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ABSTRACT. The Cioranescu-(Haslam-Jones)-Lanczos derivative, which performs deriva-
tion through integration, is obtained from a quadrature technique with boundary values.
Besides, our approach permits to generalize this derivative for higher orders, in har-
mony with the result of Rangarajan-Purushothaman. We apply the Lanczos derivative
to Fourier series with the natural presence of the σ-factors.
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1. INTRODUCTION

Lanczos [1] used the Least Squares Method (LSM) of Legendre [2]-Gauss [3]-Laplace [4]
to obtain an integral expression that gives the derivative of a function, that is, derivation
via integration [1, 5-8]:

f ′L(x, ε) =
3

2ε3

∫ ε

−ε
t f (x + t)dt, ε << 1 (1)

when ε→ 0, then (1) tends to the ordinary derivative:

lim
ε→0

f ′L(x, ε) = f ′(x) (2)

From the Taylor series:

f (x + t) = f (x) + f ′(x)t +
1
2

f ′′(x)t2 + ..., (3)

which on substituting in (1) implies:

f ′L(x, ε) = f ′(x) +
ε2

10
f ′′′(x) + ..., (4)

and thus (2) is immediate. In (4) we observe that when ε → 0 then is closer the equality
between the two types of derivatives.
Lanczos [1, 9] calculated, for example in x = 0, the derivative of an empirical func-
tion tabulated in equidistant data, then he saw that with five points could fit a parabola
through them, thus proposing the curve y = a + bx + cx2 whose coefficients were ob-
tained via the LSM, and in doing with b because it is clear that y′(0) = b. In other words,
f ′L(0, ε) is the derivative of this parabola when the number n of data tends to infinite
and the separation h between them reduces to zero, all this happening in the vicinity
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[−ε, ε], ε << 1, about x = 0, and the empirical function approaches to a continuous
function. In applying the technique of LSM to seek a, b, c that minimize the square error

n

∑
k=−n

(a + bxk + cx2
k − yk)

2 , one of the resulting equations is:

a ∑ xk + b ∑ x2
k + c ∑ x3

k = ∑ xkyk, (5)

but xk are distributed symmetrically about the origin, then ∑ xk = ∑ x3
k = 0 cancelling

the coefficients a and c in (5), and assuming n→ ∞ and h→ 0, the relation (5) involve:

b
∫ ε

−ε
t2dt =

∫ ε

−ε
t f (t)dt ∴ b =

3
2ε2

∫ ε

−ε
t f (0 + t)dt,

and if instead of f ′L(0, ε) we had been interested in f ′L(x, ε) then would have been (1), and
hence proved. It is important to note the significance of the LSM in the deduction of the
Lanczos formula [10, 11]. We must emphasize that (1) was first deduced by Cioranescu
[12] and Haslam-Jones [13].
In Sec. 2 we employ quadrature by differentiation [14, 15] to obtain (1), which permits
to generalize the Lanczos derivative for higher orders, in compatibility with the corre-
sponding expression constructed in [16]. The Sec. 3 exhibits the application of (1) to
Fourier series, which generates the presence of the celebrated Lanczos σ-factors [1, 17-
20] of great importance in the study of the Gibbs phenomenon [1, 17-19, 21-25], because
by the method of the sigma smoothing the convergence of the Fourier series is increased
due to a reduction of the amplitudes of the Gibbs oscillations [26-28]. We note that it is an
open problem to find a geometrical meaning of the Cioranescu-(Haslam-Jones)-Lanczos
derivative [8].

2. LANCZOS GENERALIZED DERIVATIVE VIA A QUADRATURE METHOD.

Here we shall deduce the Lanczos derivative from a quadrature technique with bound-
ary values. In numerical analysis there exist several algorithms to determine the area
under a curve F(x), known as quadrature methods, for instance [1], the Simpson and
trapezoidal rules, the non-equidistant process of Gauss [29, 30] based on the Legendre
polynomials [31-33], etc., which employ the values of F(x) in different points into the
given interval [a, b]. Lanczos [1] obtained a remarkable quadrature formula where only
are needed the values of the function and its derivatives at the end points a and b:∫ b

a
F(t) =

n

∑
k=1

(2n− k)!!
(2n)!

(
n
k

) [
F(k−1)(a)− (−1)kF(k−1)(b)

]
hk, h = b− a (6)

The Lanczos expression is quite efficient because with only few terms it gives a result
very near to the exact one, and this property is useful to solve differential equations with
boundary values; for n = 3 the relation (6) turns out to be:∫ b

a
F(t)dt =

h
2
[F(a) + F(b)] +

h2

10
[F′(a)− F′(b)] +

h3

120
[F′′(a) + F′′(b)]. (7)

In this Section is proven that (6) leads, naturally, to Lanczos derivative (1), and our treat-
ment shows that it can be obtained without the explicit use of the LSM. In fact, (6) is
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applied for F(t) = t f (x + t) with a = −ε, b = ε, εł1, so h = 2ε is very small and then
with (7) it can be performed our analysis, therefore:

3
2ε3

∫ ε

−ε
=

9
5

f (x + ε)− f (x− ε)

