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ABSTRACT. The group of strong symplectic homeomorphisms of a closed corthegteplectic
manifold was defined and studied [0 [5]] [6] and [7]. In this paper, veiuce the notion of
continuous symplectic flow, and we exhibit ta8 analog of Hodge’s decomposition theorem of
symplectic isotopied [4]. We prove that any continuous symplectic flowsbeadecomposed as
product of topological harmonic flow by continuous Hamiltonian flow. Fynave describe some
structures of strong symplectic homeomorphisms.
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1. INTRODUCTION

The notion ofC’— symplectic topology emerged from the work of Eliashberg and Gromov on
the C°— closure of the symplectic diffeomorphisms. [n[L4] 15] Oh andlist defined the
C%— Hamiltonian topology and introduced the grolameo(M, w) of Hamiltonian homeomor-
phisms. More recently Banyagdal [5, 6] defined e~ symplectic topology which generalizes
the CO— Hamiltonian topology, and defined tHé»*) —context of the grous Sympeo(M, w)

of all ssympeomorphisms of a closed connected symplectic marifdldv). This group gener-
alizes the grougHameo(M, w), of all Hamiltonian homeomorphisms. Our main results are the
following :

Theorem 1.1. Let (M, w) be a closed connected symplectic manifold. The following equality
holds

PSSympeo(M, w) = PHarm(M, w) o PHameo(M, w).

Theorem 1.2. Let (M, w) be a closed connected symplectic manifold. Then,

e there exists an infinite number of non-differentiable elemensSgfipeo(M, w) whose
Fathi’s mass flow is non-trivial
e the inclusionHameo(M, w) C SSympeo(M, w) is strict.

2. PRELIMINARIES

Let (M, w) be a closed connected symplectic manifold. In the following we will mainly use nota
tions from [56]. We denote bg> ([0, 1] x M) the vector space of smooth time-dependent func-
tionsH : [0,1] x M — R. By definition (/) is a symplectic isotopy if the mafx, t) — h;(x)

is smooth withi; w = w for all t andhy(x) = x for all x € M. We denote byso(M, w) the set
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of all symplectic isotopies a#.

Fix a Riemannian metrig on M. Let H'(M,R) be the first de Rham cohomology group.
It is well known thatH! (M, R) is a finite dimensional vector space oMrwhose dimension
is the first Betti number oM. We denote in this work the first Betti number ™M by b,
and byharm!' (M, ¢) we denote the space of smooth harmohieforms onM. According to
Hodge theory[[17], the spadairm' (M, g) is isomorphic toH'(M,R). We will consider on
the spacéiarm' (M, ) the Euclidean nornf|.|) defined as follows. Leth;);<;<p, be a basis of
harm*(M, g). LetH in harm!' (M, ¢) such that

H =30 A (2.1)
The norm of is given by :

|| == 22 |A (2.2)

Denote byp*> (harm!(M, g)) the space of smooth families of harmoiieforms.

Definition 2.1. A symplectic isotop}¥ = (i) is said to be harmonic if there existé = (;) €
B (harm' (M, g)) such that
ilp[w = j‘ft,
where
. d _
Pu(x) = Zu(gr ' (%),

for all £, and for allx € M.

We callharmonic diffeomorphisrany time-one evaluation map of a harmonic isotopy.
Let C*([0,1] x M, R) be the vector space of smooth time-dependent functions from the space
[0,1] x M onto the spac®.

Definition 2.2. A symplectic isotop¥ = () is said to be Hamiltonian if there exisfd €
C*([0,1] x M, R) such that

iy,w = dH; (2.3)
where

. d _

Pilx) = P () (), (2.4
forall x € M and for all t.
Definition 2.3. An element] € C*([0,1] x M, R) is normalized if

/ Uw" =0, (2.5)
M
forall t € [0,1].

Denote byN([0,1] x M ,R) the vector space of smooth time-dependent normalized functions. It
is easy to show that the correspondence between the sN&fed| x M ,R) andHIso(M, w)
is bijective.

