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ABSTRACT. The group of strong symplectic homeomorphisms of a closed connected symplectic
manifold was defined and studied in [5], [6] and [7]. In this paper, we introduce the notion of
continuous symplectic flow, and we exhibit theC0 analog of Hodge’s decomposition theorem of
symplectic isotopies [4]. We prove that any continuous symplectic flows can be decomposed as
product of topological harmonic flow by continuous Hamiltonian flow. Finally, we describe some
structures of strong symplectic homeomorphisms.
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1. INTRODUCTION

The notion ofC0− symplectic topology emerged from the work of Eliashberg and Gromov on
the C0− closure of the symplectic diffeomorphisms. In [14, 15] Oh and Müller defined the
C0− Hamiltonian topology and introduced the groupHameo(M, ω) of Hamiltonian homeomor-
phisms. More recently Banyaga [5, 6] defined theC0− symplectic topology which generalizes
the C0− Hamiltonian topology, and defined theL(1,∞)−context of the groupSSympeo(M, ω)
of all ssympeomorphisms of a closed connected symplectic manifold(M, ω). This group gener-
alizes the groupHameo(M, ω), of all Hamiltonian homeomorphisms. Our main results are the
following :

Theorem 1.1. Let (M, ω) be a closed connected symplectic manifold. The following equality
holds

PSSympeo(M, ω) = PHarm(M, ω) ◦ PHameo(M, ω).

Theorem 1.2. Let (M, ω) be a closed connected symplectic manifold. Then,

• there exists an infinite number of non-differentiable elements ofSSympeo(M, ω) whose
Fathi’s mass flow is non-trivial

• the inclusionHameo(M, ω) ⊂ SSympeo(M, ω) is strict.

2. PRELIMINARIES

Let (M, ω) be a closed connected symplectic manifold. In the following we will mainly use nota-
tions from [5,6]. We denote byC∞([0, 1]× M) the vector space of smooth time-dependent func-
tions H : [0, 1]× M → R. By definition(ht) is a symplectic isotopy if the map(x, t) 7→ ht(x)
is smooth withh∗t ω = ω for all t andh0(x) = x for all x ∈ M. We denote byIso(M, ω) the set
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of all symplectic isotopies ofM.

Fix a Riemannian metricg on M. Let H
1(M, R) be the first de Rham cohomology group.

It is well known thatH1(M, R) is a finite dimensional vector space overR whose dimension
is the first Betti number ofM. We denote in this work the first Betti number ofM by b1,
and byharm1(M, g) we denote the space of smooth harmonic1−forms onM. According to
Hodge theory [17], the spaceharm1(M, g) is isomorphic toH

1(M, R). We will consider on
the spaceharm1(M, g) the Euclidean norm(|.|) defined as follows. Let(hi)1≤i≤b1

be a basis of
harm1(M, g). LetH in harm1(M, g) such that

H = Σ
b1
i=1λihi. (2.1)

The norm ofH is given by :

|H| := Σ
b1
i=1|λi|. (2.2)

Denote byP∞(harm1(M, g)) the space of smooth families of harmonic1−forms.

Definition 2.1. A symplectic isotopyΨ = (ψt) is said to be harmonic if there existsH = (Ht) ∈
P∞(harm1(M, g)) such that

iψ̇t
ω = Ht,

where

ψ̇t(x) =
d

dt
ψt(ψ

−1
t (x)),

for all t, and for all x ∈ M.

We callharmonic diffeomorphismany time-one evaluation map of a harmonic isotopy.
Let C∞([0, 1]× M, R) be the vector space of smooth time-dependent functions from the space
[0, 1]× M onto the spaceR.

Definition 2.2. A symplectic isotopyΨ = (ψt) is said to be Hamiltonian if there existsH ∈
C∞([0, 1]× M, R) such that

iψ̇t
ω = dHt (2.3)

where

ψ̇t(x) =
dψt

dt
((ψt)

−1(x)), (2.4)

for all x ∈ M and for all t.

Definition 2.3. An elementU ∈ C∞([0, 1]× M, R) is normalized if
∫

M
Utω

n = 0, (2.5)

for all t ∈ [0, 1].

Denote byN([0, 1]× M , R) the vector space of smooth time-dependent normalized functions. It
is easy to show that the correspondence between the spacesN([0, 1]× M , R) andHIso(M, ω)
is bijective.

Definition 2.4. The oscillation of any smooth functionf is given by the following formula,

osc( f ) = max
x∈M

f (x)− min
x∈M

f (x). (2.6)
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We will also need the following well known result of [4]. Let(θt) be a smooth family of closed
1−forms and let(φt) be an isotopy. Then

(φt)
∗θt − θt = d(

∫ t

0
(θt(φ̇s) ◦ φs)ds), (2.7)

for all t.
Indeed, for a fixedt, we have d

ds (φ
∗
s θt) = φ∗

s (Lφ̇s
θt) whereLX is the Lie derivative in the di-

rection of the vector fieldX. Since the formθt is closed, deduce thatdds (φ
∗
s θt) = φ∗

s (diφ̇s
θt) =

d(θt(φ̇s) ◦ φs). Integrating the above relation in the variables between0 et u one obtains :

φ∗
uθt − θt =

∫ u

0

d

ds
(φ∗

s θt)ds = d(
∫ u

0
(θt(φ̇s) ◦ φs)ds). (2.8)

Taket = u to obtain the desired result (see [4]).

