PROBLEMS IN TRAPEZOID GEOMETRY

OVIDIU T. POP, PETRU I. BRAICA AND RODICA D. POP

ABSTRACT. The purpose of this paper is to present some known and new properties of trapezoids.

2010 Mathematical Subject Classification: 97G40, 51M04.
Keywords and phrases: Trapezoid.

1. INTRODUCTION

In this section, we recall the well known results:

Theorem 1.1. (see [4] or [5]) Let a, b, c, d, be strictly positive real numbers. These numbers can be the lengths of the sides of a quadrilateral if and only if

\[a < b + c + d, \ b < c + d + a, \ c < d + a + b, \ d < a + b + c. \] (1.1)

In general, the strictly positive real numbers a, b, c, d, which verify (1.1) don’t determine in a unique way a quadrilateral. We consider a quadrilateral with rigid sides and constant side lengths, its vertices being mobile articulations. Then, this quadrilateral can be deformed in order to obtain another quadrilateral. For trapezoids, the following theorem takes place:

Theorem 1.2. (see [5]) Let a, b, c, d, be strictly positive real numbers. Then a, b, c, d can be the lengths of the sides of a trapezoid of bases a and c if and only if

\[
\begin{align*}
& a + d < b + c \\
& a + b < c + d \quad \text{or} \quad c + d < a + b \\
& c < a + b + d \quad \text{or} \quad a < b + c + d
\end{align*}
\] (1.2)

By construction, we prove that, in the condition of Theorem 1.2, the trapezoid is uniquely determined. We consider that a < c, AD = d, DU = c − a and AU = b. The triangle ADU is uniquely determined. Let DC = c and we construct the sides AD || DC, BC || AU. So, we obtain a trapezoid ABCD uniquely determined by the side lengths AB = a, BC = b, CD = c and DA = d.
2. Main Results

In this section, we consider the trapezoid ABCD, with the bases AB and CD, \(AB < CD, E \in AD, EF \parallel AB, F \in BC, EF \cap BD = \{ G \}, EF \cap AC = \{ H \} \) and \(AC \cap BD = \{ O \} \).

Theorem 2.1. The following identities

\[
EH \equiv FG \tag{2.1}
\]

and

\[
EG \equiv FH \tag{2.2}
\]

hold.

Proof. Because \(AB \parallel EF \parallel CD \) (Figure 2.1), we have:

\[
\frac{EA}{DA} = \frac{FB}{BC}. \tag{2.3}
\]

From \(EF \parallel DC \) results that \(\triangle AEH \sim \triangle ADC \) and \(\triangle BFG \sim \triangle BCD \), so

\[
\frac{EA}{DA} = \frac{EH}{DC} = \frac{AH}{AC}. \tag{2.4}
\]

and

\[
\frac{FB}{BC} = \frac{FG}{CD} = \frac{BG}{BD}. \tag{2.5}
\]

From (2.3)-(2.5), results (2.1) and from (2.1), relation (2.2) follows. \(\square \)

Theorem 2.2. We have:

\[
GH = \frac{1}{AB} - \frac{1}{DC} \left(\frac{1}{AB} + \frac{1}{DC} \right) EF - 2, \tag{2.6}
\]

![Figure 2.1](image1.png)

![Figure 2.2](image2.png)

![Figure 2.3](image3.png)

![Figure 2.4](image4.png)
From \(EF \parallel AB \) results that \(\triangle CHF \sim \triangle CAB \), from where
\[
\frac{HC}{AC} = \frac{HF}{AB}, \tag{2.7}
\]
From (2.4) and (2.7), we have that
\[
\frac{EH}{DC} + \frac{HF}{AB} = 1 \tag{2.8}
\]
if \(E \in [AD] \) (see Figure 2.1),
\[
\frac{HF}{AB} - \frac{EH}{DC} = 1 \tag{2.9}
\]
if \(E \in (DA - (AD)) \) (see Figure 2.3) and
\[
\frac{EH}{DC} - \frac{HF}{AB} = 1 \tag{2.10}
\]
if \(E \in (AD - (AD)) \) (see Figure 2.4). Taking (2.1) into account we have that
\[
GH = \frac{1}{AB - DC} \left(\left(\frac{1}{AB} + \frac{1}{DC} \right) EF - 2 \right), \tag{2.11}
\]
if \(G \in [DO] \) and
\[
GH = -\frac{1}{AB - DC} \left(\left(\frac{1}{AB} + \frac{1}{DC} \right) EF - 2 \right), \tag{2.12}
\]
if \(G \in [OB] \). Similarly, we obtain that
\[
GH = -\frac{1}{AB - DC} \left(\left(\frac{1}{AB} + \frac{1}{DC} \right) EF - 2 \right), \tag{2.13}
\]
if \(G \in (DA - (DA)) \) and
\[
GH = \frac{1}{AB - DC} \left(\left(\frac{1}{AB} + \frac{1}{DC} \right) EF - 2 \right), \tag{2.14}
\]
if \(G \in (AD - (AD)) \). From (2.11)-(2.14), relation (2.6) follows.

Corollary 2.3. If \(O \in EF \), then
\[
OE \equiv OF \tag{2.15}
\]
and
\[
EF = \frac{2}{\frac{1}{AB} + \frac{1}{DC}}. \tag{2.16}
\]

Proof. These identities result immediately from Theorem 2.1 and Theorem 2.2 in the case that \(G \) and \(H \) coincide to \(O \). \(\square \)
Corollary 2.4. We have that

$$EF \geq \frac{2}{AB + DC}. \quad (2.17)$$

if $G \in [DO] \cup ((AD - (AD))$ and

$$EF \leq \frac{2}{AB + DC}. \quad (2.18)$$

if $G \in [OB] \cup ((DA - (DA))$.

Proof. The inequalities (2.17) and (2.18), result immediately from (2.11)-(2.14).

Corollary 2.5. If EF is the middle line of the trapezoid, then

$$GH = \frac{DC - AB}{2}. \quad (2.19)$$

Proof. Because $EF = \frac{DC + AB}{2}$ and replacing in (2.6), (2.19) follows.

Corollary 2.6. We have that $GH = \frac{DC + AB}{2}$ if and only if

$$EF = \frac{DC - AB}{2} \quad (2.20)$$

for $G \in [DO] \cup ((AD - (AD))$ or

$$EF = \frac{6 \cdot DC \cdot AB - DC^2 - AB^2}{2(DC + AB)} \quad (2.21)$$

for $G \in [OB] - ((DA - (DA))$.

Proof. For proof, we take (2.6),(2.17) and (2.18) into account.

REFERENCES

National College “Mihai Eminescu”,
5 Mihai Eminescu Street, 440014, Satu Mare, Romania
E-mail address: ovidiutiberiu@yahoo.com

Secondary School “Grigore Moisil”,
1 Mileniului Street, 440037, Satu Mare, Romania
E-mail address: pbraica@yahoo.com

National College “Doamna Stanca”,
5 Ștefan cel Mare Street, 440114, Satu Mare, Romania
E-mail address: oroftiana@yahoo.com