Definition 2.4. The oscillation of any smooth functigiis given by the following formula,
= — mi ) 2.
osc(f) = max f(x) — min f(x) (2.6)
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We will also need the following well known result of/[4]. Lé#;) be a smooth family of closed
1—forms and let(¢;) be an isotopy. Then

(96— 6 = a( [ @u(6) 0 9)as), 2.7)

for all t.
Indeed, for a fixed, we havel (¢:0;) = ¢: (Lg,0¢) whereLy is the Lie derivative in the di-

rection of the vector fielk. Since the fornd; is closed, deduce that (¢:6;) = ¢i(dig 6r) =
d(0:(¢s) o ¢s). Integrating the above relation in the variableetweer) et one obtains :

u d u .
¢,0r — 0p = /0 %(4’:90015 = d(/o (6:(¢s) © ¢s)ds). (2.8)

Taket = u to obtain the desired result (seé [4]).

3. HODGE DECOMPOSITION OF SYMPLECTIC ISOTOPIEE]

Fix a symplectic isotopy® = (¢;). The definition of symplectic isotopies implies th@rtw
is a closedl —form for eacht. To see this, for eachcomputeLjw = d(iyw), ¢; (Lyw) =

;t(gb;‘ (w)) = 0, and derive thati; v = 0. Hodge's decomposition theorem of closed forms [17]
implies thatiy w = dU; + 3(; whereU; € C*(M,R), and}; € harm'(M, g) for all t. Let

(p+) be the harmonic isotopy such thgtw = 3, for all t. Consider the isotopy: = p, ' o ¢
for all t. From¢; = p; o iy we get by differentiationp; = p¢ + (pt).yr which implies that :

o = )@

= du,
for all t. We have :
i@ = (o )" (i, (P} w))
= (o))" (igw),
for all t. Hence,
(o ) igw) = (). 4w
= du,

for all t. This shows thaty;) is a Hamiltonian isotopy. Therefore we have just proved by the
help of Hodge’s decomposition theorem of closed forms [17] that any katip isotopy (¢:)

can be decomposed as a composition of a harmonic isdfopyy a Hamiltonian isotopyy ).

The uniqueness in the latter decomposition of symplectic isotopies follows fremnigueness

of Hodge’s decomposition of closed differential formsI[17]. [Ih [4] theae decomposition of
symplectic isotopies has been called Hwlge decomposition of symplectic isotopies
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3.1. Anew description of symplectic isotopies.Let ® = (¢;) be a symplectic isotopy, and let
u® = (UpP), 3H* = (3¢) be Hodge decomposition &f,w, i.e ijw = dU; + 3 for anyt.
Denote byl the functionU® normalized and by the family of harmonic form&(® = ().
The map

Iso(M,w) — N([0,1] x M,R) x B (harm' (M, g))

= (¢t) = (u/ g{)/

is a bijection. We denote By(M, w, ¢) the product spac¥([0,1] x M, R) x L= (harm' (M, g)).
It follows from the above statement that the correspondence betweeethko(M, w) and
T(M, w, Q) is bijective. We denote the latter correspondencélbylso(M, w) — T(M, w, g).
We call any element thereifi( M, w, ¢) " smooth generator” of symplectic isotopy.

Let®; = (¢}) andd, = (¢}) be two elements ofso(M, w) such tha((P;) = (U, H') for
i = 1,2. Consider the produgt; = ¢! o ¢}, for all t. From¢;, = ¢! o ¢, we get by differentiation
¢ = ¢! + (¢)«¢ which implies that :

z¢tw = z¢fw+(q>1 ) (zq%w)
= (AU} +90) +d(UF o gy " + (3, ¢171)) + 5,

= d(Ul + U} oy + A(3,¢771)) + H} + 34,

where A (F2, ¢71) == [ F3(¢7°) o ¢°ds, and¢; ! = (¢!)~! for all t. The above result
suggests that when one decomposes the composition®, in the Hodge decomposition of
symplectic isotopies, its harmonic part is generated by theXuAtK and its Hamiltonian part is
generated by the normalized function associated to thelgum U? o <I>1*1 + AT, @1*1). By
assumption, both functiorig! andU? are already normalized. Hencﬁ;w U%w™ = 0 obviously
implies that [, U? o ®; 'w" = 0. This implies that to normalize the sublt + U? o &, ' +
A(32, @11 its suffices to normalize the functiol(32, ®;1). We denote byA (2, &, 1) the
normalized function associated (32, ®;!). Therefore, it follows from the above statement
that the compositiod; o @, is generated by the elemefi! + U? o @71 + A(H2, &7 1), H' +
H?). Similarly, fromid = ¢, o ¢} we get by differentiatiog; " = —(¢;").¢} which implies
thati;w = —(4){)*(‘4-,@) = —d(U} o ¢! + A(FE, 1)) — H}. It follows from the above that

the isotopy®; ! is generated by—U" o &; — A(H', ®;), —H1).