3. HODGE DECOMPOSITION OF SYMPLECTIC ISOTOPIES[5]

Fix a symplectic isotopyΦ = (φt). The definition of symplectic isotopies implies thatiφ̇t
ω

is a closed1−form for eacht. To see this, for eacht computeLφ̇t
ω = d(iφ̇t

ω), φ∗
t (Lφ̇t

ω) =
d

dt
(φ∗

t (ω)) = 0, and derive thatdiφ̇t
ω = 0. Hodge’s decomposition theorem of closed forms [17]

implies thatiφ̇t
ω = dUt +Ht whereUt ∈ C∞(M, R), andHt ∈ harm1(M, g) for all t. Let

(ρt) be the harmonic isotopy such thatiρ̇t ω = Ht for all t. Consider the isotopyψt = ρ−1
t ◦ φt

for all t. Fromφt = ρt ◦ ψt we get by differentiatioṅφt = ρ̇t + (ρt)∗ψ̇t which implies that :

i(ρt)∗ψ̇t
ω = i(φ̇t−ρ̇t)ω

= dUt,

for all t. We have :

i(ρt)∗ψ̇t
ω = (ρ−1

t )∗(iψ̇t
(ρ∗t ω))

= (ρ−1
t )∗(iψ̇t

ω),

for all t. Hence,

(ρ−1
t )∗(iψ̇t

ω) = i(ρt)∗ψ̇t
ω

= dUt,

for all t. This shows that(ψt) is a Hamiltonian isotopy. Therefore we have just proved by the
help of Hodge’s decomposition theorem of closed forms [17] that any symplectic isotopy(φt)
can be decomposed as a composition of a harmonic isotopy(ρt) by a Hamiltonian isotopy(ψt).
The uniqueness in the latter decomposition of symplectic isotopies follows from the uniqueness
of Hodge’s decomposition of closed differential forms [17]. In [4] the above decomposition of
symplectic isotopies has been called theHodge decomposition of symplectic isotopies.
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3.1. A new description of symplectic isotopies.Let Φ = (φt) be a symplectic isotopy, and let
UΦ = (UΦ

t ) , HΦ = (HΦ
t ) be Hodge decomposition ofiφ̇t

ω, i.e iφ̇t
ω = dUt +Ht for any t.

Denote byU the functionUΦ normalized and byH the family of harmonic formsHΦ = (HΦ
t ).

The map

Iso(M, ω) → N([0, 1]× M, R)×P∞(harm1(M, g))

Φ = (φt) 7→ (U,H),

is a bijection. We denote byT(M, ω, g) the product spaceN([0, 1]× M, R)×P∞(harm1(M, g)).
It follows from the above statement that the correspondence between thesets Iso(M, ω) and
T(M, ω, g) is bijective. We denote the latter correspondence byA : Iso(M, ω) → T(M, ω, g).
We call any element thereinT(M, ω, g) ” smooth generator” of symplectic isotopy.
Let Φ1 = (φt

1) andΦ2 = (φt
2) be two elements ofIso(M, ω) such thatA(Φi) = (Ui,Hi) for

i = 1, 2. Consider the productφt = φt
1 ◦ φt

2 for all t. Fromφt = φt
1 ◦ φt

2 we get by differentiation
φ̇t = φ̇t

1 + (φt
1)∗φ̇t

2 which implies that :

iφ̇t
ω = iφ̇t

1
ω + (φ−t

1 )∗(iφ̇t
2
ω)

= (dU1
t +H

1
t ) + d(U2

t ◦ φ−t
2 + ∆t(H2, φ−1

1 )) +H
2
t ,

= d(U1
t + U2

t ◦ φ−t
2 + ∆t(H2, φ−1

1 )) +H
1
t +H

2
t ,

where∆t(H2, φ−1
1 ) :=

∫ t
0 H

2
t (φ̇

−s
1 ) ◦ φ−s

1 ds, andφ−t
1 := (φt

1)
−1 for all t. The above result

suggests that when one decomposes the compositionΦ1 ◦ Φ2 in the Hodge decomposition of
symplectic isotopies, its harmonic part is generated by the sumH+K and its Hamiltonian part is
generated by the normalized function associated to the sumU1 + U2 ◦ Φ

−1
1 + ∆(H2, Φ

−1
1 ). By

assumption, both functionsU1 andU2 are already normalized. Hence,
∫

M U2ωn = 0 obviously
implies that

∫
M U2 ◦ Φ

−1
1 ωn = 0. This implies that to normalize the sumU1 + U2 ◦ Φ

−1
1 +

∆(H2, Φ
−1
1 ) its suffices to normalize the function∆(H2, Φ

−1
1 ). We denote bỹ∆(H2, Φ

−1
1 ) the

normalized function associated to∆(H2, Φ
−1
1 ). Therefore, it follows from the above statement

that the compositionΦ1 ◦ Φ2 is generated by the element(U1 +U2 ◦ Φ
−1
1 + ∆̃(H2, Φ

−1
1 ),H1 +

H
2). Similarly, from id = φ−t

1 ◦ φt
1 we get by differentiatioṅφ−t

1 = −(φ−t
1 )∗φ̇t

1 which implies
that iφ̇−t

1
ω = −(φt

1)
∗(iφ̇t

1
ω) = −d(U1

t ◦ φt
1 + ∆t(H1, φt

1))−H
1
t . It follows from the above that

the isotopyΦ−1
1 is generated by(−U1 ◦ Φ1 − ∆̃(H1, Φ1),−H

1).

