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A DIRECT PROOF OF LESTER’S THEOREM

AND A RELATED TOPIC

TEMISTOCLE BÎRSAN

Abstract. In this paper is given an elementary proof of Lester’s theorem using the
formulas for the distances between the points O,N, F+, F−. Also, using the properties
of the orthocentroidal circle and cosymmedian triangles, other quadruples of concyclic
points are indicated.

In 1997, June Lester has discovered that the Fermat points, the circumcenter, and the
nine-point center are concyclic [9]. The circle on which these points are located is called
Lester’s circle. This topic has interested many researchers. Lester’s theorem has been
demonstrated with various methods. R. Shail provides a Cartesian proof [12], J. Rigby
uses the complex numbers [10] , J.A. Scott gives two proofs using baricentric coordinates
[11], and M. Duff a projective proof [6] of this theorem. N.I. Beluhov gives an ingenious
synthetic demonstration in [2], [3]. Etc., etc.
This work is closely related to [4] and [5]. We aim to give a simple and elementary
demonstration to Lester’s theorem using the formulas for the distances between the points
O,N,F+, F− set out in [5].

1. A proof of Lester’s theorem

Consider a triangleABC with the sidelenghts a, b, c and area ∆. The notationsO,H,G,N,K
are standard. Also, F+, F−denote the first and second Fermat (isogonic) points, and
J+, J− denote the first and second isodynamic points, respectively (see [8], [13]). The
Euler line OH, the Fermat axis F+F−, and the Brocard axis OK are denoted by e, f, b,
respectively. LetM be the midpoint ofHG (Fig. 1). It is known thatM ∈ e∩f, K ∈ f∩b,
and O ∈ e ∩ b.

Lemma 1.1. The quadrilateral ONF+F− is convex.

Proof. It is known that the order of points O,N,M on the Euler line is O−N −M , and
of the points F+, F−,M on the Fermat axis is F−−F+−M . These two properties imply
our claim. □
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Let’s recall the formulas we will need below (for demonstration, see [5]). We have:

F+F− =
1√
3

√
f

l+l−
, (1.1)

F+O2 =
1

144∆2l2+

[
32∆2l2+l

2
− +

(
2l2+ − l2−

)
f
]
, (1.2)

F−O2 =
1
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[
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2
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(
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)
f
]
, (1.3)
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1
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[
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2
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(
2l2− − l2+

)
f
]
, (1.4)
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1

576∆2l2−

[
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2
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(
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)
f
]
, (1.5)

where f (a, b, c) = a6 + b6 + c6 + 3a2b2c2 − a4b2 − a2b4 − a4c2 − a2c4 − b4c2 − b2c4 and

l2+ =
1

2

(
a2 + b2 + c2 + 4

√
3∆

)
, l2− =

1

2

(
a2 + b2 + c2 − 4

√
3∆

)
.

It is known that ON2 =
1

4
OH2 =

1

4

[
9R2 −

(
a2 + b2 + c2

)]
. Using the formula 4R∆ =

abc, after a simple calculation, we get ON2 =
1

4
· f

16∆2
, i.e.

ON =

√
f

8∆
. (1.6)

It is easy to see that

F+O = 2
l−
l+

F−N and F−O = 2
l+
l−

F+N. (1.7)

Proposition 1.1. (Lester’s theorem, 1997) The points F+, F−, O,N are concyclic.

Proof. These points are concyclic if and only if Ptolemy’s equation for the convex quadri-
lateral ONF+F− is verified, i.e. the equation

F+O · F−N = F+F− ·ON + F+N · F−O

holds. According to (1.7), we can write this equation in the form

2l2− · F−N2 − 2l2+ · F+N2 = l+l− · F+F− ·ON.

Taking into account (1.5), (1.4), (1.1), (1.6) and performing a simple calculation, we
obtain

2

576∆2

[(
2l2+ − l2−

)
f −

(
2l2− − l2+

)
f
]
=

f

8
√
3∆

,

what is checked immediately. So, the proof is concluded. □
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Figure 1

Remark 1.1. If ABC is an isosceles triangle, the points O and H, as well as F+ and
F−, are on the axis of the triangle (i.e. Euler line and Fermat axis coincide with this
axis). Then, the points F+, F−, O,N are collinear. This is a limiting case: Lester’s circle
degenerates into the axis of the isosceles triangle.