For short, in the rest of this work, exceptionally if mention is made to the cgntrawill denote

any symplectic isotopy by,; 5¢) to mean that its image by the mapis (U, H). In particular,

any symplectic isotopy of the formp o 4 is considered as a harmonic isotopy and any sym-
plectic isotopy of the forng ;o) is considered as a Hamiltonian isotopy. We endow the space
T (M, w, g) with the composition lav defined by :

(u,30) X (U, 3" = (U + u’o4> +A(J{’ 4)(* 50, H+ ) (3.2)

The inverse of U, H) denoted U, K) is given by
(U, 30) = (=U o w30, — A, dru ), — ) (3.2)
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One can check thdf (M, w, g), X) is a group (see [7] for more detail).

Remark 3.1. Hodge decomposition of any symplectic isotopy generated by an elébhektl) €
T(M,w, g) can be written as :

(U, 30) = (0,3€) X (U o pg.90),0).

We define two metric®? andD' on the spac& (M, w, g) as follows.

Dz((u,f}f) (V fK)) DO ((u,f}f), (V,IK))—;—DSO((U,J{),(V,K)) (3_4)

where 1
Do((U, %), (V, %)) :/O osc(Uy — Vi) + |5, — K| dt,
D (U, H),(V,X)) = tren[aaﬁ(osc(ut — Vi) + | H — Ke).

Let Homeo (M) be the group of all homeomorphismsdf endowed with th&® —topology. This
is the metric topology induced by the following distance:

do(f,§) = max(deo(f, 8), deo (F,87)) (3.5)

wheredo(f,g) = sup,.,,4(g(x), f(x)) andd is a distance oM induced by the Riemannian
metric g. The spacePHomeo(M) of continuous pathe : [0,1] — Homeo(M) such that
0(0) = id is endowed with th&’—topology induced by the following metric

d(A, 1) = max do(A (1), p(t)). (3.6)
te[0,1]

Lemma 3.1. Let ((U", H")), and ((V",X")), be twoD?—Cauchy sequences. If the sequences
(¢cun3en))n @nd (p(yn 5ny ) @red—Cauchy. Then,

(1) ((U",H") X (V",K")), is D>*—Cauchy,
(2) (Um,3m) is D>—Cauchy.
Proof of Lemma&3l1Fist of all, for any integern, we compute :

(", 5" b (V1K) = (U" + V" o g gony + A(K", g gony ), K+ 3,

(ur, ") = (=U" o pn geny — AH", pum geny), —H"),

(Vn, :Kn) = (—Vn 9] 4)(1/;1/3{14) — A(:Kn, (P(V",X”))I —fK”)
Define :

H? = —un O ¢(U”,}f”) — A(j{n, (P(LI”,J-C"))/
H’zq =:-V"o (P(Vn’:}{n) - A(UC”, (P(V”,fK”))'
Therefore, we have
(Vn, JCH) X (U”, j‘fn) == (Hg + H{Z e} (P(V",K”) + A(—g{n,(‘b(vnﬂ(n)), —.’K" - }C”)
To check that the quantiti)g*((U", H") X (V",K"), (U™, H™) X (V™,X™)) tends to zero
whenn andm go at infinite, it suffices to prove that each of the quantities; (osc (A (K" P g{n)) -
At<g<m/¢ um, g.fm ))) and
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max; (osc(V}* o 4)&}”,}(,1) — V"o 4’(1}:",9{'"))) tend to zero when andm go at infinite.
To prove the above statements, fist of all, we fix an very large integend pass to subsequences
so that each of the quantitie&e u scm0), (un ger)) aNdd(P ey snoy, Py xny) becomes arbi-
trarily small forn > 1. The above considerations are always possible since both sequences
(P(ur 3en) )n @NA(P(yn 5y )n ared—Cauchy.
o Stage(a) : ConsiderS; = max;(osc(Ai (K", P 9(")) A(K"H, ) (1 gereny))), and
compute :

51 < maxt(osc(At(JC (P Uun j{n)) At(:K (P u”O j—(”o))))
+  max;(osc(A (K", ¢, uno s00)) ~ AKX, ¢ (um 5—("0))))
+  max;(osc(A (K™, ¢ uno }c"o)> A(KL 0 (U 36 )