For short, in the rest of this work, exceptionally if mention is made to the contrary we will denote
any symplectic isotopy byφ(U,H) to mean that its image by the mapA is (U,H). In particular,
any symplectic isotopy of the formφ(0,H) is considered as a harmonic isotopy and any sym-
plectic isotopy of the formφ(U,0) is considered as a Hamiltonian isotopy. We endow the space
T(M, ω, g) with the composition law✶ defined by :

(U,H) ✶ (U′,H′) = (U + U′ ◦ φ−1
(U,H)

+ ∆̃(H′, φ−1
(U,H)

),H+H
′) (3.1)

The inverse of(U,H) denoted(U,H) is given by

(U,H) = (−U ◦ φ(U,H) − ∆̃(H, φ(U,H)),−H) (3.2)
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One can check that(T(M, ω, g),✶) is a group (see [7] for more detail).

Remark 3.1. Hodge decomposition of any symplectic isotopy generated by an element(U,H) ∈
T(M, ω, g) can be written as :

(U,H) = (0,H) ✶ (U ◦ φ(0,H), 0).

We define two metricsD2 andD1 on the spaceT(M, ω, g) as follows.

D1((U,H), (V,K)) =
D0((U,H), (V,K)) + D0((U,H), (V,K))

2
(3.3)

D2((U,H), (V,K)) =
D∞

0 ((U,H), (V,K)) + D∞

0 ((U,H), (V,K))

2
(3.4)

where

D0((U,H), (V,K)) =
∫ 1

0
osc(Ut − Vt) + |Ht −Kt|dt,

D∞

0 ((U,H), (V,K)) = max
t∈[0,1]

(osc(Ut − Vt) + |Ht −Kt|).

Let Homeo(M) be the group of all homeomorphisms ofM endowed with theC0−topology. This
is the metric topology induced by the following distance:

d0( f , g) = max(dC0( f , g), dC0( f−1, g−1)) (3.5)

wheredC0( f , g) = supx∈M d(g(x), f (x)) andd is a distance onM induced by the Riemannian
metric g. The spacePHomeo(M) of continuous paths̺ : [0, 1] → Homeo(M) such that
̺(0) = id is endowed with theC0−topology induced by the following metric

d̄(λ, µ) = max
t∈[0,1]

d0(λ(t), µ(t)). (3.6)

Lemma 3.1. Let ((Un,Hn))n and((Vn,Kn))n be twoD2−Cauchy sequences. If the sequences
(φ(Un,Hn))n and(φ(Vn,Kn))n are d̄−Cauchy. Then,

(1) ((Un,Hn) ✶ (Vn,Kn))n is D2−Cauchy,
(2) (Un,Hn) is D2−Cauchy.

Proof of Lemma 3.1. Fist of all, for any integern, we compute :

(Un,Hn) ✶ (Vn,Kn) = (Un + Vn ◦ φ−1
(Un,Hn)

+ ∆(Kn, φ−1
(Un,Hn)

),Kn +H
n),

(Un,Hn) = (−Un ◦ φ(Un,Hn) − ∆(Hn, φ(Un,Hn)),−H
n),

(Vn,Kn) = (−Vn ◦ φ(Vn,Kn) − ∆(Kn, φ(Vn,Kn)),−K
n).

Define :
Πn

1 =: −Un ◦ φ(Un,Hn) − ∆(Hn, φ(Un,Hn)),

Πn
2 =: −Vn ◦ φ(Vn,Kn) − ∆(Kn, φ(Vn,Kn)).

Therefore, we have

(Vn,Kn) ✶ (Un,Hn) = (Πn
2 + Πn

1 ◦ φ(Vn,Kn) + ∆(−H
n, φ(Vn,Kn)),−K

n −H
n).

To check that the quantityD∞

0 ((Un,Hn) ✶ (Vn,Kn), (Um,Hm) ✶ (Vm,Km)) tends to zero
whenn andm go at infinite, it suffices to prove that each of the quantitiesmaxt(osc(∆t(Kn, φ−1

(Un,Hn)
)−

∆t(Km, φ−1
(Um,Hm)

))) and
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maxt(osc(Vn
t ◦ φ−1

(Un,Hn)
− Vm

t ◦ φ−1
(Um,Hm)

)) tend to zero whenn andm go at infinite.
To prove the above statements, fist of all, we fix an very large integern0, and pass to subsequences
so that each of the quantities̄d(φ(Un0 ,Hn0 ), φ(Un,Hn)) and d̄(φ(Vn0 ,Kn0 ), φ(Vn,Kn)) becomes arbi-
trarily small for n ≥ 1. The above considerations are always possible since both sequences
(φ(Un,Hn))n and(φ(Vn,Kn))n ared̄−Cauchy.

