2j)α

(2j))(−2b̄2 β̄)

−(Āiᾱ2 + B̄i)(
1

∑
j=0

B(2j+1)α
(2j+1) −

3

∑
j=0

B(2j)α
(2j)) =

−2b̄2 β̄(
1

∑
j=0

B(2j+1)α
(2j+1) −

3

∑
j=0

B(2j)α
(2j))Hi

00. (4.6)

(4.5)− (4.6) implies that

2b̄2 β̄(
4

∑
j=1

Ai
(2j)α

(2j)) + (Āiᾱ2 + B̄i)
3

∑
j=0

B(2j)α
(2j) = 2b̄2 β̄

3

∑
j=0

B(2j)α
(2j)Hi

00. (4.7)

(4.5) + (4.6) yields

2b̄2 β̄
3

∑
j=0

Ai
(2j+1)α

(2j+1) + (Āiᾱ2 + B̄i)
1

∑
j=0

B(2j+1)α
(2j+1)

= 2b̄2 β̄
1

∑
j=0

B(2j+1)α
(2j+1)Hi

00. (4.8)
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[ β
q × (4.7)] + [(4.8)× α] give us the following

(Āiᾱ2 + B̄i)
[

(
β

q
)(B6α6) + (

β

q
B4 + B3)α

4 + (
β

q
B2 + B1)α

2 +
β

q
B0

]

+(2b̄2 β̄)
[

(
β

q
Ai

6 + Ai
5)α

6 + (
β

q
Ai

4 + Ai
3)α

4 + (
β

q
Ai

2 + Ai
1)α

2
]

=

(2b̄2 β̄)Hi
00

[

(
β

q
)(B6α6) + (

β

q
B4 + B3)α

4 + (
β

q
B2 + B1)α

2 +
β

q
B0

]

. (4.9)

All of members of set
{

( β
q Ai

j + Ai
(j−1)), (

β
q Bk + B(k−1)),

β
q B6,

β
q B0

∣

∣j = 6, 4, 2, k = 4, 2
}

have the factor β2. Let us put

Di
j :=

1

β2
(

β

q
Ai

j + Ai
(j−1)), j = 6, 4, 2

Ck :=
1

β2
(

β

q
Bk + B(k−1)), k = 4, 2

C6 :=
1

qβ
B6 = 2q(q − 1)b4,

C0 :=
1

qβ
B0. (4.10)

Then 1
β2 × (4.9) yields

(Āiᾱ2 + B̄i)
[

C6α6 + C4α4 + C2α2 + C0

]

+ 2b̄2 β̄
[

Di
6α6 + Di

4α4 + Di
2α2

]

= 2b̄2 β̄Hi
00

[

C6α6 + C4α4 + C2α2 + C0

]

. (4.11)

By (4.7) and (4.11), it follows that (Āiᾱ2 + B̄i)(∑3
j=0 B(2j)α

(2j)) and (Āiᾱ2 + B̄i)
[

C6α6 +

C4α4 + C2α2 + C0

]

can be divided by β̄. Thus β = µβ̄ and Āiᾱ2C6α4 can be divided by

β̄. Since β̄ is prime with respect to α and ᾱ, then Āi := b̄2 s̄i
0 − b̄i s̄0 can be divided by β̄.

Hence, there is a scaler function ψi(x) such that

b̄2 s̄i
0 − b̄i s̄0 = ψi β̄. (4.12)

Contracting (4.12) with ȳi := āijy
j yields ψi(x) = −s̄i. Then we have

s̄ij =
1

b̄2
(b̄i s̄j − b̄j s̄i). (4.13)

Now, suppose that n ≥ 3. Then by Lemma 1, F̄ = ᾱ2/β̄ is a Douglas metric. Since F and
F̄ have the same Douglas tensor, both of them are Douglas metrics.
In the case n = 2, by Lemma 1, F̄ = ᾱ2/β̄ is a Douglas metric. Thus F and F̄ having the
same Douglas tensor means that they are all Douglas metrics. This completes the proof
of Lemma 4.

Now, we are in the position to prove Theorem 2.

Proof of Theorem 2: First, we proof the necessity. If F is projectively related to F̄, then
they have the same Douglas tensor. By Lemma 4, F and F̄ are both Douglas metrics. If
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q = 1,−1, then it is easy to prove that φ(s) = sq

(s−1)q−1 satisfies Q
s 6= constant. By Lemma

3, it results that sij = 0. By (2.2), we get

Gi = Gi
α +

1

2

β(β − 2qα)r00

β2(β − α) + q(b2α2 − β2)α
yi +

1

2

qα3r00

β2(β − α) + q(b2α2 − β2)α
bi. (4.14)

Plugging (3.2) and (4.13) in (2.2) yields

Ḡi = Ḡi
ᾱ −

1

2b̄2

[

− ᾱ2 s̄i + (2s̄0yi − r̄00b̄i) + 2
r̄00 β̄yi

ᾱ2

]

. (4.15)

By assumption, there is a scalar function P = P(x, y) on TM0 such that Gi = Ḡi + Pyi.
Then by (4.14) and (4.15) we have

[

P −
1

2

β(β − 2qα)r00

β2(β − α) + q(b2α2 − β2)α
−

1

2b̄2
(s̄0 + r̄00b̄i)

]

yi = Gi
α − Ḡi

ᾱ

−
1

2b̄2
(ᾱ2s̄i + r̄00b̄i) +

1

2

qα3r00

β2(β − α) + q(b2α2 − β2)α
bi. (4.16)

The right side of (4.16) is a quadratic in y. Then there exists a 1-form θ = θi(x)yi on M
such that

P −
1

2

β(β − 2qα)r00

β2(β − α) + q(b2α2 − β2)α
−

1

2b̄2
(s̄0 + r̄00b̄i) = θ. (4.17)

Thus we get

Gi
α +

1

2

qα3r00

β2(β − α) + q(b2α2 − β2)α
bi = Ḡi

ᾱ +
1

2b̄2
(ᾱ2s̄i + r̄00b̄i) + θyi. (4.18)

This completes the proof of the necessity.
Conversely, from (1.2), (4.14) and (4.15) it follows that

Gi = Ḡi +
[

θ +
1

2

β(β − 2qα)r00

β2(β − α) + q(b2α2 − β2)α
+

1

2b̄2
(s̄0 + r̄00b̄i)

]

yi. (4.19)

Thus F is projectively equivalent to F̄. This completes the proof.

By Lemmas 1, 3 and Theorem 2, we can conclude the following.

Corollary 3. Let F = βq

(β−α)q−1 (q 6= 1,−1) be a (q, α, β)-metric and F̄ = ᾱ2/β̄ be a Kropina

metric on a n-dimensional manifold M (n ≥ 3) where α and ᾱ are two Riemannian metrics, β
and β̄ are two nonzero collinear 1-forms. Then F is projectively related to F̄ if and only if the
following holds

Gi
α − Ḡi

ᾱ =θyi +
1

2b̄2
(ᾱ2s̄i + r̄00b̄i)−

1

2

qα3r00

β2(β − α) + q(b2α2 − β2)α
bi, (4.20)

sij =0, (4.21)

s̄ij =
1

b̄2
{b̄i s̄j − b̄j s̄i}. (4.22)

where bi|j denote the coefficients of the covariant derivatives of β with respect to α.
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