PRINCIPAL DIRECTION CURVES OF BIHARMONIC CURVES IN THE HEISENBERG GROUP

TALAT KÖRPINAR, ESSIN TURHAN, AND VEDAT ASİL

ABSTRACT. In this paper, we study principal-direction curve of biharmonic curves in the Heisenberg group Heis3. Finally, we illustrate principal-direction curve of biharmonic curves in the Heisenberg group Heis3.

MSC 2010: 53A04, 53A35, 53C80, 83A05.
Keywords: Biharmonic curve, Heisenberg group, principal-direction curve.

1. INTRODUCTION

The local theory of space curves are mainly developed by the Frenet–Serret theorem which expresses the derivative of a geometrically chosen basis of \mathbb{R}^3 by the aid of itself is proved. Then it is observed that by the solution of some of special ordinary differential equations, further classical topics, for instance spherical curves, Bertrand curves, involutes and evolutes are investigated. One of the mentioned works is spherical images of a regular curve in the Euclidean space. It is a well known concept in the local differential geometry of curves. Such curves are obtained in terms of the Frenet–Serret vector fields, [4].

In this paper, we study principal-direction curve of biharmonic curves in the Heisenberg group Heis3. Finally, we illustrate principal-direction curve of biharmonic curves in the Heisenberg group Heis3.

2. BACKGROUND ON THE HEISENBERG GROUP HEIS3

Heisenberg group Heis3 can be seen as the space \mathbb{R}^3 endowed with the following multiplication:

$$(\bar{x}, \bar{y}, \bar{z})(x, y, z) = (\bar{x} + x, \bar{y} + y, \bar{z} + z - \frac{1}{2} \bar{x}y + \frac{1}{2} x \bar{y})$$

Heis3 is a three-dimensional, connected, simply connected and 2-step nilpotent Lie group. The Riemannian metric g is given by

$$g = dx^2 + dy^2 + (dz - xdy)^2.$$

The Lie algebra of Heis3 has an orthonormal basis

$$e_1 = \frac{\partial}{\partial x}, \ e_2 = \frac{\partial}{\partial y} + x \frac{\partial}{\partial z}, \ e_3 = \frac{\partial}{\partial z},$$

(2.1)
for which we have the Lie products
\[[e_1, e_2] = e_3, \quad [e_2, e_3] = [e_3, e_1] = 0 \]

with
\[g(e_1, e_1) = g(e_2, e_2) = g(e_3, e_3) = 1. \]

Let \(\gamma : I \rightarrow \text{Heis}^3 \) be a non-geodesic curve on the Heisenberg group \(\text{Heis}^3 \) parametrized by arc length. Let \(\{T, N, B\} \) be the Frenet frame fields tangent to the Heisenberg group \(\text{Heis}^3 \) along \(\gamma \) defined as follows:
- \(T \) is the unit vector field tangent to \(\gamma \),
- \(N \) is the unit vector field in the direction of \(\nabla T T \) (normal to \(\gamma \)), and
- \(B \) is chosen so that \(\{T, N, B\} \) is a positively oriented orthonormal basis.

Then, we have the following Frenet formulas:
\[
\begin{align*}
\nabla T T &= \kappa N, \\
\nabla T N &= -\kappa T + \tau B, \\
\nabla T B &= -\tau N,
\end{align*}
\]
where \(\kappa \) is the curvature of \(\gamma \) and \(\tau \) is its torsion and
\[
\begin{align*}
g(T, T) &= 1, \quad g(N, N) = 1, \quad g(B, B) = 1, \\
g(T, N) &= g(T, B) = g(N, B) = 0.
\end{align*}
\]

Theorem 2.1. Let \(\gamma : I \rightarrow \text{Heis}^3 \) be a unit speed biharmonic curve with non-zero natural curvatures. Then, the parametric equations of \(\gamma \) are
\[
\begin{align*}
x(s) &= \cos C s + B_3, \\
y(s) &= \frac{1}{B_1} \sin C \sin [B_1 s + B_2] + B_4, \\
z(s) &= \frac{1}{B_1} \sin C \cos C \cos [B_1 s + B_2] + \frac{1}{B_1} \sin C \cos C \sin [B_1 s + B_2] \\
&\quad + \frac{B_2}{B_1} \sin C \sin [B_1 s + B_2] - \frac{1}{B_1} \sin C \cos [B_1 s + B_2] + B_5,
\end{align*}
\]
where \(B_1, B_2, B_3, B_4, B_5 \) are constants of integration.

3. Principal-Direction Curves of Biharmonic Curves in the Heisenberg Group \(\text{Heis}^3 \)

Recall that a smooth curve in \(\text{Heis}^3 \) is a smooth map \(\gamma : I \rightarrow \text{Heis}^3 \), where \(I \) is an interval in \(\mathbb{R} \). For any \(a \in I \), the tangent vector of \(\gamma \) at the point \(\gamma(a) \) is
\[
\gamma'(a) = \frac{d\gamma}{ds}(a) = d\gamma_a \left(\frac{d}{ds} \right),
\]
where \(\frac{d}{ds} \) is the standard coordinate tangent vector.
Definition 3.1. Let X be a smooth vector field on Heis^3. We say that a smooth curve $\gamma : I \to \text{Heis}^3$ is an integral curve of X if for any $s \in I$,

$$\gamma'(s) = X_{\gamma(s)}.$$

Then,

$$X_{\gamma(s)} = u(s) T(s) + v(s) N(s) + w(s) B(s), \quad (3.1)$$

Then, an integral curve $\bar{\gamma}(s)$ of $X_{\gamma(s)}$ defined on I is a unit speed curve in Heis^3.

