A NEW APPEARANCE OF THE GOLDEN RATIO IN THE FOOTSTEPS OF ODOM

ALDO SCIMONE

ABSTRACT. We construct some golden ratios by Odom's construction

Let $\triangle A B C$ be an equilateral triangle and Γ its circumcircle (see Figure 1). Let K and H be the midpoints of the sides $A C$ and $A B$, and extend $K H$ to meet the circumcircle at P. In [1] Odom proved that H divides $K P$ according to the golden section, that is

$$
\frac{K P}{K H}=\phi .
$$

Figure 1

Now let us consider the equilateral triangle $\Delta A^{\prime} B^{\prime} C^{\prime}$, which is symmetrical to triangle $\triangle A B C$ with respect to segment $K H$, and let Γ^{\prime} be its circumcircle (see Figure 2).

[^0]

Figure 2

The points of intersection of Γ, Γ^{\prime} are P, P^{\prime} and the triangle $\Delta A^{\prime} B^{\prime} C^{\prime}$ intersects Γ at T and T^{\prime}. By the symmetry of the figure, one has $H C^{\prime}=H B$ and $H T=H P$. Let us consider segment $K T$ intersecting the side $A B$ at point S.

Theorem. S divides KT according to the golden section, that is

$$
\frac{K T}{K S}=\phi
$$

Proof. In the triangle $\triangle T H K$ the segment $H S$ is the bisector of $\measuredangle T H K$, since $\measuredangle T H S=$ $\measuredangle S H K=\pi / 3$. Since the angle bisector of an angle in a triangle divides the opposite side in the same ratio as the sides adjacent to the angle, we have $K S: S T=K H: H T$, from which, being $H T=H P$, one has: $(K S+S T): K S=(K H+H P): K H$. Therefore $K T: K S=K P: K H=\phi$. It follows that S divides segment $K T$ in extreme and mean ratios.

Remark 1. Furthermore, being $H C^{\prime}=K H$ and $H T=H P$, one has:

$$
\frac{H C^{\prime}}{H T}=\frac{K H}{H P}=\phi
$$

Now, let us consider the two triangles $\triangle A S K, \triangle T S H$, which are similar (having congruent angles), so one has: $A S: S H=K S: S T=\phi$. This means that $A H / A S=\phi$ too. Symmetry means these relationships will be the same for the other identified segments. So, connecting point H to T^{\prime} (Figure 3), one gets

$$
\frac{H T^{\prime}}{H S^{\prime}}=\frac{A H}{A S^{\prime}}=\frac{H P^{\prime}}{H K}=\phi
$$

Figure 3
Furthermore, being $B H=H C$ and $M H=H T$, one has

$$
\frac{H C^{\prime}}{H T}=\frac{B H}{M H}=\phi
$$

and symmetrically

$$
\frac{K C}{K M^{\prime}}=\phi
$$

Remark 2. The same proportions exist for other segments that complete the Figure 4.

Figure 4
Remark 3. It may be easily verified the existence of three ellipses Σ, Σ^{\prime} and $\Sigma^{\prime \prime}$ (Figure 5) concentric, for whose focal distances KH and $P P^{\prime}$ one has:

$$
P P^{\prime}=K H+P^{\prime} K+P H=K H+2 P H=K H+2 \frac{K H}{\phi}
$$

being $P^{\prime} K=P H$.

Figure 5
One gets

$$
P P^{\prime}=K H \frac{\phi+2}{\phi} .
$$

Hence, the ratio between focal distances is:

$$
\frac{P P^{\prime}}{K H}=\frac{\phi^{2}+1}{\phi}=\phi+\frac{1}{\phi}=\sqrt{5} .
$$

Acknowledgments. The author would like to thank Prof. Daniele Ritelli of the University of Bologna for reviewing the work in $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$.

References

[1] G. Odom and J. van de Craats, Elementary Problem 3007, American Math. Monthly, 90 (1983) 482; solution, 93 (1986) 572.

Via Costantino Nigra 30
90141 PALERMO
Sicily
Email address: aldoscimone@outlook.it

[^0]: 2010 Mathematics Subject Classification. Primary 51P05.
 Key words and phrases. Golden ratio - Odom's theorem- Confocal ellipses.