• Stage(a) : ConsiderS1 = maxt(osc(∆t(Kn, φ−1
(Un,Hn)

)−∆t(Kn+1, φ−1
(Un+1,Hn+1)

))), and
compute :

S1 ≤ maxt(osc(∆t(Kn, φ−1
(Un,Hn)

)− ∆t(Kn, φ−1
(Un0 ,Hn0 )

)))

+ maxt(osc(∆t(Kn, φ−1
(Un0 ,Hn0 )

)− ∆t(Kn+1, φ−1
(Un0 ,Hn0 )

)))

+ maxt(osc(∆t(Kn+1, φ−1
(Un0 ,Hn0 )

)− ∆t(Kn+1, φ−1
(Un,Hn)

)))

+ maxt(osc(∆t(Kn+1, φ−1
(Un,Hn)

)− ∆t(Kn+1, φ−1
(Un+1,Hn+1)

))).

Therefore, one checks from [7] (Lemma3.4) that,

max
t

(osc(∆t(K
n, φ−1

(Un0 ,Hn0 )
)− ∆t(K

n+1, φ−1
(Un0 ,Hn0 )

))) → 0, n → ∞.

On the another hand, letr0 be the injectivity radius of the manifoldM ( r0 is positive since
M is a compact Riemannian manifold). By assumption we haved̄(φ(Un,Hn), φ(Un0 ,Hn0 )) ≤

r0 andd̄(φ(Vn0 ,Kn0 ), φ(Vn,Kn)) ≤ r0 for all n. Put,

φt
n =: φ−1

(Un,Hn)
,

φt
n0

=: φ−1
(Un0 ,Hn0 )

,

for eacht, and for eachn. Derive from formula 2.7 that for eacht, and for eachn we
have :

(φt
n)

∗(Kn
t )− (φt

n0
)∗(Kn

t ) = d(∆t(K
n, φ−1

(Un,Hn)
)− ∆t(K

n, φ−1
(Un0 ,Hn0 )

)).

Fix a pointN on M, for all x ∈ M, pick any curveζx from N to x and consider the
function

µt,n(x) =
∫

ζx

(φt
n)

∗(Kn
t )− (φt

n0
)∗(Kn

t ),

for all fixed t ∈ [0, 1]. The functionµt,n does not depend on the choice of the curveζ
fromN to x. It is easy to check that

osc(µt,n) = os(∆t(K
n, φ−1

(Un,Hn)
)− ∆t(K

n, φ−1
(Un0 ,Hn0 )

)).

Let x0 be any point ofM that realizes the supremum of the functionx 7→ |µt(x)|, or
equivalently

sup
x

|µt,n(x)| = |
∫

ζx0

(φt
n)

∗(Kn
t )− (φt

n0
)∗(Kn

t )|.

Compute,

sup
x

|ut,n(x)| = |
∫

ζx0

(φt
n)

∗(Kn
t )− (φt

n0
)∗(Kn

t )| = |
∫

φt
n◦ζx0

K
n
t −

∫

φt
n0
◦ζx0

K
n
t |.
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Since by assumption the inequalitȳd(φ(Un,Hn), φ(Un0 ,Hn0 )) ≤ r0 holds true, we derive
thatsupx d(φt

n(x), φt
n0
(x)) ≤ r0 for all t. It follows that there is a homotopyF : [0, 1]×

M → M between the isotopies(φt
n) and(φt

n0
). That is,F(0, y) = φt

n(y) andF(1, y) =

φt
n0
(y) for all y ∈ M. We may defineF(s, y) to be the unique minimizing geodesic

χz joining φt
n(z) to φt

n0
(z) for all z ∈ M (see Theorem12.9 of [8] for more details).

Consider the following set,

⊡ := {F(s, ζx0(u)), 0 ≤ s, u ≤ 1}.

Since the formKn
t is closed, one derives by the help of Stokes’ theorem that

∫
∂⊡K

n
t = 0,

this is equivalent to
∫

φt
n◦ζx0

K
n
t −

∫

φt
n0
◦ζx0

K
n
t =

∫

χx0

K
n
t −

∫

χN

K
n
t ,

since the boundary of the set⊡ is exactly Im(φt
n ◦ ζx0) ∪ Im(φt

n0
◦ ζx0) ∪ Im(χx0) ∪

Im(χN), see [6] for more details. The integral over the geodesicχx0 is bounded by the
quantity sups |K

n
t (χ̇x0(s))|.d(φ

t
n0
(x0), φt

n(x0)), because the speed of any minimizing
geodesic is bounded from the above by the distance between its end points.That is,

|
∫

χx0

K
n
t | ≤ sup

s
|Kn

t (χ̇x0(s))|.d̄(φ(Un,Hn), φ(Un0 ,Hn0 )), (3.7)

Analogously for the integral over the geodesicχN i.e

|
∫

χN

K
n
t | ≤ sup

s
|Kn

t (χ̇N(s))|.d̄(φ(Un,Hn), φ(Un0 ,Hn0 )) (3.8)

for each integern, and for eacht. Relations 3.7 and 3.8 imply that the quantity
maxt(osc(∆t(Kn, φ−1

(Un,Hn)
) − ∆t(Kn, φ−1

(Un0 ,Hn0 )
))) is always bounded from above by

2.Bnd̄(φ(Un,Hn), φ(Un0 ,Hn0 )) whereBn =: {supt,s |(K
n
t )(χ̇x0(s))|+ supt,s |(K

n
t )(χ̇N(s))|}

is bounded for eachn. That is, the quantity
maxt(osc(∆t(Kn, φ−1

(Un,Hn)
) − ∆t(Kn, φ−1

(Un0 ,Hn0 )
))) tends to zero whenn goes at infi-

nite. Similarly, one derives that each of the quantities
maxt(osc(∆t(Kn+1, φ−1

(Un,Hn)
)− ∆t(K1+n, φ−1

(Un0 ,Hn0 )
))) and

maxt(osc(∆t(Kn+1, φ−1
(Un,Hn)

)− ∆t(K1+n, φ−1
(Un+1,Hn+1)

))) tends to zero whenn goes at
infinite. Therefore,

max
t

(osc(∆t(K
n, φ−1

(Un,Hn)
)− ∆t(K

m, φ−1
(Um,Hm)

))) → 0, n, m → ∞.

