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NOTES ON COSYMPLECTIC MANIFOLDS

ANGE MALOKO MAVAMBOU AND SERVAIS CYR GATSÉ

ABSTRACT. In the present paper, we study a canonical cosymplectic manifold and some
conditions on which the leaves of a characteristic foliation are lagrangian submanifold.
We also study the reduction of cosymplectic manifolds from which arises the momentum
mapping.

1. INTRODUCTION

An almost cosymplectic structure on a manifold M of odd dimension 2n + 1 is a pair
(η, Ω), where η is a 1-form and Ω is a 2-form such that η ∧ Ωn is a volume form on M.
The structure is said to be cosymplectic if η and Ω are d-closed. Here d is the exterior
differential operator.
The manifold (M, η, Ω) admits an atlas of canonical (Darboux) chart: in the neighbor-
hood of every point, one can determine canonical coordinates (t, x1, ..., x2n) such that

η = dt, Ω =
n

∑
i=1

dxi ∧ dxn+i. (1.1)

It well known that every almost cosymplectic structure (η, Ω) on M induces an isomor-
phism of C∞(M)-modules

♭(η,Ω) : X(M) −→ Λ1(M), X 7−→ iXΩ + η(X)η.

In terms of bundle (see [1]), one can write as

♭(η,Ω) : TM −→ T∗M.

The Reeb vector field of the almost cosymplectic manifold (M, η, Ω) is determined by

ξ = ♭−1
(η,Ω)

(η) (1.2)

and characterized by

iξΩ = 0 and η(ξ) = 1 (1.3)

where 1 is the unity of C∞(M).
In an atlas of canonical chart, the Reeb vector field is given by

ξ =
∂

∂t
. (1.4)
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A smooth map ψ : (M, η, Ω) −→ (M′, η′, Ω′) between cosymplectic manifolds is said to
be cosymplectic if

ψ∗η′ = η and ψ∗Ω′ = Ω. (1.5)

In this case, the Reeb vector field ξ of M is ψ-projectable and its projection is the Reeb
vector field ξ ′ of M′, that is,

Tψ ◦ ξ = ξ ′ ◦ ψ. (1.6)

As in the symplectic case, a cosymplectic map is not in general a Poisson map. For
a cosymplectic manifold (M, η, Ω) one can use the vector bundle isomorphism ♭(η,Ω)

to pull back the canonical symplectic 2-form ΩM of the cotangent bundle T∗M to the
tangent bundle TM by setting

Ω0 = ♭∗(η,Ω)ΩM. (1.7)

Therefore the tangent bundle of a cosymplectic manifold is a symplectic manifold. Actu-
ally, the existence of the vector bundle isomorphism ♭(η,Ω) means that the tangent bundle
of a cosymplectic manifold has a Liouville structure (also known as special symplectic
structure) in the sense of Tulczyjew. In [2] the authors obtain an explicit expression for
the symplectic structure Ω0 on the tangent bundle in terms of the cosymplectic structure
(η, Ω), by using the notion of tangent derivation, again due to Tulczyjew [5].

The main content of the paper is divided into two sections. Section 2 is devoted to the
notion of Hamiltonian vector field. On a cosymplectic manifold, three types of vector
fields are associated with a differentiable function f , namely the gradient vector field,
the Hamiltonian vector field and the evolution vector fields. These vector fields are
defined and studied. Relevant relationships between them are investigated. Section 3
devoted to the analogue of the the momentum map of Hamiltonian action of Lie groups
on symplectic manifolds. We focus on the analogue of the Weinstein-Marsden symplectic
reduction.

2. HAMILTONIAN VECTOR FIELDS

Let M be a smooth manifold, finite dimensional and paracompact. Then the Lie algebra
X(M) = Γ(TM) of vector fields on M is a module over the commutative algebra C∞(M)
of smooth functions on M, and X(M) acts on C∞(M) as Lie algebra of derivations, via
the map

X(M) −→ DerR [C∞(M)] .

Let N be another smooth manifold and ρ : M −→ N be a diffeomorphism, then ρ∗ :
C∞(N) −→ C∞(M) is an isomorphism of R-algebras with inverse (ρ∗)−1 : C∞(M) −→
C∞(N). The map

C∞(M)×X(N) −→ X(N), ( f , X) 7−→ (ρ∗)−1( f ) · X

endowes X(N) with a C∞(M)-module structure.

Proposition 2.1. The map

ρ∗ : X(M) −→ X(N), X 7−→ ρT ◦ X ◦ ρ−1
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is simultaneously an isomorphism of C∞(M)-modules and of R-Lie algebras. Meorever,

ρ∗( f · X) = ( f ◦ ρ−1) · ρ∗X,

for all f ∈ C∞(M), X ∈ X(M).

