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CENTROIDS OF BULGING TRIANGLES:
A QUANTITATIVE APPROACH

NORIHIRO SOMEYAMA

ABSTRACT. There is a figure that is a kind of generalization of the Reuleaux triangle.
It was introduced by Someyama (2021, [6]) and is called the bulging triangle. Roughly
speaking, a Reuleaux triangle is a figure of an equilateral triangle with its sides inflated
outward. On the other hand, a bulging triangle is a figure of an acute triangle with its
sides inflated outward. The centroid of a bulging triangle obviously coincides with that
of the original triangle. It is important to find the centroid of a figure in general, and so
we find the centroid G (

△ of a bulging triangle

(

△ABC quantitatively by computing the
coordinates of G (

△ in this paper. To do so, we use that a bulging triangle can be divided
into four parts: three crescents and one triangle. Moreover, we mention whether the
position of G (

△ is displaced from that of the centroid of the original triangle △ABC.

1. INTRODUCTION

Bulging triangles were introduced by Someyama (2021, [6]) as a generalization of Reuleaux
triangles; we can see, e.g., Barrallo et al. [1], Conti et al. [2] and Hu et al. [4] for geomet-
ric properties and applications of Reuleaux triangles. Since then, a lot of properties of
bulging triangles have been studied. Some of them will be discussed at the end of this
section; see Someyama [6, 7, 8, 9] for more information.
We define bulging triangles only for acute or right triangles. By doing so, any bulging tri-
angle becomes a convex figure. Indeed, obtuse triangles cannot generate convex bulging
triangles; see Proposition 2.2 in Someyama [6]. However, there exists a way to define a
convex generalized Reuleaux triangle made by bulging a triangle that can be obtuse; see
Ridley [5]. A bulging triangle is made by bulging the sides without changing the ver-
tices, whereas that convex generalized Reuleaux figure is made by changing the vertices;
we mention for more information later. From beginning to end, we treat the former.
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Centroids of Bulging Triangles: A Quantitative Approach

1.1. Definition of Bulging Triangles. In what follows, e.g., AB and |AB| means the seg-
ment and its length, respectively. Moreover, we always denote

a := |BC|, b := |CA|, c := |AB|
for △ABC. A bulging triangle is defined by the following procedures:

i) Consider an acute triangle △ABC such that c > a > b; hereafter, we always
assume this.

ii) Consider the perpendicular bisector ℓAB of AB, and find the intersection point P
of ℓAB and BC. Note that P lies on BC since a > b.

iii) Draw the arc

(

AB with P as the center and AP, equivalently, BP as the radius.
iv) Consider the perpendicular bisector ℓBC of BC, and find the intersection point Q

of ℓBC and AB. Note that Q lies on AB since c > b.
v) Draw the arc

(

BC with Q as the center and BQ, equivalently, CQ as the radius.
vi) Consider the perpendicular bisector ℓCA of CA, and find the intersection point R

of ℓCA and CA. Note that R lies on AB since c > a.
vii) Draw the arc

(

CA with R as the center and AR, equivalently, CR as the radius.
viii) The closed figure consisting of three arcs drawn according to the above procedure

is called the bulging triangle, and is denoted by

(

△ABC.
The Reuleaux triangle can be said to be a “bulging equilateral triangle.” Because of this,
we write

(

△eqABC for the Reuleaux triangle ABC.

A

B C

A

B C

Figure 1. Reuleaux triangle and Bulging triangle

We set the following terms on a bulging triangle.

Definition 1.1. Let

(

△ABC be a bulging triangle.

1) △ABC is called the original triangle for

(

△ABC.
2) The points A, B and C are called vertices of

(

△ABC.

3) The arcs

(

AB,

(

BC and

(

CA are collectively called the edges of

(

△ABC, and are rewritten
by ÃB, B̃C and C̃A, respectively.