• Stage(b) : We have,

max
t

(osc(Vn
t ◦ φ−1

(Un,Hn)
− Vn+1

t ◦ φ−1
(Un0 ,Hn0 )

))

≤ max
t

(osc(Vn
t ◦ φ−1

(Un,Hn)
− Vn

t ◦ φ−1
(Un+1,Hn+1)

))

+max
t

(osc(Vn+1
t ◦ φ−1

(Un+1,Hn+1)
− Vn

t ◦ φ−1
(Un+1,Hn+1)

)).

Using simultaneously the uniform continuity of the functionz 7→ Vn
t (z) with the fact

that the sequenceφ−1
(Un,Hn)

is d̄−Cauchy, we conclude that the hand right side of the
above estimate tends to zero whenn goes at infinite.
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We have proved that

D∞

0 ((Vn,Kn) ✶ (Un,Hn), (Vn+1,Kn+1) ✶ (Un+1,Hn+1)) → 0, n → ∞.

Its remains to check that

D∞

0 ((Vn,Kn) ✶ (Un,Hn), (Vn+1,Kn+1) ✶ (Un+1,Hn+1)) → 0, n → ∞,

to do that, it suffices to check that each of the following identities tends to zerowhenn goes at
infinite :

max
t

(osc(∆t(−K
n, φ(Vn,Kn))− ∆t(−K

n+1, φ(Vn+1,Kn+1)))) (3.9)

max
t

(osc(∆t(−H
n, φ(Un,Hn)) ◦ φ(Vn,Kn) − ∆t(−H

n+1, φ(Un+1,Hn+1)) ◦ φ(Vn+1,Kn+1))) (3.10)

max
t

(osc(∆t(−H
n, φ(Vn,Kn))− ∆t(−H

n+1, φ(Vn+1,Kn+1)))). (3.11)

Remark that the identities (3.9) and (3.11) are obvious, since one obtains their proofs by using the
same arguments as in the stage(a). For identity (3.10), observe that

max
t

(osc(∆t(−H
n, φ(Un,Hn)) ◦ φ(Vn,Kn) − ∆t(−H

n+1, φ(Un+1,Hn+1)) ◦ φ(Vn+1,Kn+1)))

≤ max
t

(osc(∆t(−H
n, φ(Un,Hn)) ◦ φ(Vn,Kn) − ∆t(−H

n, φ(Un,Hn)) ◦ φ(Vn0 ,Kn0 )))

+

max
t

(osc(∆t(−H
n, φ(Un,Hn)) ◦ φ(Vn0 ,Kn0 ) − ∆t(−H

n+1, φ(Un+1,Hn+1)) ◦ φ(Vn0 ,Kn0 )))

+

max
t

(osc(∆t(−H
n+1, φ(Un+1,Hn+1)) ◦ φ(Vn0 ,Kn0 ) − ∆t(−H

n+1, φ(Un+1,Hn+1)) ◦ φ(Vn+1,Kn+1))).

As a consequence of the arguments stated in stage(a), it falls out that the hand right side of the
above estimates tend to zero whenn goes at infinite. One uses similar arguments to prove that the
sequence(Un,Hn) is D2−Cauchy. This achieves our proof.�

The L(1,∞)−version of Lemma 3.1 was proved in [6]. Indeed, given two Cauchy sequences
((Un,Hn))n and((Vn,Kn))n in the metricD1, it was proved in [6] that if the sequences of paths
φ(Un,Hn) andφ(Vn,Kn) are Cauchy in the metric̄d, then the sequences((Un,Hn) ✶ (Vn,Kn))n

and((Un,Hn))n areD1−Cauchy.

Lemma 3.2. Assume that((0,Hn))n is D2−Cauchy. Then,(φ(0,Hn))n is d̄−Cauchy.

Proof. The spaceharm1(M, g) of smooth harmonic1−forms of any compact manifold is a com-
plete vector space, hence by the compactness of[0, 1], the set of continuous maps from[0, 1] onto
harm1(M, g) is a complete vector space for the following norm‖(Ht)t‖∞ =: supt |Ht|. Since
((0,Hn))n is D2−Cauchy, then(Hn) converges uniformly toK = (Kt), andK being a continu-
ous family of smooth harmonic1−forms. Consider the isomorphism̟induced by the symplectic
form, defined from the tangent bundle onto the cotangent bundle (i.e̟ : TM → T∗M) and de-
fineXt

n =: ̟−1(Hn
t ), Xt =: ̟−1(Kt) for all n, for all t. By assumption, the sequence of smooth