2. Some quadruples of concyclic points

The cosymmedian triangle associated with ABC is the triangle A′B′C ′ with vertex A′

defined by A′ = AK ∩ (ABC) , A′ ̸= A, and B′, C ′ defined similarly ((XY Z) denotes the
circle determined by the points X,Y, Z). Both triangles ABC and A′B′C ′ are inscribed
in the circle C0 ≡ (ABC) . The orthocentroidal circle of triangle ABC is the circle on HG
as diameter, denoted here C1. Obviously, his center is M . It is known that the triangle
A1B1C1 determined by the projections of G on the altitudes of ABC and the triangle
A′

1B
′
1C

′
1 determined by the projections ofH on the medians of ABC are cosymmedian and

inscribed in C1. Recall that A1B1C1 is called the orthocentroidal triangle associated with
ABC. We agree to denote with H ′, G′, N ′,M ′, F ′+, F ′− etc. and H1, G1, N1,M1, F

+
1 , F−

1
etc. the notable points corresponding to the triangle A′B′C ′ and A1B1C1, respectively.
We assume that the basic properties of cosymmedian triangles and orthocentroidal circles
are known (see [1], [4], [7] and others). Thus, we will use below that the triangles ABC
and A′B′C ′ have the same isodynamic points (i.e., J ′+ = J+ and J ′− = J−) and the fact
that ABC and A1B1C1 are inversely similar and J+

1 = F+, J−
1 = F−.

The certain connection between the triangles ABC,A′B′C ′ and A1B1C1 is emphasized
by the following theorem.

Proposition 2.1. The following properties are true (Fig. 2):

1) GG′ ∥ HH ′ ∥ NN ′ ∥ MM ′,
2) F+J+ ∥ F−J− ∥ e ([8],Table 5.3, p.139) and F ′+J+ ∥ F ′−J− ∥ e′,
3) F+F ′+ ∥ F−F ′− ∥ MM ′,
4) F+

1 F+ ∥ F−
1 F− ∥ e1.
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Figure 2

Proof. 1) The relative positions of points O,H,G,N,M and O′, H ′, G′, N ′,M ′ on Euler
lines e and e′, respectively, are determined by the same constant distance-ratios. Then
we apply Thales’ theorem.

2) We’ll just show that F+J+ ∥ e. In the same way it is shown that F−J− ∥ e. For this
it is enough to check that the equation

KF+

F+M
=

KJ+

J+O
. (2.1)

holds. Indeed, in [5] it was established the formulae:

KF+ =

√
f√

3 (a2 + b2 + c2)

l−
l+

and F+M =

√
f

12∆
· l−
l+

; (2.2)

KJ+ =

√
3abc

a2 + b2 + c2
· l−
l+

and J+O =
abc

4∆
· l−
l+

. (2.3)

By substitution, we immediately verify that (2.1) is true.

3) Let’s prove that F+F ′+ ∥ MM ′. It is enough to show that

KF+

F+M
=

KF ′+

F ′+M ′ . (2.4)

The terms KF+ and F+M are given by (2.2), while KF ′+ and F ′+M ′ have expressions of
the same shape in the sidelengths of the of the triangle A′B′C ′. Then, (2.4) is equivalent to

∆

a2 + b2 + c2
=

∆′

(a′)2 + (b′)2 + (c′)2

or
abc

a2 + b2 + c2
=

a′b′c′

(a′)2 + (b′)2 + (c′)2

(because 4R∆ = abc and 4R∆′ = a′b′c′). Since the triangles ABC and A′B′C ′ are
cosymmedians, the sidelenghts of the one are proportional to the medians of the other
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([7], p.283; [4], p.3); more specifically, we have a′ = k · ma, b
′ = k · mb, c

′ = k · mc with

k =
3

4

abc

mambmc
. Then the previous equation is written in the form

abc

a2 + b2 + c2
=

k ·mambmc

(ma)
2 + (mb)

2 + (mc)
2 .

Finally, taking into account the fomula (ma)
2+(mb)

2+(mc)
2 =

3

4

(
a2 + b2 + c2

)
and the

expression of k, we get 1 = 1.

4) It is the first property in 2) written for the triangle orthocentroidal.

The proof is complete. □

Corollary 2.1. The triangles KF+F+
1 ,KJ+F+,KF−F−

1 , and KJ−F− are similar, i.e.
we have:

KF+F+
1 ∼ KJ+F+ ∼ KF−F−

1 ∼ KJ−F−. (2.5)

Proof. By Proposition 2.1, F+J+ ∥ F−J− and F+
1 F+ ∥ F−

1 F−. Hence, KJ+F+ ∼
KJ−F− and KF+F+

1 ∼ KF−F−
1 .