4) The points P, Q and R are called the AB-center, BC-center and CA-center, respectively.
These are collectively referred to as the edge-centers of

(

△ABC.
5) The (lengths of) segments AP (or, BP), BQ (or, CQ) and CR (or, AR) are called the AB-

radius, BC-radius and CA-radius, respectively. These are collectively referred to as the
edge-radii of

(

△ABC.
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6) ∠APB, ∠BQC and ∠CRA are called the AB-central angle, BC-central angle and
CA-central angle, respectively. These three angles are collectively referred to as the
edge-central angles of

(

△ABC.

ℓABℓBC

ℓCA

A

B CP

Q

R

X

Figure 2. Edge-centers P, Q, R

Remark 1.1.
i) It is well known that ℓAB, ℓBC and ℓCA intersect at one point X and it is the circumcenter

of △ABC, since we have

|AX| = |BX|, |BX| = |CX|, |CX| = |AX|.
ii) As we can see from 5) of Definition 1.1, edge-radii of

(

△ABC are partial sides of △ABC.
In case of a Reuleaux triangle

(

△eqABC, if the length of one side of the original equilateral
triangle for it is a, then rAB = rBC = rCA = a.

We always promise in this paper that

(

△ABC (or, △ABC) satisfies c > a > b and the
notations P, Q and R are used as edge-centers of

(

△ABC without exception.
The “bulging areas” can be considered as the crescents, i.e., the area S1 of sector ABP
from which △ABP is removed, the area S2 of sector BCQ from which △BCQ is removed
and the area S3 of sector CAR from which △CAR is removed. These crescents are de-
noted by

(

ABA,

(

BCB and

(

CAC, respectively.

1.2. Areas of Bulging Triangles. We use the following result, which is already known
to find the formula of the centroid of a bulging triangle.

Theorem 1.1 (Someyama (2023, [8]), Theorem 4.1). Let

(

△ABC be a bulging triangle. Put

u :=
1
2

√
(a + b + c)(−a + b + c)(a − b + c)(a + b − c). (1.1)

The area S of

(

△ABC is given by

S = S1 + S2 + S3 + S4 : (1.2)

A

B C
=

A

B
+

B C
+

A

C
+

A

B C ,
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where
i) if c ≥

√
2b,

S1 =
c4a2

2(a2 − b2 + c2)2

(
π − Arcsin

(a2 − b2 + c2)u
c2a2 − sin

(a2 − b2 + c2)u
c2a2

)
,

S2 =
a4c2

2(c2 + a2 − b2)2

(
π − Arcsin

(c2 + a2 − b2)u
c2a2 − sin

(c2 + a2 − b2)u
c2a2

)
,

S3 =
b4c2

2(b2 + c2 − a2)2

(
Arcsin

(b2 + c2 − a2)u
b2c2 − sin

(b2 + c2 − a2)u
b2c2

)
,

S4 =
u
2

;

ii) if c <
√

2b,

S1 =
c4a2

2(a2 − b2 + c2)2

(
Arcsin

(a2 − b2 + c2)u
c2a2 − sin

(a2 − b2 + c2)u
c2a2

)
,

S2 =
a4c2

2(c2 + a2 − b2)2

(
Arcsin

(c2 + a2 − b2)u
c2a2 − sin

(c2 + a2 − b2)u
c2a2

)
,

S3 =
b4c2

2(b2 + c2 − a2)2

(
Arcsin

(b2 + c2 − a2)u
b2c2 − sin

(b2 + c2 − a2)u
b2c2

)
,

S4 =
u
2

.

The four figures in Theorem 1.1, which are divisions of

(

△ABC, appear frequently in this

paper. For convenience, we write S1, S2, S3 and S4 for

(

ABA,

(

BCB,

(

CAC and △ABC,
respectively.