1− parameter family of smooth vector fields(Xt
n)n converges uniformly to a continuous1− pa-

rameter family of smooth vector fields(Xt). Hence, due to R. Abraham and J. Robbin [1], the
sequence of flows generated by the sequence of vector fields(Xt

n) converges uniformly to a con-
tinuous familyΦ : t 7→ φt of smooth diffeomorphisms. That is,d̄(φ(0,Hn), Φ) → 0, n → ∞.�
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4. SYMPLECTIC HOMEOMORPHISMS

According to Oh and M̈uller ( [15]), the automorphism group of theC0 symplectic topology is the
closure of the groupSymp(M, ω) in the groupHomeo(M) of homeomorphism ofM endowed
with theC0 topology. That group, denotedSympeo(M, ω) has been called group of symplectic
homeomorphisms :
Sympeo(M, ω) = Symp(M, ω) ⊂ Homeo(M). This definition has been motivated by the fol-
lowing celebrated rigidity theorem of Eliashberg [10] and Gromov [12]. Let Sympeo0(M, ω)
denotes the identity component in the groupSympeo(M, ω) endowed with the subspace topol-
ogy. Proposition2.1.4 of Müller’s thesis shows that any symplectic homeomorphism preserves

the Liouville measureµ0 induced by the volume form
1

n!
ωn , or equivalentlySympeo0(M, ω) ⊂

Homeo0(M, µ0).

Definition 4.1. (Oh-Müller [14, 15]) A homeomorphismh is called Hamiltonian homeomor-
phisms in theL(1,∞) context (resp. in theL∞ context) if

(1) there existsλ ∈ P(Homeo(M), id) with λ(1) = h,
(2) there exists a Cauchy sequence(Un, 0) for the metricD1 (resp. D2) such thatφ(Un,0)

convergesd̄ to λ.

Denote byHameo(M, ω) the set of Hamiltonian homeomorphisms of all closed connected sym-
plectic manifold(M, ω) [14].

Definition 4.2. (Banyaga, [5, 6]) A homeomorphismh is called strong symplectic homeomor-
phism in theL(1,∞)−context if there exists aD1−Cauchy sequence((Ui,Hi))i ⊆ T(M, ω, g),
generating a sequence of symplectic isotopiesφ(Ui ,Hi) such thatd̄(φ(Ui,Hi), φ(U j,Hj)) → 0, i, j →

∞ andφ1
(Ui ,Hi)

C0

−→ h.

Definition 4.3. (Banyaga, [5, 6]) A homeomorphismh is called strong symplectic homeomor-
phism in theL∞-context if there exists aD2−Cauchy sequence((Vi,Ki))i ⊆ T(M, ω, g), gen-
erating a sequence of symplectic isotopiesφ(Vi ,Ki) such thatd̄(ψ(Vi ,Ki), ψ(V j,Kj)) → 0, i, j → ∞

andψ1
(Vi ,Ki)

C0

−→ h.

In [5,6], the author denoted bySSympeo(M, ω)(1,∞) the group of strong symplectic homeomor-
phisms in theL(1,∞)−context and denoted bySSympeo(M, ω)∞ the group of strong symplectic
homeomorphisms in theL∞−context. The following theorem is the main result of [7].

Theorem 4.1. (Banyaga-Tchuiaga [7]) For any closed connected symplectic manifold(M, ω),
the following equality holds

SSympeo(M, ω)∞ = SSympeo(M, ω)(1,∞).

In regard of theorem 4.1, for short, we will denote both sets of strong symplectic homeomor-
phisms by the same notationSSympeo(M, ω). As we will see later, theorem 4.1 will play an
important role in the description of the structure of strong symplectic homeomorphisms. The
groupSSympeo(M, ω) is the topological analogue of the identity component of symplectic dif-
feomorphisms’ group endows with theC∞ compact-open topology.
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5. CONTINUOUS SYMPLECTIC FLOWS

It is well known that on any compact symplectic manifold, any symplectic isotopycan be decom-
posed in a unique way as product of a harmonic isotopy by a Hamiltonian isotopy [4,5,7]. Then,
combining Lemma 3.2 with Hodge’s decomposition theorem of symplectic isotopies, itseems
natural that one can exhibit theC0 analog of Hodge’s decomposition theorem of symplectic iso-
topies (without uniqueness). That is the goal of this section.

Definition 5.1. (Continuous symplectic flow )
A continuous mapξ : [0, 1] → Sympeo0(M, ω) with ξ(0) = id will be called continuous
symplectic flow in theL∞−context (orL∞−ssympeotopy) if there exists a sequence((Fn, λn))n ⊂
T(M, ω, g), generating a sequence of symplectic isotopiesφ(Fn,λn) such that :

(1) d̄(φ(Fn,λn), ξ) → 0, n → ∞,
(2) D2((Fn, λn), (Fm, λm)) → 0, n, m → ∞.

We denote byPSSympeo(M, ω), the space ofL∞−ssympeotopies of a closed connected sym-
plectic manifold(M, ω). Obviously, the notion of strong symplectic isotopies or continuous
symplectic flows generalizes the notion of symplectic isotopies as well as the notion of continu-
ous Hamiltonian flows introduced in [9,16].

Proposition 5.1. PSSympeo(M, ω) is a group for paths composition.

The proof of Proposition 5.1 is a direct consequence of the proof of maintheorem [6]. That con-
sequence is given in the present work by Lemma 3.1.

Remark 5.1. PSSympeo(M, ω) containsPHameo(M, ω) as a subgroup, and if the manifold is
simply connected thenPHameo(M, ω) = PSSympeo(M, ω).