+ maxt(OSC(At(K + /(P un g{n ) At(j(n+ll ¢(L}n+1’}fn+l))))‘
Therefore, one checks froml[7] (Lemr@a) that,
mtax(osc(At(:K”,¢(L}n0w)) = DK g g)))) = 0,1 — 0o

On the another hand, leg be the injectivity radius of the manifoltl! ( o is positive since
M is a compact Riemannian manifold). By assumption we kia%nw), 4>(uno,%no)) <
ro andd_((l)(vno,g{no),(P(Vn/j{n)) < ro for all n. Put,

¢n = (P un,Hn)”

‘Pno = (P uno 310 )
for eacht, and for eachi. Derive from formuld 27 that for each and for eachn we
have :

(97 (K7 — (o) (5F) = ALK, B ghugon)) — A (K, @iy g

Fix a pointa on M, for all x € M, pick any curvel, from A to x and consider the
function

Hon(x) = /g (98" (01) — (91,)" (K1),

for all fixed t € [0,1]. The functiony;, does not depend on the choice of the cufve
from A to x. Itis easy to check that

05¢(jitn) = 05 (eI, @b, eny) — DI P b ))-

Let xo be any point ofM that realizes the supremum of the function— |u;(x)|, or
equivalently

sup [je(x)| = /é (1) (1) — (¢!,)* (KM)]-
Compute,

sup [ (x)] = | [ (@750 = (@) Dl =1 [ xr— [ s,
* éxo ¢£’ Oéxo ‘P£10 ngo
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Since by assumption the inequal'd_yq)(un,}[n),<p(uno,5,{n0)) < rg holds true, we derive
thatsup,, d(¢!,(x), ¢}, (x)) < ro for all £. It follows that there is a homotopy : [0, 1] x

M — M between the isotopieg;,) and(¢y, ). Thatis,F(0,y) = ¢}, (y) andF(1,y) =
o1, (v) forally € M. We may defineF(s,y) to be the unique minimizing geodesic

X joining ¢},(z) to ¢}, (z) for all z € M (see Theoreni2.9 of [8] for more details).
Consider the following set,

= {F(s,{xy(1)),0 < s,u <1}

Since the forni} is closed, one derives by the help of Stokes’ theoremfg@ﬂ@; =0,
this is equivalent to
X [,
Xa

ol
(P;l Og‘fo (P;IO ngo X

since the boundary of the set is exactly Im (¢}, o {x,) U Im (¢}, © {xy) U Im(xx,) U
Im(xa), seel[6] for more details. The integral over the geodgsicis bounded by the
quantity sup, | X} (Xx,(s))]-d(¢h, (x0), ¢}, (x0)), because the speed of any minimizing
geodesic is bounded from the above by the distance between its end poiatss,

%9

| : Ki| < sup | K} (Xxo (5))|-A(Pum5m), Purmo 00 ), 3.7)
xq S
Analogously for the integral over the geodegici.e
| . K} < sup [Kf (xa(s)[-d(Pun seny, P gero) (3.8)

for each integer, and for eactt. Relationﬂ]? and 3.8 imply that the quantity
max;(0sc(A (K" P j{,z)) A (K", ¢ (o j—["o)))) is always bounded from above by
2.Bud(P(um gen), 4’(u"0,9{"o))WhereBn = {supt,s [(5CE) (Kxo (8)) | +supy ¢ [ () (Xa(5))[}
is bounded for each. That is, the quantity

maxt(osc(At(JC”,qb(‘L}n/W)) — At(JC”,cp(‘L},,O,WO)))) tends to zero when goes at infi-
nite. Similarly, one derives that each of the quantities

max; (¢ (At (K™, @ geny) — B (K, @ g 500y))) @Nd
maxt(osc(At(JC”“,<p(‘uln,g{n)) — At(KH”,¢(‘L}n+]ﬂm)))) tends to zero when goes at
infinite. Therefore,

mtaX(OSC(A H(K", (/7(1[” g{n)) — A (K™, (,b(um J—E"’)))) — 0,n,m — oo.