1.3. Our Aim of This Paper. The centroid of a Reuleaux triangle is the same as that of
its original triangle (i.e., equilateral triangle), since the Reuleaux triangle is the figure
in which all sides of the equilateral triangle are bulged exactly the same way. More
precisely, we can prove this as follows: Assume that the centroid Geq of a Reuleaux
triangle

(

△ eqABC is different from the centroid G△ of its original equilateral triangle
△ABC. Then, rotating

(

△eqABC by 120◦, Geq moves to a different location than G△ and
itself. On the other hand, because of the symmetry of the Reuleaux triangle, the figure
does not change when it is rotated. This is a contradiction, and hence Geq = G△.
However, we can think the centroid of a bulging triangle

(

△ABC is generally different
from that of its original triangle △ABC. If so, then it will be interesting to see how
different the centroids are between △ABC and

(

△ABC. We want to investigate that in
this paper.
Thus, our aim in this paper is to find (the coordinate of) the centroid of a bulging triangle,
and we compute it quantitatively.

2. PROPERTIES OF EDGE-CENTRAL ANGLES

As we will see later, we need to know all the edge-central angles so as to obtain the cen-
troid of a bulging triangle. These, θ1 := ∠APB/2, θ2 := ∠BQC/2 and θ3 := ∠CRA/2 are
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obtained by using Lemma 3.1 in Someyama [8]. However, since this Lemma 3.1 is some-
what incovenient, we shall derive formulas to facilitate the calculation of edge-central
angles as follows. The following property, Eq. (2.1) is just a mathematically interesting
result on triangles.

Proposition 2.1. Let

(

△ ABC be a bulging triangle. Suppose the original triangle △ABC is
acute and c > a > b. Then, the edge-central angles satisfy

∠APB = ∠BQC. (2.1)

Moreover, when setting A(0, α), B(β, 0) and C(γ, 0) (α, γ > 0 and β < 0) under the above
assumptions, it follows that

∠APB = Arccos
α2 − β2

α2 + β2 , (2.2)

∠BQC = Arccos
α2 − β2

α2 + β2 , (2.3)

∠CRA = Arccos
(α2 + β2)(α2 + γ2)− 2(α2 + βγ)2

(α2 + β2)(α2 + γ2)
. (2.4)

A

B CP

Q

R

Figure 3. Edge-central angles

Proof. According to the assumption, set A(0, α), B(β, 0) and C(γ, 0), where α, γ > 0 and
β < 0.
The straight line AB, ℓ(AB) is represented as y = (−α/β)x + α, and so the perpendicular
bisector ℓ1 of AB is given as

ℓ1 : y =
β

α

(
x − β

2

)
+

α

2
.

Since |BC| > |CA| is assumed, the AB-center P lies on BC. We thus have

P
(
− α2

2β
+

β

2
, 0
)

by easy calculation. This implies

|AP| = |BP| = − α2

2β
− β

2
,
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and it is obvious that

|AB| =
√

α2 + β2.

So we have

cos∠APB =
|AP|2 + |BP|2 − |AB|2

2|AP||BP|

=
α2 − β2

α2 + β2 ,

and hence we obtain the desired Eq. (2.2).
From the assumption, |AB| > |CA|, the BC-center Q lies on AB. The perpendicular
bisector ℓ2 of BC is given as x = (β + γ)/2, and so we have

Q
(

β + γ

2
, −α(−β + γ)

2β

)
by easy calculation. This implies

|BQ| = |CQ| = −β + γ

2β

√
α2 + β2,

and it is obvious that

|BC| = γ − β.

So we have

cos∠BQC =
|BQ|2 + |CQ|2 − |BC|2

2|BQ||CQ|

=
α2 − β2

α2 + β2 ,

and hence we obtain the desired Eqs. (2.3) and (2.1).
The straight line CA, ℓ(CA) is represented as y = (−α/γ)x+ α, and so the perpendicular
bisector ℓ3 of CA is given as

ℓ3 : y =
γ

α

(
x − γ

2

)
+

α

2
.

Since |AB| > |BC| is assumed, the CA-center R lies on AB. We thus have

R
(

β(α2 + γ2)

2(α2 + βγ)
,

α(α2 + 2βγ − γ2)

2(α2 + βγ)

)
by easy calculation. This implies

|CR| = |AR| = α2 + γ2

2(α2 + βγ)

√
α2 + β2,

and it is obvious that

|CA| =
√

α2 + γ2.
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So we have

cos∠CRA =
|CR|2 + |AR|2 − |CA|2

2|CR||AR|

=
(α2 + β2)(α2 + γ2)− 2(α2 + βγ)2

(α2 + β2)(α2 + γ2)
,

and hence we obtain the desired Eq. (2.4).
This completes the proof. □

We have the following claim by virtue of this result and Lemma 3.1 in Someyama [8].