Definition 5.2. ( [9,15,16])
A continuous symplectic flowν is called continuous Hamiltonian flow if there exists aD2 Cauchy
sequence((Un, 0))n ⊂ T(M, ω, g) which generates a sequence of Hamiltonian isotopies(φ(Un,0))n

that converges̄d to ν.

Let PHameo(M, ω) denotes the space of continuous Hamiltonian flows. The notion of continu-
ous Hamiltonian flows or Hameotopies was studied in [9,15,16]. This is the topological analogue
of Hamiltonian isotopies group.

Definition 5.3. A continuous symplectic flowµ is called topological harmonic flows or harmeotopy
if there exists aD2−Cauchy sequence((0,Hn))n ⊂ T(M, ω, g) which generates a sequence of
harmonic isotopiesφ(0,Hn) that converges̄d to µ.

We denote byPHarm(M, ω) the space of topological harmonic flows. The set of topological
harmonic flows is the topological analogue of space of harmonic isotopies [4,5]. We will see later
that this set has a remarkable contribution in the description of some structureof the group of
strong symplectic homeomorphisms. One can check that the spacePHameo(M, ω) is a subgroup
of PSSympeo(M, ω), while the spacePHarm(M, ω) is not a subgroup ofPSSympeo(M, ω).
A justification of the latter statements lies in the fact that in smooth case, the set of Hamiltonian
isotopies is closed under path composition in the group of symplectic isotopies, while the set of
harmonic isotopies is not.
The setPHarm(M, ω) generalizes the well known set of harmonic isotopies [4].
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5.1. Proof of Theorem 1.1. Let λ ∈ PSSympeo(M, ω). Our job here is to findν ∈ PHarm(M, ω)
and µ ∈ PHameo(M, ω) such thatλ = ν ◦ µ. By definition of λ, there exists a sequence
((Un,Hn))n ⊂ T(M, ω, g) such thatd̄(φ(Un,Hn), λ) → 0, n → ∞ andD2((Un,Hn), (Um,Hm)) →
0, n, m → ∞. It falls from the definition of group isomorphismA that Hodge decomposition of
symplectic isotopies induces a decomposition on the spaceT(M, ω, g) such that for each fixed
integern, one can decompose(Un,Hn) as follows :(Un,Hn) = (0,Hn) ✶ (Un ◦ φ(0,Hn), 0).

Lemma 3.2 implies that the sequenceφ(0,Hn) is d̄ converging because by assumption, the se-
quence(0,Hn) is D2−Cauchy. Hence, we derive from the above that the sequenceφ(Un◦φ(0,Hn),0)

is d̄ converging as the composition ofd̄ converging sequences. To achieve our proof, it remains
to prove that the sequence(Un ◦ φ(0,Hn), 0) is D2−Cauchy i.emaxt(osc(Un

t ◦ φt
(0,Hn) − Um

t ◦

φt
(0,Hm))) → 0, n, m → ∞. To do that, remark that for eacht we have

osc(Un
t ◦ φt

(0,Hn) − Um
t ◦ φt

(0,Hm)) ≤ osc(Un
t ◦ φt

(0,Hn) − Un
t ◦ φt

(0,Hm))

+osc(Un
t ◦ φ(0,Hm) − Um

t ◦ φ(0,Hm)).

By assumption,

osc(Un
t ◦ φ(0,Hm) − Um

t ◦ φ(0,Hm)) = max
t

(osc(Un
t − Um

t )) → 0, n, m → ∞,

while the uniform continuity of the mappingx 7→ Un
t (x) combined with the fact that the sequence

φ(0,Hn) is d̄−Cauchy imply thatosc(Un
t ◦ φt

(0,Hn) − Un
t ◦ φt

(0,Hm)) can be considered arbitrarily

small as we want when both integersn, m tend to infinite. That is,maxt(osc(Un
t ◦ φt

(0,Hn) −

Um
t ◦ φt

(0,Hm))) → 0, n, m → ∞. Therefore, we getPSSympeo(M, ω) ⊂ PHar(M, ω) ◦

PHameo(M, ω). It is easy to see thatPHarm(M, ω) ◦ PHameo(M, ω) ⊂ PSSympeo(M, ω).
This achieves our proof.�

Remark 5.2. Theorem 1.1 and Lemma 3.2 show some advantages of theL∞ symplectic topology
over theL(1,∞) symplectic topology.

Consider the surjective group morphism

ev1 : PSSympeo(M, ω) → SSympeo(M, ω),

ξ 7→ ξ(1),

and defineharmeo(M, ω) =: ev1(PHarm(M, ω)).

Corollary 5.1. Let (M, ω) be a closed connected symplectic manifold. Then

SSympeo(M, ω) = harmeo(M, ω) ◦ Hameo(M, ω).

The proof of Corollary 5.1 is an immediate consequence of Theorem 1.1 because the time-
one evaluation map is a group morphism from the spacePSSympeo(M, ω) onto the space
SSympeo(M, ω).

Lemma 5.1. Let (M, ω) be a closed connected symplectic manifold. Letν ∈ PHarm(M, ω).
For eacht, ν(t) is a symplectic diffeomorphism.