Stage(b) : We have,
mtax(osc(‘/t o (P U” 30n) Vﬂ+1 o) (P U"O g_fng)))
< maX(OSC(Vt 9] ¢ un,3n) ‘/t o ¢ un+1 g{;1+1)))

+ rnax(osc(V’“r1 o¢, unﬂ 1) —Viiog, un+1 :}fn+1)))

Using simultaneously the uniform continuity of the function— V/*(z) with the fact
that the sequenc¢(‘t}n,3{n) is d—Cauchy, we conclude that the hand right side of the
above estimate tends to zero whegoes at infinite.
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We have proved that

D (V" K™y (U, "), (VP gty s (UL, 1Y) — 0,n — oo
Its remains to check that

DS ((Vr,Km) W (U, Hm), (ViFL, gent 1) i (U1, HrF 1)) — 0,1 — oo,

to do that, it suffices to check that each of the following identities tends tovzkem» goes at
infinite :

mtaX(OSC(At(—CK:n, qb(vn,j(n)) — At(—g{n+1, 4)(V”+1,9<”+1)))) (39)
m?x(osc(At(—fH”, (P(Un/g{n)) o (P(Vn,j{n) - At(—g‘fn+l,¢(urx+1/g{n+1)) o (P(Vn+1/g<n+1))) (310)
max(0sc(Ar(=3", ¢y gon)) — A(—=F"F, Py goniny))- (3.11)

Remark that the identitieg (3.9) aid (3.11) are obvious, since one obtaiinsrtiads by using the
same arguments as in the stdgée. For identity [3.ID), observe that

mtax(osc(At(—J-C”, (P(un/g.fn)) o (P(V”,K") - At(—}cn+1,¢(un+l’g{n+l)) o 4)(V»z+l,g<n+1)))

< max(ose(As (=3, punger)) © Prvm ey = Be(=H", Pun 3en)) © Prymo o))
+
max(0s¢(Ar (=", P(umaem) ) © Py scm) — A (=", na gensny) © Py o))
+
m;ax(osc(At(—J-C"H, Prumt gor1y) © Py gm0y — A (=", P gonny) © Prynit gni1y))-

As a consequence of the arguments stated in gtaget falls out that the hand right side of the
above estimates tend to zero whegoes at infinite. One uses similar arguments to prove that the

sequencéll”, ") is D>*—Cauchy. This achieves our proaf.

The L(3*) —version of Lemmd_3]1 was proved inl [6]. Indeed, given two Cauchy esemps
((ur,x")), and((V",X")), in the metricD', it was proved in[[6] that if the sequences of paths
P(ur ger) @nde(yn iy are Cauchy in the metri¢, then the sequencésU”, 1") » (V",X")),

and((Um",H")), areD'—Cauchy.
Lemma 3.2. Assume that(0, H")),, is D*—Cauchy. Then(¢g sc))n is d—Cauchy.

Proof. The spac&arm! (M, g¢) of smooth harmonit —forms of any compact manifold is a com-
plete vector space, hence by the compactnef df, the set of continuous maps frdi) 1] onto
harm'(M, g) is a complete vector space for the following nof#; )|l =: sup, |;|. Since
((0,3™)), is D>—Cauchy, ther{d(") converges uniformly t& = (X;), andX being a continu-
ous family of smooth harmonic—forms. Consider the isomorphismminduced by the symplectic
form, defined from the tangent bundle onto the cotangent bundle (i.6 M — T*M) and de-
fine X!, =: @ 1(H}), X! =: @1 (X;) for all n, for all . By assumption, the sequence of smooth
1— parameter family of smooth vector fieldX!,), converges uniformly to a continuots- pa-
rameter family of smooth vector fieldX!). Hence, due to R. Abraham and J. Robbinh [1], the
sequence of flows generated by the sequence of vector {iE[dsconverges uniformly to a con-
tinuous family® : t — ¢' of smooth diffeomorphisms. That ié(gb(olg{n),@) —0,n — c0.d
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4. SYMPLECTIC HOMEOMORPHISMS

According to Oh and Nlller ( [15]), the automorphism group of tii¢ symplectic topology is the
closure of the grougymp (M, w) in the groupHomeo (M) of homeomorphism oM endowed

with the C° topology. That group, denote&lympeo(M, w) has been called group of symplectic
homeomorphisms :

Sympeo(M,w) = Symp(M,w) C Homeo(M). This definition has been motivated by the fol-
lowing celebrated rigidity theorem of Eliashbefg][10] and Gromov [12]t $ienpeoy(M, w)
denotes the identity component in the grdypnpeo(M, w) endowed with the subspace topol-
ogy. Propositior2.1.4 of Muller's thesis shows that any symplectic homeomorphism preserves

o . 1 ,
the Liouville measure induced by the volume for%w” , or equivalentlySympeog(M, w) C
Homeoy(M, up). '

Definition 4.1. (Oh-Muller [14,[15]) A homeomorphism is called Hamiltonian homeomor-
phisms in theL.(1>) context (resp. in th&> context) if
(1) there exists\ € P(Homeo(M),id) with A(1) = h,
(2) there exists a Cauchy sequen(dé”, 0) for the metricD! (resp. D?) such thatg iy« o)
convergesl to A.