2ε
− 2

5
[ f ′(x + ε) + f ′(x− ε)] +

ε

10
[ f ′′(x + ε)− f ′′(x− ε)],

consequently:

lim
ε→0

3
2ε3

∫ ε

−ε
t f (x + t)dt =

9
5

f ′(x)− 4
5

f ′(x) = f ′(x), (8)

in harmony with (1, 2).
If we apply (7) for F(t) = t2 f (x + t), then:∫ ε

−ε
t2 f (x + t)dt =

ε5

15
[ f ′′(x + ε) + f ′′(x− ε)] +

ε3

3
[ f (x + ε) + f (x− ε)]−

− 2ε4

15
[ f ′(x + ε) + f ′(x− ε)], (9)

but (7) with F(t) = f (x + t), gives:

ε3

3
[ f (x + ε) + f (x− ε)]− 2ε4

15
[ f ′(x + ε) + f ′(x− ε)] =

ε2

3

∫ ε

−ε
f (x + t)dt− ε5

45
[ f ′′(x + ε) + f ′′(x− ε)],

therefore (9) implies:

1
ε3

∫ ε

−ε

(
t2

ε2 −
1
3

)
f (x + t)dt =

2
45

[ f ′′(x + ε) + f ′′(x− ε)],

finally:

f ′′(x) = lim
ε→0

15
4ε3

∫ ε

−ε

(
3t2

ε
− 1
)

f (x + t)dt = lim
ε→0

5!!
2ε3

∫ ε

−ε
P2

(
t
ε

)
f (x + t)dt (10)

where P2(u) = 1
2 (3u2 − 1) is a Legendre polynomial [31-33]. A similar process with

F(t) = t3 f (x + t) leads to:

f ′′′(x) = lim
ε→0

7!!
2ε4

∫ ε

−ε
P3

(
t
ε

)
f (x + t), P3(u) =

1
2
(5u3 − 3u), (11)

thus (8,10,11) permit to write the Lanczos derivative for higher orders:

f n
L (x) = lim

ε→0

(2n + 1)!!
2εn+1

∫ ε

−ε
Pn

(
t
ε

)
f (x + t)dt, n = 0, 1, 2, ... (12)

in according with the result of Rangarajan-Purushothaman [16]. In this manner, the
method of differentiation by integration due to Cioranescu-(Haslam-Jones)-Lanczos is
generalized to cover derivatives of arbitrary order. We note that Lanczos [1] uses the
Legendre polynomials to deduce the quadrature formula (6), then in (12) is natural the
participation of these polynomials. Washburn [8] comments the possible presence of the
Legendre polynomials in an expression for f (n)L (x).
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3. LANCZOS DERIVATIVE APPLIED TO FOURIER SERIES

.
It is very known that if the operator d

dx acts on each term into a convergent Fourier
series, then it may result a divergent series. This situation is remedied [1] applying the
symmetric derivative [34] to Fourier series, which implies the existence of the important
-factors. Here we show that the Lanczos derivative also leads to these factors. If on the
Fourier series:

f (x) = 1/2a0 +
∞

∑
k=1

k[−ak cos (kx) + bk sin (kx)], (13)

convergent into [−π, π], we apply the operator d
dx results:

d
dx

f (x) =
∞

∑
k=1

k[−ak cos (kx) + bk sin (kx)], (14)

which it may be divergent [1, 28]. This problem was remedied by Lanczos [1] with f ′(x)
defined as a symmetric derivative [34]:

f ′(x) = lim
n→∞

1
2π
n

[
fn

(
x +

π

n

)
− fn

(
x− π

n

)]
, (15)

with the partial sums:
fn(x) = gn(x) + hn(x),

gn(x) =
1
2

a0 +
n

∑
k=1

ak cos(kx), hn(x) =
n

∑
k=1

bk sin(kx) (16)

resulting the convergent expression:

f ′(x) = lim
n→∞

n

∑
k=1

σk
d

dx
[ak cos (kx) + bk sin (kx)], (17)

with the Lanczos σ-factors [1, 18]:

σ0 = 1, σn = 0, σk =
sin
(

kπ
n

)
kπ
n

, k = 1, 2, ..., n− 1. (18)

This set of factors, for a given n, it is equivalent to a discrete sampling function. In
(14, 15) we employ two types of derivatives, however, it is natural to ask if the Lanczos
derivative lead to relation (17). The answer is yes, in fact:

3
2ε3

∫ ε

−ε
tgn(x + t)dt =

3
2ε3

n

∑
k=1

ak

∫ ε

−ε
t cos(kx + kt)dt = −3

n

∑
k=1

ak
sin(kx)

k2 Ak,

such that Ak(ε) =
1
ε3 [sin(kε)− kε cos (kε)]. Similarly:

3
2ε3

∫ ε

−ε
thn(x + t)dt = 3

n

∑
k=1

bk
cos(kx)

k2 Ak (19)

Therefore, the Lanczos derivative applied to partial sum (16) gives, taking ε = π
n :

f ′L(x) = lim
n→∞

3
n

∑
k=1

Ak[−ak sin(kx) + bk cos (kx)],
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= lim
n→∞

n

∑
k=1

3Ak

k3
d

dx
[ak cos(kx) + bk sin (kx)], (20)

but the Bernoulli-Hôpital rule permits to observe the following behavior for n1:

Ak

(
ε =

π

n

)
−→ k3

3
sin (kε)

kε
=

k3

3

sin
(

kπ
n

)
kπ
n

=
k3

3
σk,

and this value into (20) implies (17), q.e.d. Thus, it is proved that the symmetric and
Lanczos derivatives give the same expression for the derivative of an infinite Fourier
series, with the important presence of the σ-factors.
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