Corollary 2.1. Make the same assumptions as in Proposition 2.1. If c ≥
√

2b, then the edge-
central angles satisfy

∠APB = ∠BQC > ∠CRA.

3. CENTROIDS OF BULGING TRIANGLES

We want to investigate if the centroid of a bulging triangle coincides with that of its
original triangle. In order to do that, let us find the coordinate of the centroid of a bulging
triangle in this section.
Now, a bulging triangle can be regarded as a composite figure; see the figure in Eq. (1.2).
The centroid of a composite figure should be given as a weighted mean for the centroids
of parts of the composite figure; the centroid of a general figure is given by multiple
integration, see, e.g., Friedman [3]. What to adopt for weights will be discussed later.
Recall first the following formula on the centroid of a crescent. We can know it in, e.g.,
Wikipedia [10].

Proposition 3.1. Consider a crescent

(

STS that is part of a semicircle whose center is the origin

O and whose radius is r; see Figure 4. The centroid Gcr of

(

STS is given by

Gcr (0, g) , g :=
2r3 sin3 θ

3Ar(

(

STS)
=

4r sin3 θ

3(2θ − sin 2θ)
,

where θ := ∠SOGcr = ∠TOGcr ∈ (0, π/2] and Ar(F) denotes the area of a figure F.

S T

O

Gcr

M
g

Figure 4. Centroid of a crescent

We rephrase this result for ease of use.
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Lemma 3.1. Consider the same crescent

(

STS as in Proposition 3.1. Recall g = |OGcr|, r =
|OS| = |OT| and θ = ∠SOGcr = ∠TOGcr ∈ (0, π/2]. Denote by M the midpoint of ST, and
write

g̃ := g − |OM|.

Then, one has

g̃ =
2r(− sin3 θ − 3θ cos θ + 3 sin θ)

3(2θ − sin 2θ)
.

In other words, if M is the origin, the centroid of the crescent is given by G̃cr(0, g̃).

Proof. Since |OM| = r cos θ, we have

g̃ =
4r sin3 θ

3(2θ − sin 2θ)
− r cos θ

=
2r(− sin3 θ − 3θ cos θ + 3 sin θ)

3(2θ − sin 2θ)

by virtue of Proposition 3.1. □

Remark 3.1. It must be held that g̃ > 0, but this is easily verified. In fact, first, θ ∈ (0, π/2]
implies that 2θ − sin 2θ ≥ 0. Next, putting f (θ) := − sin3 θ − 3θ cos θ + 3 sin θ, this is
monotone increasing since

d f
dθ

(θ) =
3
2
(2θ − sin 2θ) sin θ > 0,

and satisfies

lim
θ↓0

f (θ) = 0.

Hence, f (θ) > 0 for all θ ∈ (0, π/2].

This paper also requires the following formula on coordinates of edge-centers and edge-
radii.

Lemma 3.2. Set A(0, α), B(β, 0) and C(γ, 0), where α, γ > 0 and β < 0 (See Figure 5). Then,
it follows that

P
(
−α2 − β2

2β
, 0
)

,

Q
(

β + γ

2
,

α(β − γ)

2β

)
,

R
(

β(α2 − γ2)

2(α2 + βγ)
,

α(α2 + γ2 + 2βγ)

2(α2 + βγ)

)
,
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and

rAB =
α2 + β2

2|β| , (3.1)

rBC =
−β + γ

2β

√
α2 + β2, (3.2)

rCA =
α2 − γ2

2(α2 + βγ)

√
α2 + β2. (3.3)

x

y

A

B CP

Q

R

Figure 5

Proof. We leave the proof to the reader, because it is easy to see the claim. In Eq. (3.2),
note that γ − β > 0 from the assumption that β < 0 and γ > 0. In Eq. (3.3), note that
α2 − γ2 > 0. Indeed, the assumption for △ABC implies that

∠ACB > ∠BAC > ∠OAC,

and hence we have

α = |OA| > |OC| = γ.