Denote byHameo(M, w) the set of Hamiltonian homeomorphisms of all closed connected sym-
plectic manifold( M, w) [14].

Definition 4.2. (Banyaga, [5.6]) A homeomorphisiis called strong symplectic homeomor-
phism in theL 1) —context if there exists &' —Cauchy sequencgU’, 3')); € T(M, w,g),
generating a sequence of symplectic isotopigs ) such thatl (¢ s¢i), P(uigey) — 0,1,7 —

CO
co andcpguiw) — h.
Definition 4.3. (Banyaga, [5/.6]) A homeomorphisiis called strong symplectic homeomor-
phism in theL.®-context if there exists ®?—Cauchy sequencg V', X')); € T(M, w,g), gen-

erating a sequence of symplectic isotoppes: «:) such thatd(lp(vi,xi),l/)(vjlxj)) —0,i,] — o0

CO
andgb%vi’xi) — h.
In [B,[6], the author denoted tﬁBympeo(M,w)(lf"") the group of strong symplectic homeomor-
phisms in thel.(1:*) —context and denoted BSympeo(M, w)™ the group of strong symplectic

homeomorphisms in the® —context. The following theorem is the main result/af [7].

Theorem 4.1. (Banyaga-Tchuiagd]7]) For any closed connected symplectic manifelgw),
the following equality holds

SSympeo(M, w)® = SSympeo(M, w) ).

In regard of theorern 4.1, for short, we will denote both sets of strongpictic homeomor-
phisms by the same notatidttympeo(M, w). As we will see later, theorem 4.1 will play an
important role in the description of the structure of strong symplectic homednsonp. The
groupSSympeo(M, w) is the topological analogue of the identity component of symplectic dif-
feomorphisms’ group endows with tld&° compact-open topology.
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5. CONTINUOUS SYMPLECTIC FLOWS

It is well known that on any compact symplectic manifold, any symplectic isotapybe decom-
posed in a unigue way as product of a harmonic isotopy by a Hamiltonian ysfgld[7]. Then,
combining Lemma 3]2 with Hodge’s decomposition theorem of symplectic isotopisseibs
natural that one can exhibit ti& analog of Hodge’s decomposition theorem of symplectic iso-
topies (without uniqueness). That is the goal of this section.

Definition 5.1. (Continuous symplectic flow )

A continuous mag : [0,1] — Sympeoo(M,w) with {(0) = id will be called continuous
symplectic flow in thé&> —context (orL® —ssympeotopy) if there exists a sequeiids, A, ) ), C
T(M,w,g), generating a sequence of symplectic isotopigs ) such that :

(1) d_(<P(Fn,/\n),C) — 0,1 — o0,
(2) D2((Fu, An), (FuyAm)) — 0,1,m — 0.

We denote byPSSympeo(M, w), the space of.®—ssympeotopies of a closed connected sym-
plectic manifold(M, w). Obviously, the notion of strong symplectic isotopies or continuous
symplectic flows generalizes the notion of symplectic isotopies as well as the mdt@ntinu-
ous Hamiltonian flows introduced inl[9,116].

Proposition 5.1. PSSympeo(M, w) is a group for paths composition.

The proof of Proposition 511 is a direct consequence of the proof of thaosrem[[6]. That con-
sequence is given in the present work by Lenima 3.1.

Remark 5.1. PSSympeo(M, w) containsPHameo(M, w) as a subgroup, and if the manifold is
simply connected theRHameo(M, w) = PSSympeo(M, w).

Definition 5.2. ( [0l[15/16])
A continuous symplectic flowis called continuous Hamiltonian flow if there exist®a Cauchy
sequence(Uy,0)), C T(M, w, g) which generates a sequence of Hamiltonian isotofjeg, o))

that converged to v.

Let PHameo(M, w) denotes the space of continuous Hamiltonian flows. The notion of continu-
ous Hamiltonian flows or Hameotopies was studiedin [9, 15, 16]. This is théogipal analogue
of Hamiltonian isotopies group.