Proof. The proof is not difficult. □

The support of the vector field X on a smooth manifold M, is the set

Supp(X) = {x ∈ M/X(x) ̸= 0}.

If a function f has a compact support, so does X. Then X generates a flow {φt} on M
such that φ∗

t Ω = Ω and φ∗
t η = η [3].

Theorem 2.1. Suppose that {φt} is the flow of the vector field X on a cosymplectic manifold
(M, η, Ω) and ρ : M −→ N a diffeomorphism of M onto N. Then the flow of the vector field
ρ∗X is

{
ρ ◦ φt ◦ ρ−1}.

Proof. The family
{

ρ ◦ φt ◦ ρ−1} is the diffeomorphisms family of N onto N. The map
R −→ N, t 7−→ (ρ ◦ φt ◦ ρ−1)(ρ(x)), for any x ∈ M is smooth. We also verify that,
for any t, t′ ∈ R, φt ◦ φt′ = φt+t′ , that is,

{
ρ ◦ φt ◦ ρ−1} is a one parameter group of

diffeomorphisms of N onto itself. Moreover, we get easily ρ∗X = (ρ−1)∗ ◦ X ◦ ρ∗. □

Lemma 2.1. Let X be a vector field on (M, η, Ω), i.e., X = Xη + XΩ, then we have the following
assertions.

1) The bracket
[
Xη , XΩ

]
vanishes.

2) The flow {φt} generated by X decomposes as φt = φ
η
t ◦ φΩ

t = φΩ
t ◦ φ

η
t where φ

η
t (resp.

φΩ
t ) is the flow generated by Xη (resp. XΩ).

3) The bracket [X, Y] is a vector field on (M, η, Ω) for Y a vector field on (M, η, Ω).

Lemma 2.2. Let X be a vector field on a cosymplectic manifold (M, η, Ω). if X has a compact
support, then X generates a global one parameter group of diffeomorphisms of M onto itself.

To each function f ∈ C∞(M) one can associate three vector fields on M:

(1) The gradient vector field grad f , which is defined by

grad f = ♭−1
(η,Ω)

(d f )

or equivalently,

igrad f Ω = d f − ξ( f )η, igrad f η = ξ( f ).

(2) The hamiltonian vector field X f according to

X f = ♭−1
(η,Ω)

(d f − ξ( f )η)

or equivalently,

iX f Ω = d f − ξ( f )η, iX f η = 0.

(3) The evolution vector field E f = ξ + X f .
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In Darboux coordinates, we find

grad f =
∂ f
∂t

· ∂

∂t
+

∂ f
∂xn+i

· ∂

∂xi
− ∂ f

∂xi
· ∂

∂xn+i
(2.1)

X f =
∂ f

∂xn+i
· ∂

∂xi
− ∂ f

∂xi
· ∂

∂xn+i
(2.2)

E f =
∂

∂t
+

∂ f
∂xn+i

· ∂

∂xi
− ∂ f

∂xi
· ∂

∂xn+i
. (2.3)

Cosymplectic manifolds are a natural framework to develop the geometric formula-
tion of time-dependent hamiltonian systems. The dynamics on a cosymplectic manifold
(M, η, Ω) are introduced by giving a hamiltonian function f ∈ C∞(M). In fact, the in-
tegral curves of the evolution vector field E f satisfy the Hamilton or motion equations
corresponding to f :

dxi

dt
=

∂ f
∂xn+i

,
dxn+i

dt
= − ∂ f

∂xi
. (2.4)

From (2.3) we deduce that the flow γ(t, x) of E f is characterized by

d
dt

g(γ(t, x)) = {g, f }(γ(t, x)) + ξ(g)(γ(t, x)). (2.5)

Notice that for any cosymplectic structure (η, Ω) on M, its modified structure is given by
(η, Ω + d f ∧ η). In this case, one notes that the Reeb vector field is equal to the evolution
vector field.
On C∞(M) one can define a Poisson bracket

{ f , g} = Ω(grad f , grad g) = Ω(X f , Xg) = Ω(E f , Eg). (2.6)

The two last egalities of (2.6) are due to the fact that iξΩ = 0. It is easy to prove that
the distribution ker η is integrable and this induces a foliation on which the leaves have
symplectic structure.
A vector field X on a cosymplectic manifold (M, η, Ω) is called local gradient vector field
if ♭(η,Ω)(X) yields to a d-closed 1-form, i.e.,

d(iXΩ + (iXη)η) = 0 ⇐⇒ LXΩ = η ∧ LXη,

where LX is the Lie derivative with respect the vector field X.
Let us notice that

i[grad f ,grad g]Ω = d(Ω(grad f , grad g)), (2.7)

for any f , g ∈ C∞(M)

Proposition 2.2. The Poisson bracket satisfies the following properties:
i) grad{ f , g} = [grad f , grad g],

ii) { f , g} = −{g, f },
iii) { f , {g, h}}+ {g, {h, f }}+ {h, { f , g}} = 0,
iv) { f , g · h} = { f , g} · h + g · { f , h}.