This implies that α2 > γ2, since α, γ > 0. □

Remark 3.2. There are many other coordinate settings besides Lemma 3.2. It is not however
wise to adopt any other setting, and so we shall henceforth set the coordinates in Lemma 3.2.

By using the formulas in Lemma 3.2, we derive the following result.

Theorem 3.1. Consider a

(

△ABC with coordinates A(0, α), B(β, 0) and C(γ, 0); α, γ > 0 and
β < 0. S denotes the area of

(

△ABC. Recall that Sj is the area of Sj for j = 1, . . . , 4 given in
Theorem 1.1. Denote by (xj, yj) the centroid of Sj for j = 1, . . . , 4. Then, the centroid G (

△of

(

△ABC is given by

G (

△

(
1
S

4

∑
j=1

Sjxj,
1
S

4

∑
j=1

Sjyj

)
; (3.4)
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x1 =

√
α2 + β2 cos ϕ1

2
− (α2 + β2)(− sin3 θ1 − 3θ1 cos θ1 + 3 sin θ1) sin ϕ1

−3β(2θ1 − sin 2θ1)
+ β,

y1 =

√
α2 + β2 sin ϕ1

2
+

(α2 + β2)(− sin3 θ1 − 3θ1 cos θ1 + 3 sin θ1) cos ϕ1

−3β(2θ1 − sin 2θ1)
,

x2 =
β + γ

2
,

y2 =
(−β+γ)

√
α2+β2(− sin3 θ1−3θ1 cos θ1+3 sin θ1)

−3β(2θ1− sin 2θ1)

(
=

−β+γ√
α2+β2

y1
∣∣
ϕ1=0

)
,

x3 = −
√

α2+γ2 cos ϕ3

2
+
(α2−γ2)

√
α2+β2(− sin3 θ3−3θ3 cos θ3+3 sin θ3) sin ϕ3

3(α2 + βγ)(2θ3 − sin 2θ3)
+γ,

y3 =

√
α2+γ2 sin ϕ3

2
+
(α2−γ2)

√
α2+β2(− sin3 θ3−3θ3 cos θ3+3 sin θ3) cos ϕ3

3(α2 + βγ)(2θ3 − sin 2θ3)
,

x4 =
β + γ

3
,

y4 =
α

3
;

and

ϕ1 = Arctan
α

|β| , ϕ3 = Arctan
α

γ
.

Furthermore, 2θ1, 2θ2 and 2θ3 are given as the AB-central angle, BC-central angle and CA-
central angle of

(
△ABC, respectively.

Proof. A bulging triangle can be generally regarded as a composite figure consisting of
four figures, one is a triangle and the others are crescents. “A triangle” is △ABC and

“three crescents” are S1 =

(

ABA, S2 =

(

BCB and S3 =

(

CAC; see the figure of Eq. (1.2).
The centroid G4(x4, y4) of △ABC is easily obtained:

x4 =
β + γ

3
, y4 =

α

3
.

We compute the centroids of

(

ABA,

(

BCB and

(

CAC. They are denoted by G1(x1, y1),
G2(x2, y2) and G3(x3, y3), respectively.

x

y

O = B′

A

B A′

Figure 6
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First, S1 is the figure rotated and translated the crescent

(

A′B′A′ with center at B′ = O;

see Figure 6. The centroid of

(

A′B′A′ is

G′
1

(√
α2 + β2

2
,

2rAB(− sin3 θ1 − 3θ1 cos θ1 + 3 sin θ1)

3(2θ1 − sin 2θ1)

)
.