Remark 3.2. A principal-direction curve is an integral curve of $X_{\gamma(s)} = N(s)$.

Theorem 3.3. Let $\gamma : I \to \text{Heis}^3$ be a unit speed biharmonic curve. Then, the equations of principal-direction curve of γ are

$$\bar{x}(s) = \frac{1}{4B_1 \kappa} \sin^2 C (- \cos [2B_2] \cos [2B_1 s] + \sin [2B_2] \sin [2B_1 s]),$$

$$\bar{y}(s) = -\frac{1}{B_1 \kappa} \sin C (B_1 + \cos C) (- \cos [B_2] \cos [B_1 s] + \sin [B_2] \sin [B_1 s]), \quad (1)$$

$$\bar{z}(s) = -\frac{1}{24B_1^2 \kappa^2} \sin^3 C (B_1 + \cos C) (-3 \cos [B_1 s + B_2] + \cos 3 [B_1 s + B_2]) + \frac{1}{\kappa} \sin C (\cos [B_2] \sin [B_1 s] + \cos [B_2] \sin [B_1 s]),$$

where B_1, B_2, B_3, B_4, B_5 are constants of integration.

Proof. By using the Frenet frame, we obtain

$$\frac{d\gamma}{ds} = \frac{1}{\kappa} \sin^2 C \cos [B_1 s + B_2] \sin [B_1 s + B_2] e_1 - \frac{1}{\kappa} \sin C \sin [B_1 s + B_2] (B_1 + \cos C) e_2$$

$$+ \frac{1}{\kappa} B_1 \sin C \cos [B_1 s + B_2] e_3.$$

Since, we express

$$\frac{d\gamma}{ds} = \left(\frac{1}{\kappa} \sin^2 C \cos [B_1 s + B_2] \sin [B_1 s + B_2] ,
- \frac{1}{\kappa} \sin C \sin [B_1 s + B_2] (B_1 + \cos C),
- \frac{1}{\kappa} \sin C \sin [B_1 s + B_2] (B_1 + \cos C) + \frac{1}{\kappa} B_1 \sin C \cos [B_1 s + B_2] \right).$$

So, by integrating of the above formula, we get (3.2). This concludes the proof of theorem.
Theorem 3.4. Let $\gamma: I \to \text{Heis}^3$ be a unit speed biharmonic curve. Then, the position vector of principal-direction curve of γ is

$$\bar{\gamma}(s) = \frac{1}{4B_1\kappa} \sin^2 C (-\cos[2B_2] \cos[2B_1s] + \sin[2B_2] \sin[2B_1s])e_1$$

$$- \frac{1}{B_1\kappa} \sin C (B_1 + \cos C) (-\cos[B_2] \cos[B_1s] + \sin[B_2] \sin[B_1s])e_2$$

$$+ (- \frac{1}{24B_1^2\kappa^2} \sin^3 C (B_1 + \cos C) (-3 \cos [B_1s + B_2] + \cos 3 [B_1s + B_2])$$

$$+ \frac{1}{\kappa} \sin C (\cos[B_2] \sin[B_1s] + \cos[B_2] \sin[B_1s])$$

$$+ \frac{1}{4B_1^2\kappa^2} \sin^3 C (-\cos[2B_2] \cos[2B_1s] + \sin[2B_2] \sin[2B_1s]) (B_1$$

$$+ \cos C) (-\cos[B_2] \cos[B_1s] + \sin[B_2] \sin[B_1s]) e_3,$$

where B_1, B_2, B_3, B_4, B_5 are constants of integration.

4. Some pictures

In this section we draw some pictures about γ and $\bar{\gamma}$:

![Fig.1: A unit speed biharmonic curve.](image)
Fig 2: Principal-direction curve of a unit speed biharmonic curve.

Fig 3: Using Mathematica both principal-direction curve and its mate.

REFERENCES

MUŞ ALPARSLAN UNIVERSITY, DEPARTMENT OF MATHEMATICS, 49250, MUŞ, TURKEY
E-mail address: talatkorpinar@gmail.com

2,3 FıRAT UNIVERSITY, DEPARTMENT OF MATHEMATICS,
DEPARTMENT OF MATHEMATICS, 23119, ELAZIĞ, TURKEY
E-mail address: essin.turhan@gmail.com

2,3 FıRAT UNIVERSITY, DEPARTMENT OF MATHEMATICS,
DEPARTMENT OF MATHEMATICS, 23119, ELAZIĞ, TURKEY
E-mail address: vasil@firat.edu.tr