Proof. The properties i) is obvious, ii) follows straightforwardly from the defintion of
the bracket, iii) holds by using, dΩ(grad f , grad g, grad h) = 0 together with (2.6) and i).
Finally the equation iv) presents no difficulty. □
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Since iii) is the Jacobi identity, we have proven the fundamental fact that (C∞(M), {, })
is a Lie algebra, called the Poisson-Lie algebra of the cosymplectic manifold (M, η, Ω). It
plays a basic role in applications to mechanics.

Theorem 2.2. A vector field X on a cosymplectic manifold (M, η, Ω) is a local gradient vector
field if and only if im(X) is a lagrangian submanifold of (TM, Ω0). In local coordinates Ω0
admits as expression

Ω0 =
n

∑
i=1

dxn+i ∧ dvi −
n

∑
i=1

dxi ∧ dwi + dt ∧ du. (2.8)

This construction goes back as far as [2].
The cosymplectic manifold (M, η, Ω) can be equipped with a Jacobi structure via the
following map

φ f : C∞(M) −→ C∞(M), g 7−→ (grad f )(g)− ξ(g) · η(grad f ) + ξ( f ) · η(grad g). (2.9)

The above map is called first order differential operator (for more details, see [4].

Theorem 2.3. Let M be a manifold and η, Ω be two differential forms on M with degrees 1 and
2 respectively. Let πi, i = 1, 2 denote the canonical projection from Q to the i-th factor. Consider
Q = M × S1 endowed with the 2-form Ω = π∗

1(Ω) + π∗
1(η) ∧ π∗

2(dθ), where θ is the angular
form on S1. The following statements are equivalent:

(i) the triple (M, η, Ω) is a cosymplectic manifold;
(ii) the pair (Q, Ω) is a symplectic manifold.

Proof. Suppose that dimQ = 2n. We have Ω
n
= n · π∗

1(Ω
n−1 ∧ η) ∧ dθ. Then Ωn−1 ∧ η is

a volume form if and only if Ω
n

is a volume form. □

Corollary 2.1. The first projection π1 is a Poisson morphism.

Proof. For any smooth functions f , g on M, we have

{ f , g}M = Ω(grad f , grad g) and {π∗
1 f , π∗

1 g}Q = Ω(grad π∗
1 f , grad π∗

1 g).

If grad f is the solution of grad f = ♭−1
(η,Ω)

(d f ), then grad π∗
1 f is the solution of igrad π∗

1 f Ω =

d π∗
1 f . We verify that Xπ∗

1 f = X f − ξ( f ) ∂
∂θ . We deduce that grad π∗

1 f (resp. Xπ∗
1 f ) projects

onto M and its projection is just grad f (resp. X f ). So

π∗
1{ f , g}M = {π∗

1 f , π∗
1 g}Q,

as desired. □

We conclude that, a cosymplectic structure can always generate a symplectic structure,
and vice-versa.

3. REDUCTION USING THE MOMENTUM

3.1. Left action of Lie group on cosymplectic manifolds. Let M be a smooth manifold
and G a Lie group. The map Φ : G × M −→ M is differentiable, for any g ∈ G, Φg :
M −→ M, x 7−→ Φ(g, x). We say that Φ is a left action of G on M if the following
assertions hold

1) Φg ◦ Φh = Φgh, ∀g, h ∈ G;
2) Φe = idM where e is the unit of G.
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The map g 7−→ Φg is an homomorphism from G onto the set of diffeomorphisms of M.
Let G = Lie(G) be a Lie algebra of G. For each X ∈ G, one defines a fundamental vector
field XM on M associated with X, by

XM(x) =
d
dt

[Φ(exp(tX), x)] /t=0, x ∈ M, X ∈ G. (3.1)

The mapping G −→ X(M), X 7−→ XM is an homomorphism of Lie algebras. It is very
easy to show that (Φg)∗(XM) = (AdgX)M. Moreover, the fundamental vector field XM
is complete and its flow is given by (t, x) 7−→ Φ(exp(tX), x).
The action Φ is said to be:

a) Cosymplectic if for any g ∈ G, (Φg)∗Ω = Ω and (Φg)∗η = η;
b) Hamiltonian if it is cosymplectic and there exists a linear mapping G −→ C∞(M), X 7−→