In fact, the x-coordinate is obtained since |A′B′| = |AB| =
√

α2 + β2, and the y-coordinate
is obtained from Lemma 3.1. Hence, G1 is given by rotating G′

1 counterclockwise by ar-
gument ϕ1 := Arctan(α/|β|) = ∠ABC and translating by |β| = −β in the left direction.
That is, computing(

x1
y1

)
=

(
cos ϕ1 − sin ϕ1
sin ϕ1 cos ϕ1

) √
α2+β2

2
2rAB(− sin3 θ1−3θ1 cos θ1+3 sin θ1)

3(2θ1−sin 2θ1)

−
(
|β|
0

)
and recalling Eq. (3.1), we have the coordinate of G1.
Next, Lemma 3.1 implies that the coordinate of G2 is given by

(x2, y2) =

(
β + γ

2
,

2rBC(sin3 θ2 + 3θ2 cos θ2 − 3 sin θ2)

3(2θ2 − sin 2θ2)

)
;

note that the sign of the y-coordinate has changed and Proposition 2.1 implies θ2 = θ1,
and recall Eq. (3.2).
Finally, we find the centroid G3 of S3 in the same way as G1. S3 is the figure rotated and

translated the crescent

(

C′A′C′ with center at C′ = O; consider in the same way as S1.

The centroid of

(

C′A′C′ is

G′
3

(
−
√

α2 + γ2

2
,

2rCA(− sin3 θ3 − 3θ3 cos θ3 + 3 sin θ3)

3(2θ3 − sin 2θ3)

)
.

In fact, the x-coordinate is obtained since |C′A′| = |CA| =
√

α2 + γ2, and the y-coordinate
is obtained from Lemma 3.1. Hence, G3 is given by rotating G′

3 clockwise by argument
ϕ3 := Arctan(α/γ) = ∠BCA and translating by γ in the right direction. That is, comput-
ing (

x3
y3

)
=

(
cos(−ϕ3) − sin(−ϕ3)
sin(−ϕ3) cos(−ϕ3)

) −
√

α2+γ2

2
2rCA(− sin3 θ3−3θ3 cos θ3+3 sin θ3)

3(2θ3−sin 2θ3)

+

(
γ
0

)
and recalling Eq. (3.3), we have the coordinate of G3.
See Section 2 for how to find θ1, θ2 and θ3.
By the way, G (

△is given by considering the weighted mean of Gj (j = 1, . . . , 4). It is then
important to determine the weights by noting that the thickness and density of the object
are uniform. For example, in case of water, 1 g can be considered equal to 1 mℓ. Also,
1 mℓ is equal to 1 cm3. In other words, we may assume weights can be expressed by
volumes. So, if we think of all Sj as three-dimensional figures with height 1, the volume
of each Sj is equal to its area. Also, the area S of

(

△ABC is not 1, and so the weighted
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sums ∑ Sjxj, ∑ Sjyj should be divided by S. Therefore, we shall adopt weights as areas.
From the above, we have the coordinate of G (

△, i.e.,

x̄ (

△=
1
S

4

∑
j=1

Sjxj, ȳ (

△=
1
S

4

∑
j=1

Sjyj.

This completes the proof. □

4. VERIFICATION BY EXAMPLES

4.1. Comparison with Reuleaux Triangles. As mentioned in Section 1.3, that the cen-
troid of a Reuleaux triangle is the same of that of the original triangle (=equilateral trian-
gle) can be proved by a qualitative approach. Let us verify that the centroid of a Reuleaux
triangle coincides with that of its original equilateral triangle by applying Theorem 3.1
to a Reuleaux triangle, i.e., by taking a quantitative approach.
Let

(

△eqABC be a Reuleaux triangle. Since the original triangle △ABC is an equilateral
triangle, we can set A(0,

√
3α), B(−α, 0) and C(α, 0) with α > 0. Denote by G1, G2, G3

and G4 the centroids of
(

ABA,

(

BCB,

(

CAC and △ABC, respectively. Note that

rAB = rBC = rCA = 2α,

θ1 = θ2 = θ3 =
π

6
,

ϕ1 = ϕ3 =
π

3
.