On the other hand,
KF+

1

KF+
=

KF+
1

KJ+
1

(since J+
1 = F+) and

KF+
1

KJ+
1

=
KF+

KJ+
(since A1B1C1 ∼

ABC). Hence,
KF+

1

KF+
=

KF+

KJ+
. This equality and ̂F+KF+

1 = ̂J+KF+ (same angle) imply

that KF+F+
1 ∼ KJ+F+ (Fig. 2). So, (2.5) is proven. □

Proposition 2.2. The points in quadruples
(
F+, F−, J+, F−

1

)
and

(
F+, F−, J−, F+

1

)
are

concyclic. The radical axis of the determined circles is the Fermat axis F+F− (Fig. 3).

Proof. From (2.5) we have KJ+F+ ∼ KF−F−
1 . So K̂F+J+ = ̂KF−

1 F− or ̂F−F+J+ =
̂J+F−

1 F−, from which it follows that F+, F−, J+, F−
1 are concyclic points.

In the same way it is shown that F+, F−, J−, F+
1 are concyclic points. The circles intersect

in F+ and F−, so F+F− is their radical axis.

Figure 3
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Second proof. To show that F+, F−, J+, F−
1 are concyclic points it is enough to check

that
KF+ ·KF− = KJ+ ·KF−

1 .

Because ABC ∼ A1B1C1, we have KF−
1 =

HG

2R
· KF−. Then, the previous equation

takes the form
2R ·KF+ = KJ+ ·HG. (2.6)

This is checked immediately using the formulae (2.2), (2.3), and HG =

√
f

6∆
and making

a simple calculation. Similarly for the points F+, F−, J−, F+
1 .

All statements of the proposition are proven. □

Remark 2.1. The circles
(
F+F−J+F−

1

)
, and

(
F+F−J−F+

1

)
belong to the intersecting

coaxal system determined by Fermat points F+ and F−.

In the same manner we will show the following result.

Proposition 2.3. The points in quadruples (F+, J+,M,M1) and (F−, J−,M,M1) are
concyclic. The radical axis of the determined circles is the Euler line e1 of the ortho-
centroidal triangle A1B1C1 (Fig. 4).

Proof. We only show that F+, J+,M,M1 are concyclic points. The remaining statements
are shown by the same reasoning.
By (2.5), we have: KJ+F+∼KF+F+

1 . Since F+F+
1 ∥MM1, we infer thatKF+F+

1 ∼KMM1.

Hence, KJ+F+∼KMM1 and we obtain: K̂J+F+ = K̂MM1 or ̂M1J+F+ = ̂F+MM1.
Therefore, the points F+, J+,M,M1 are concyclic.

Figure 4

Second proof. Let’s check that

KF+ ·KM = KM1 ·KJ+,

is true. But KM1 =
HG

2R
·KM. Then, we have to verify that

2R ·KF+ = HG ·KJ+,
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what was done above. So, F+, J+,M,M1 are concyclic points.
The proposition is now completely proven. □

The results of Propositions 2.2 and 2.3 can be easily extended.
Starting from the triangle A1B1C1 and doing the same as with ABC at the beginning of
the previous section, we get the triangles A2B2C2 and A′

2B
′
2C

′
2. Repeating this method we

finally get two sequences of triangles (AnBnCn)n≥0 and (A′
nB

′
nC

′
n)n≥0 (with A0B0C0 =

ABC and A′
0B

′
0C

′
0 = A′B′C ′).

Our attention is directed to the sequence (AnBnCn)n≥0. This is the sequence of ortho-

centroidal triangles starting from the triangle ABC. In [4], Section 3, many properties of
this sequence were highlighted. The notations On, Hn, Gn, F

+
n , F−

n , J+
n , J−

n relates to the
triangles AnBnCn and they are easy to understand (with O0 ≡ O,O1 ≡ M,O2 ≡ M1).

Corollary 2.2. For any n ≥ 0, the points in the quadruples (F+
n , F−

n , J+
n , F−

n+1),

(F+
n , F−

n , J−
n , F+

n+1), (F
+
n , J+

n , On+1, On+2) and (F−
n , J−

n , On+1, On+2) are concyclic.

Proof. By Propositions 2.2 and 2.3, the statement is true for n = 0. Since any triangle is
similar to its orthocentroidal triangle, we have: AnBnCn ∼ ABC, for any n ≥ 1. From
these, the claims requested result immediately. □

Remark 2.2. J. Lester also conjectured in [9] the existence of a circle through the
symmedian point, the Feuerbach point, the Lemoine-Clawson point, and the homothetic
center of the orthic and the intangent triangles. This statement was validated in [14].
Since On, F

+
n , F−

n , J+
n , J−

n , n ≥ 0, are centers of the triangle ABC [4], Propositions 17
and 18, the four quadruple sequences of concyclic points above are inscribed in the same
order of things.
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