JX such that iXM Ω = dJX;
c) Strongly hamiltonian if its is hamiltonian and if one can choose X 7−→ JX such

that {JX, JY} = J[X,Y], for any X, Y ∈ G.
In the last case, J : M −→ G∗ is such that JX(x) =< J(x), X >, x ∈ M, X ∈ G and is
called Φ-momentum hamiltonian action.
The sets Ox = {Φ(g, x), g ∈ G} and Gx = {g ∈ G, Φ(g, x) = x} are respectively the orbit
at x and the isotopy group of x, then one gets ker(Tx J) = (TxOx)⊥. The set Tx J is called
the annulator of Gx = Lie(Gx).

Theorem 3.1. Let Φ be an hamiltonian action of the Lie group G on the cosymplectic manifold
(M, η, Ω), of momentum J. Let H be an hamiltonian such that H ◦ Φg = H. Then J is constant
along each integral curve of the vector field of hamiltonian H.

3.2. Reduction using the momentum. Let ϵ ∈ G∗ a weakly regular value of J, G0
ϵ the

neutral component of the isotopy group of ϵ, and Gϵ its Lie algebra. Let Mϵ = J−1(ϵ) a
submanifold of M on which is applied the reduction method.

Theorem 3.2. Let Mϵ be a submanifold of constant rank of (M, η, Ω). The leaves of charac-
teristic foliation are orbits of the action G0

ϵ on Mϵ which is restiction of the action Φ on the
subgroup Gϵ of G and on the submanifold Mϵ of M. If the characteristic foliation is simple,
there exists on M̂ϵ a cosymplectic form Ω̂ϵ and a unique reduced hamiltonian Ĥϵ such that
i∗Mϵ

Ω = πM̂ϵ
Ω̂ϵ, H⧸Mϵ = Ĥϵ ◦ πM̂ϵ

.

Proof. By straightforward calculation. □

Proposition 3.1. Let (M, ηM, ΩM) and (P, ηP, ΩP) two cosymplectic manifolds and let J :
N −→ P a cosymplectic reduction from a coisotropic submanifold N of M intersecting trans-
versely. The intersection L ∩ N is both a submanifold of L, N and M and J/L ∩ N : L ∩ N −→
(P, ηP, ΩP) is a lagrangian immersion.

Proof. By the fact that L ∩ N is a submanifold of L and N, and due to the fact that M
is a consequence of the transvesalty of the intersection of L and N. Then Tx(L ∩ N) =
TxL ∩ Tx N for any x ∈ L ∩ N. Since J is a cosymplectic reduction, one has ker(Tx J) =
Tx J ∩ (Tx J)⊥. Moreover, Tx J = (Tx J)⊥ and (Tx N)⊥ ⊂ Tx N. Thus

ker(Tx J⧸L ∩ N) = Tx(L ∩ N) ∩ ker(Tx J)

= (Tx M)⊥

= {O}.
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We conclude that Tx J⧸L ∩ N is a Lagrangian immersion. □

Theorem 3.3. Let λ : G × M −→ M be an action on the cosymplectic manifold (M, η, Ω).
Suppose that λ is a hamiltonian action on a cosymplectic manifold (M, η, Ω). If J : M −→ G∗

is equivariant momentum, then
(i) ♭(η,Ω) is G-equivariant with respect to the actions λTM : G × TM −→ TM and λT∗M :

G × T∗M −→ T∗M.
(ii) JTM satisfies JTM = −JT∗M ◦ ♭(η,Ω), where JT∗M : T∗M −→ G∗ is the momentum map

associated with the cosymplectic action λT∗M.

Proof. (i) Consider the cosymplectic action λ : G × M −→ M. For any x ∈ M, g ∈ G, we
have ♭(η,Ω)(λg(x)) ◦ Txλg = T∗

λg(x)λ
−1
g ◦ ♭(η,Ω)(x).

(ii)Define JT∗M : T∗M −→ G∗ by ⟨JT∗M(αx), ξ⟩ = ⟨αx, ξM(x)⟩, for αx ∈ T∗M, ξ ∈ G. On
the other hand, ⟨JTM(vx), ξ⟩ = vx(Jξ) = −⟨♭(η,Ω)(vx), ξM(x)⟩, for all vx ∈ TM, ξ ∈ G.
Thus JTM = −JT∗M ◦ ♭(η,Ω) as desired. □
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