Lemma 5.1 states that a long of any topological harmonic flow, one can find onlythe symplecto-
morphisms. In regard of the above facts, the following questions make sense.
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Questions:

• IsPSSympeo(M, ω) strictly containsPHameo(M, ω) as a subgroup?
• IsPHameo(M, ω) normal toPSSympeo(M, ω)?
• IsPHarm(M, ω) strictly contains the space of all harmonic isotopies of(M, ω) ?
• IsPHameo(M, ω) ∩ PHarm(M, ω) = {Id}?

Proof of Lemma5.1:By definition of ν, there exists a sequence((0,Hn))n ⊂ T(M, ω, g) such
that : d̄(φ(0,Hn), ν) → 0, n → ∞ andD2((0,Hn), (0,Hm)) → 0, n, m → ∞. Then, the proof
of Lemma 3.2 implies that the sequence of harmonic flowsφ(0,Hn) converges uniformly to a con-
tinuous family of smooth diffeomorphisms that we denote it here by(φt). Hence, the second
Hausdorff axiom implies thatν(t) = φt for all t. On the another hand, sinceν is a continuous
family of smooth diffeomorphisms which is aC0 limit of a sequence of smooth families of sym-
plectic diffeomorphisms, we derive from the celebrated rigidity theorem of Eliashberg [10] and
Gromov [12] thatφt ∈ Symp(M, ω) for all t. �

5.2. Proof of theorem 1.2. The proof of Theorem 1.2 is a direct consequence of Corollary 5.1.
It suffices to pick any non-trivial harmonic diffeomorphismρ and any non-differentiable Hamil-
tonian homeomorphismν. Then, Corollary 5.1 implies that the productρ ◦ ν lies inside the
groupSSympeo(M, ω)∞. The productρ ◦ ν is continuous and non-differentiable. Hence, Fathi’s
mass flow of such product reduces to Fathi’s mass flow ofρ because in [15], Oh and M̈uller
showed that the groupHameo(M, ω) is contained in the kernel of Fathi’s mass flow. The latter
statement implies that Fathi’s mass flow of the productρ ◦ ν reduces to Fathi’s mass flow ofρ.
In [3], Banyaga showed that the flux ofρ is non-trivial i.e the Fathi mass flow ofρ is non-trivial
by duality since it is showed in [11] that the flux for volume-preserving diffeomorphisms is the
Poincaŕe dual of Fathi’s mass flow. This obviously implies that the inclusion ofHameo(M, ω)
in SSympeo(M, ω) is strict.�

Theorem 1.2 agrees with a result found by Müller, which states that when
H

1(M, R) 6= {0}, then Hameo(M, ω) is a proper subgroup in the identity component of
Sympeo(M, ω), see Theorem2.5.3 of Müller thesis for more details. From the above, we derive
the following inclusions :

Ham(M, ω) ⊂ Hameo(M, ω) ( SSympeo(M, ω) ⊂ Sympeo0(M, ω).

5.3. Examples of continuous ssympeomorphism with non-trivial Fathi’smass flow onT
2.

In this section, we construct a non-trivial ssympeomorphism on any closed connected symplectic
manifold (M, ω) which is continuous, not differentiable and admits a non-trivial Fathi’s mass
flow. In particular, any harmonic diffeomorphism defines a smooth ssympeomorphism whose
Fathi’s mass flow is non-trivial [2, 3, 17]. We recall that according to Müller, considering any2n
dimensional symplectic manifold(M, ω), by choosingD2(ǫ)× . . . D

2(ǫ) = D2n(ǫ) inside the
domain of some Darboux chart inM one can construct a Hamiltonian homeomorphism onM
which is not differentiable. Assume this done, and denote byψ such Hamiltonian homeomor-
phism on(M, ω). WhenH

1(M, R) 6= 0, it follows from Hodge’s theory that there exists at least
a non-trivial harmonic1−form H on M. The flowφ(0,H) generated by(0,H) is a harmonic iso-
topy which is different from the constant pathId, or equivalently there existst0 ∈]0, 1] such that
φt0

(0,H)
6= id. We then derive from Corollary 5.1 thatσ = φt0

(0,H)
◦ ψ ∈ SSympeo(M, ω).

Constructively,σ is continuous and not differentiable. Furthermore,σ is not an element of
Hameo(M, ω) because its Fathi’s mass flow reduces to Fathi’s mass flow ofφt0

(0,H)
, and the Fathi
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mass flow ofφt0

(0,H)
is non-trivial because Banyaga showed that the symplectic flux ofφt0

(0,H)
is

non-trivial [3]. For instance, forM = T
2 whereT

2 is the two dimensional torus. The iden-
tification T

2 = R
2/Z

2 provides the spaceT2 with a natural symplectic structure obtained by
projecting the symplectic formw0 through the mapπ from R

2 to T2 through the canonical pro-
jection π : T

2 = R
2/Z

2 → R
2. We denote byω̃0 the symplectic form ofT2. According to

Müller the closed connected symplectic manifold(T2, ω̃0) admits at least a Hamiltonian home-
omorphism which is not differentiable. Let us denote byψ such Hamiltonian homeomorphism.
Fix u = (a, b) ∈ T

2 such thatu 6= (0, 0) and consider the translation

Ru : T
2 → T

2,

(x, y) 7→ (x + a, y + b).

We haveRu ◦ ψ ∈ SSympeo(T2, ω̃0) andRu ◦ ψ is continuous but not differentiable. Moreover,
the Fathi mass flow ofRu ◦ ψ is non-trivial.
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