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1. INTRODUCTION

In this section, we recall the well known results:

Theorem 1.1. (see [4] or [5]) Let a, b, c, d, be strictly positive real numbers. These numbers can
be the lengths of the sides of a quadrilateral if and only if

a < b + c + d, b < c + d + a, c < d + a + b, d < a + b + c. (1.1)

In general, the strictly positive real numbers a, b, c, d, which verify (1.1) don’t determine
in a unique way a quadrilateral. We consider a quadrilateral with rigid sides and con-
stant side lengths, its vertices being mobile articulations. Then, this quadrilateral can be
deformed in order to obtain another quadrilateral. For trapezoids, the following theorem
takes place:

Theorem 1.2. (see [5]) Let a, b, c, d, be strictly positive real numbers. Then a, b, c, d can be the
lengths of the sides of a trapezoid of bases a and c if and only if











a + d < b + c

a + b < c + d

c < a + b + d

or











c + d < a + b

c + b < a + d

a < b + c + d

(1.2)

By construction, we prove that, in the condition of Theorem 1.2, the trapezoid is uniquely
determined. We consider that a < c, AD = d, DU = c − a and AU = b. The triangle
ADU is uniquely determined. Let DC = c and we construct the sides AD||DC, BC||AU.
So, we obtain a trapezoid ABCD uniquely determined by the side lenghts AB = a, BC =
b, CD = c and DA = d.
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2. MAIN RESULTS

In this section, we consider the trapezoid ABCD, with the bases AB and CD, AB <

CD, E ∈ AD, EF||AB, F ∈ BC, EF ∩ BD = {G} , EF ∩ AC = {H} and AC ∩ BD = {O} .

Theorem 2.1. The following identities

EH ≡ FG (2.1)

and

EG ≡ FH (2.2)

hold.

Proof. Because AB||EF||CD (Figure 2.1), we have:

EA

DA
=

FB

BC
. (2.3)

From EF||DC results that ∆AEH ∼ ∆ADC and ∆BFG ∼ ∆BCD, so

EA

DA
=

EH

DC
=

AH

AC
(2.4)

and
FB

BC
=

FG

CD
=

BG

BD
. (2.5)

From (2.3)-(2.5), results (2.1) and from (2.1), relation (2.2) follows. �

Theorem 2.2. We have:

GH =
1

1
AB − 1

DC

∣

∣

∣

∣

(

1

AB
+

1

DC

)

EF − 2

∣

∣

∣

∣

, (2.6)

Figure 2.1 Figure 2.2

Figure 2.3 Figure 2.4
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From EF||AB results that ∆CHF ∼ ∆CAB, from where

HC

AC
=

HF

AB
. (2.7)

From (2.4) and (2.7), we have that

EH

DC
+

HF

AB
= 1 (2.8)

if E ∈ [AD] (see Figure 2.1),

HF

AB
−

EH

DC
= 1 (2.9)

if E ∈ (DA − (AD) (see Figure 2.3) and

EH

DC
−

HF

AB
= 1 (2.10)

if E ∈ (AD − (AD) (see Figure 2.4).

Taking (2.1) into account we have that EG = FH = EF−GH
2 , EH = EG + GH if G ∈ [DO]

(see Figure 2.1) and

EG = FH = EF+GH
2 , EH = EG − GH if G ∈ [OB] (see Figure 2.2). Replacing in (2.7), one

obtains:

GH =
1

1
AB − 1

DC

((

1

AB
+

1

DC

)

EF − 2

)

, (2.11)

if G ∈ [DO] and

GH = −
1

1
AB − 1

DC

((

1

AB
+

1

DC

)

EF − 2

)

, (2.12)

if G ∈ [OB].
Similary, we obtain that

GH = −
1

1
AB − 1

DC

((

1

AB
+

1

DC

)

EF − 2

)

, (2.13)

if G ∈ (DA − (DA) and

GH =
1

1
AB − 1

DC

((

1

AB
+

1

DC

)

EF − 2

)

, (2.14)

if G ∈ (AD − (AD). From (2.11)-(2.14), relation (2.6) follows.

Corollary 2.3. If O ∈ EF, then

OE ≡ OF (2.15)

and

EF =
2

1
AB + 1

DC

. (2.16)

Proof. These identities result immediately from Theorem 2.1 and Theorem 2.2 in the case
that G and H coincide to O. �
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Corollary 2.4. We have that

EF ≥
2

1
AB + 1

DC

, (2.17)

if G ∈ [DO] ∪ ((AD − (AD)) and

EF ≤
2

1
AB + 1

DC

. (2.18)

if G ∈ [OB] ∪ ((DA − (DA)).

Proof. The inequalities (2.17) and (2.18), result immediately from (2.11)-(2.14). �

Corollary 2.5. If EF is the middle line of the trapezoid, then

GH =
DC − AB

2
. (2.19)

Proof. Because EF = DC+AB
2 and replacing in (2.6), (2.19) follows. �

Corollary 2.6. We have that GH = DC−AB
2 if and only if

EF =
DC + AB

2
(2.20)

for G ∈ [DO] ∪ ((AD − (AD)) or

EF =
6 · DC · AB − DC2 − AB2

2(DC + AB)
(2.21)

for G ∈ [OB]− ((DA − (DA)).

Proof. For proof, we take (2.6),(2.17) and (2.18) into account. �
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