Definition 5.3. A continuous symplectic flowis called topological harmonic flows or harmeotopy
if there exists &D>—Cauchy sequendg0, H")), C T(M, w, g) which generates a sequence of
harmonic isotopiegq 5 that converged to .

We denote byPHarm (M, w) the space of topological harmonic flows. The set of topological
harmonic flows is the topological analogue of space of harmonic isotpiels We will see later
that this set has a remarkable contribution in the description of some stradttive group of
strong symplectic homeomorphisms. One can check that the $paceco( M, w) is a subgroup

of PSSympeo(M, w), while the spac&®Harm (M, w) is not a subgroup dPSSympeo(M, w).

A justification of the latter statements lies in the fact that in smooth case, the satmftbhian
isotopies is closed under path composition in the group of symplectic isotogids,the set of
harmonic isotopies is not.

The setPHarm(M, w) generalizes the well known set of harmonic isotogiés [4].
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5.1. Proof of Theorem[1.1. LetA € PSSympeo(M, w). Our job hereistofind € PHarm(M, w)
andyu € PHameo(M,w) such thath = v o u. By definition of A, there exists a sequence
(U, H"))n € T(M, w, g) suchthatl (¢ geny, A) — 0,1 — coandD?((U", H™), (U™, H™)) —
0,n,m — oo. It falls from the definition of group isomorphisgt that Hodge decomposition of
symplectic isotopies induces a decomposition on the spaaé, w, g) such that for each fixed
integern, one can decompoggl”, 3") as follows : (U", H") = (0,H") X (U" o ¢ (g 4¢),0).
Lemmal3.2 implies that the sequenpg ;o) is d converging because by assumption, the se-
quence(0, H") is D>—Cauchy. Hence, we derlve from the above that the SeqURREE), ;.),0)

is d converging as the composition dfconverging sequences. To achieve our proof, it remains
to prove that the sequencel” o ¢ g 51, 0) is D*—Cauchy i.emax;(osc(U}' o ¢! (0peny — Ui 0

¢fo,ﬂ{"f))> — 0,1, m — oo. To do that, remark that for eaclwe have
osc(U} o 4)20,}[,1) — U}" 0 Pl gomy) < 0se(Uf 0 g g0 — U © Plg50m))
tosc(Uy' o ¢(o,50m) — Ui" © Pro,30m)-
By assumption,
osc(Uf' o ¢ g0m) — Ui" o Po 0my) = m;ax(osc(ut" —up")) — 0,n,m — oo,

while the uniform continuity of the mapping»—> U (x) combined with the fact that the sequence
$o,307) is d—Cauchy imply thabsc(U]" o ¢! (0,30) —Ulog! (0,30m) ) can be considered arbitrarily

small as we want when both integersm tend to |nf|n|te That ismax; (osc(U} o ¢! (0.507)
o¢0%m )) — 0,n,m — oo. Therefore, we getPSSympeo(M,w) C fPHar(M aJ)

iPHameo(M,w). It is easy to see th&Harm (M, w) o PHameo(M,w) C PSSympeo(M, w).
This achieves our prodfl

Remark 5.2. Theoreni IJ1 and Lemrha B.2 show some advantages bf‘tegmplectic topology
over theL(1:*) symplectic topology.

Consider the surjective group morphism
evy : PSSympeo(M, w) — SSympeo(M, w),
¢—¢(1),
and defindiarmeo(M, w) =: evy (PHarm(M, w)).
Corollary 5.1. Let (M, w) be a closed connected symplectic manifold. Then
SSympeo(M, w) = harmeo(M, w) o Hameo(M, w).

The proof of Corollary(5]1 is an immediate consequence of Thegrem ldusedhe time-
one evaluation map is a group morphism from the sgas8ympeo(M,w) onto the space
SSympeo(M, w).

Lemma 5.1. Let (M, w) be a closed connected symplectic manifold. itet PHarm(M, w).
For eacht, v(t) is a symplectic diffeomorphism.

Lemmd5.1 states that a long of any topological harmonic flow, one can findlenkymplecto-
morphisms. In regard of the above facts, the following questions make.sens
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Questions:

Is PSSympeo(M, w) strictly containsP Hameo(M, w) as a subgroup?

Is PHameo(M, w) normal toPSSympeo(M, w)?

Is PHarm (M, w) strictly contains the space of all harmonic isotopie$f, w) ?

Is PHameo(M, w) N PHarm(M, w) = {Id}?