Then, applying Theorem 3.1 for α 7→
√

3α, β 7→ −α and γ 7→ α, we have

G1

(
2π − 4

√
3

2π − 3
√

3
α,

1
2π − 3

√
3

α

)
,

G2

(
0,

2
√

3π − 11
2π − 3

√
3

α

)
,

G3

(
−2π − 4

√
3

2π − 3
√

3
α,

1
2π − 3

√
3

α

)
,

G4

(
0,

√
3

3
α

)
.

(We can obtain G3 from G1 by virtue of symmetry with respect to the vertical axis.)
Easy calculation implies

Scr :=Ar(

(

ABA) = Ar(

(

BCB) = Ar(

(

CAC) =
2π − 3

√
3

3
α2,

S =Ar(

(

△ABC) = 2(π −
√

3)α2,
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and so the centroid G(x, y) of

(

△eqABC is obtained as follows: It is obviously that x = 0.
Considering the weighted mean, we have

y = Scr ·
(

1
2π − 3

√
3

α +
1

2π − 3
√

3
α +

2
√

3π − 11
2π − 3

√
3

α

)
+ Ar(△ABC) ·

√
3

3
α

=
2
√

3π − 6
3

α3.

From the above and Eq. (3.4), we gain

G

(
0,

√
3

3
α

)
,

and hence this coincides with G4. In other words, the centroid of a Reuleaux triangle is
acutually equal to that of its original equilateral triangle.

Remark 4.1. In case of Reuleaux triangles, it is not necessary to consider the weighted mean; it
is sufficient to consider the arithmetic mean of Gj, j = 1, . . . , 4:

x =
1
4

(
2π − 4

√
3

2π − 3
√

3
α + 0 − 2π − 4

√
3

2π − 3
√

3
α + 0

)
= 0,

y =
1
4

(
1

2π − 3
√

3
α +

2
√

3π − 11
2π − 3

√
3

α +
1

2π − 3
√

3
α +

√
3

3
α

)
=

√
3

3
α.

4.2. Comparison with Original Triangles. We see how much the centroid of the bulging
triangle is shifted compared to the original triangle through a concrete example. Or, is
the case where the centroid is equal to that of its original triangle limited to the case of
the Reuleaux triangle?
Let us set A(0,

√
6), B(−2, 0) and C(1, 0). Then, note that this △ABC is acute and satisfies

c > a > b. Denote by gx1 , gx2 , gx3 and gx4 the x-coordinates of G1, G2, G3 and G4,
respectively. Moreover, we write gx for the x-coordinate of G (

△.
First, it is obvious that

−2 < gx1 < −1, gx2 = −1
2

,
1
2
< gx3 < 1, gx4 = −1

3
.

Therefore, we have

−2 < gx1 + gx2 + gx3 < −1
2

, i.e., gx1 + gx2 + gx3 < 0.

On the other hand, Theorem 1.1 implies S1, S2 ≥ S3 regardless of cases i) and ii). From
these, it clearly holds that

gx =
1
S

4

∑
j=1

Sjgxj < gx4 ,

and so this says that the centroid of

(

△ABC is shifted at least to the left of that of △ABC.
Hence, we can conclude that the centroid of a bulging triangle is generally different from
that of its original triangle.
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5. CONCLUSIONS

We have derived (the coordinate of) the centroid G (

△ of a bulging triangle and have com-
pared it with (that of) the centroid G△ of its original triangle. As a result, we have found
that G (

△ does not generally coincide with G△. It will be interesting to see if this result
is a useful property in terms of application. Reuleaux triangles are applying to various
fields, but among them, their application to technical engineering is remarkable. We
hope that bulging triangles will be applied to technical engineering in the same way.
Whether the bulging triangle whose own centroid coincides with that of its original tri-
angle is limited to Reuleaux triangle is our remaining research problem.
Moreover, in this paper, the centroid of a bulging triangle was given by a quantitative
approach using analytic geometry. It is however expected to exist a way how to find the
centroid of a bulging triangle by a qualitative approach.
We want to study them in the future.
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