Proof of Lemmniabl1By definition of v, there exists a sequen¢f, H")), C T(M,w,g) such
that : d(¢g ey, v) — 0,n — oo andD?((0, H"), (0, H™)) — 0,n,m — co. Then, the proof
of Lemm implies that the sequence of harmonic flpws») converges uniformly to a con-
tinuous family of smooth diffeomorphisms that we denote it herdday. Hence, the second
Hausdorff axiom implies that(t) = ¢; for all t. On the another hand, sinces a continuous
family of smooth diffeomorphisms which is@ limit of a sequence of smooth families of sym-
plectic diffeomorphisms, we derive from the celebrated rigidity theoremliaSBberg[[10] and
Gromov [12] thatp; € Symp(M, w) for all t. [

5.2. Proof of theorem[1.2. The proof of Theorer 112 is a direct consequence of Cordllaty 5.1.
It suffices to pick any non-trivial harmonic diffeomorphignand any non-differentiable Hamil-
tonian homeomorphism. Then, Corollary(5ll implies that the prodyeb v lies inside the
groupSSympeo(M, w)®. The producp o v is continuous and non-differentiable. Hence, Fathi’s
mass flow of such product reduces to Fathi’s mass flow because in[[15], Oh and Mler
showed that the grouflameo(M, w) is contained in the kernel of Fathi's mass flow. The latter
statement implies that Fathi’s mass flow of the proguety reduces to Fathi’'s mass flow pf

In [3], Banyaga showed that the flux pfis non-trivial i.e the Fathi mass flow @fis non-trivial

by duality since it is showed in_[11] that the flux for volume-preservingedifhorphisms is the
Poincaé dual of Fathi’s mass flow. This obviously implies that the inclusiofafreo( M, w)

in SSympeo(M, w) is strict[]

Theoreni_1.R agrees with a result found bilMr, which states that when

H'(M,R) # {0}, then Hameo(M, w) is a proper subgroup in the identity component of
Sympeo(M, w), see TheorerR.5.3 of Mlller thesis for more details. From the above, we derive
the following inclusions :

Ham(M,w) C Hameo(M,w) C SSympeo(M, w) C Sympeoy(M, w).

5.3. Examples of continuous ssympeomorphism with non-trivial Fathi'smass flow onT?.

In this section, we construct a non-trivial ssympeomorphism on anyclomenected symplectic
manifold (M, w) which is continuous, not differentiable and admits a non-trivial Fathi's mass
flow. In particular, any harmonic diffeomorphism defines a smooth ssympgahism whose
Fathi’s mass flow is non-trivial [2] B, 17]. We recall that according tdllkt, considering angn
dimensional symplectic manifoldV, w), by choosingD?(¢) x ...ID?(e) = D?**(¢) inside the
domain of some Darboux chart il one can construct a Hamiltonian homeomorphismMén
which is not differentiable. Assume this done, and denotelsuch Hamiltonian homeomor-
phism on(M, w). WhenH' (M, R) # 0, it follows from Hodge's theory that there exists at least
a non-trivial harmonid —form 3¢ on M. The flow¢ g 5;) generated by0, 3() is a harmonic iso-
topy which is different from the constant palth, or equivalently there existg €]0, 1] such that
¢€%/H) id. We then derive from Corollary 5.1 that = ¢€%/H) ot € SSympeo(M,w).
Constructively,o is continuous and not differentiable. Furthermosejs not an element of
Hameo(M, w) because its Fathi's mass flow reduces to Fathi's mass flm%gj), and the Fathi
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mass flow ofgbﬁ% 50) is non-trivial because Banyaga showed that the symplectic fllq){%oﬂ‘f) is

non-trivial [3]. For instance, foM = T? whereT? is the two dimensional torus. The iden-
tification T? = IR?/Z? provides the spac#? with a natural symplectic structure obtained by
projecting the symplectic formy through the mapr from R? to T? through the canonical pro-
jectionr : T> = R2/Z? — R?. We denote by, the symplectic form of 2. According to
Miiller the closed connected symplectic manif¢le?, @) admits at least a Hamiltonian home-
omorphism which is not differentiable. Let us denotegpguch Hamiltonian homeomorphism.
Fix u = (a,b) € T? such that: # (0,0) and consider the translation

R, : T? — T?,

(x,y) = (x+a,y+D).

We haveR, o ¢ € SSympeo(Tz, @p) andR,, o ¢ is continuous but not differentiable. Moreover,
the Fathi mass flow oR,, o ¥ is non-trivial.
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