A DIRECT PROOF OF LESTER'S THEOREM AND A RELATED TOPIC

TEMISTOCLE BÎRSAN

Abstract

In this paper is given an elementary proof of Lester's theorem using the formulas for the distances between the points O, N, F^{+}, F^{-}. Also, using the properties of the orthocentroidal circle and cosymmedian triangles, other quadruples of concyclic points are indicated.

In 1997, June Lester has discovered that the Fermat points, the circumcenter, and the nine-point center are concyclic [9]. The circle on which these points are located is called Lester's circle. This topic has interested many researchers. Lester's theorem has been demonstrated with various methods. R. Shail provides a Cartesian proof [12], J. Rigby uses the complex numbers [10] , J.A. Scott gives two proofs using baricentric coordinates [11], and M. Duff a projective proof [6] of this theorem. N.I. Beluhov gives an ingenious synthetic demonstration in [2], [3]. Etc., etc.
This work is closely related to [4] and [5]. We aim to give a simple and elementary demonstration to Lester's theorem using the formulas for the distances between the points O, N, F^{+}, F^{-}set out in [5].

1. A proof of Lester's theorem

Consider a triangle $A B C$ with the sidelenghts a, b, c and area Δ. The notations O, H, G, N, K are standard. Also, F^{+}, F^{-}denote the first and second Fermat (isogonic) points, and J^{+}, J^{-}denote the first and second isodynamic points, respectively (see [8], [13]). The Euler line $O H$, the Fermat axis $F^{+} F^{-}$, and the Brocard axis $O K$ are denoted by e, f, b, respectively. Let M be the midpoint of $H G$ (Fig. 1). It is known that $M \in e \cap f, K \in f \cap b$, and $O \in e \cap b$.

Lemma 1.1. The quadrilateral $O N F^{+} F^{-}$is convex.
Proof. It is known that the order of points O, N, M on the Euler line is $O-N-M$, and of the points F^{+}, F^{-}, M on the Fermat axis is $F^{-}-F^{+}-M$. These two properties imply our claim.

[^0]Let's recall the formulas we will need below (for demonstration, see [5]). We have:

$$
\begin{gather*}
F^{+} F^{-}=\frac{1}{\sqrt{3}} \frac{\sqrt{f}}{l_{+} l_{-}}, \tag{1.1}\\
F^{+} O^{2}=\frac{1}{144 \Delta^{2} l_{+}^{2}}\left[32 \Delta^{2} l_{+}^{2} l_{-}^{2}+\left(2 l_{+}^{2}-l_{-}^{2}\right) f\right], \tag{1.2}\\
F^{-} O^{2}=\frac{1}{144 \Delta^{2} l_{-}^{2}}\left[32 \Delta^{2} l_{+}^{2} l_{-}^{2}+\left(2 l_{-}^{2}-l_{+}^{2}\right) f\right], \tag{1.3}\\
F^{+} N^{2}=\frac{1}{576 \Delta^{2} l_{+}^{2}}\left[32 \Delta^{2} l_{+}^{2} l_{-}^{2}+\left(2 l_{-}^{2}-l_{+}^{2}\right) f\right], \tag{1.4}\\
F^{-} N^{2}=\frac{1}{576 \Delta^{2} l_{-}^{2}}\left[32 \Delta^{2} l_{+}^{2} l_{-}^{2}+\left(2 l_{+}^{2}-l_{-}^{2}\right) f\right], \tag{1.5}
\end{gather*}
$$

where $f(a, b, c)=a^{6}+b^{6}+c^{6}+3 a^{2} b^{2} c^{2}-a^{4} b^{2}-a^{2} b^{4}-a^{4} c^{2}-a^{2} c^{4}-b^{4} c^{2}-b^{2} c^{4}$ and

$$
l_{+}^{2}=\frac{1}{2}\left(a^{2}+b^{2}+c^{2}+4 \sqrt{3} \Delta\right), l_{-}^{2}=\frac{1}{2}\left(a^{2}+b^{2}+c^{2}-4 \sqrt{3} \Delta\right) .
$$

It is known that $O N^{2}=\frac{1}{4} O H^{2}=\frac{1}{4}\left[9 R^{2}-\left(a^{2}+b^{2}+c^{2}\right)\right]$. Using the formula $4 R \Delta=$ $a b c$, after a simple calculation, we get $O N^{2}=\frac{1}{4} \cdot \frac{f}{16 \Delta^{2}}$, i.e.

$$
\begin{equation*}
O N=\frac{\sqrt{f}}{8 \Delta} . \tag{1.6}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
F^{+} O=2 \frac{l_{-}}{l_{+}} F^{-} N \text { and } F^{-} O=2 \frac{l_{+}}{l_{-}} F^{+} N . \tag{1.7}
\end{equation*}
$$

Proposition 1.1. (Lester's theorem, 1997) The points F^{+}, F^{-}, O, N are concyclic.
Proof. These points are concyclic if and only if Ptolemy's equation for the convex quadrilateral $O N F^{+} F^{-}$is verified, i.e. the equation

$$
F^{+} O \cdot F^{-} N=F^{+} F^{-} \cdot O N+F^{+} N \cdot F^{-} O
$$

holds. According to (1.7), we can write this equation in the form

$$
2 l_{-}^{2} \cdot F^{-} N^{2}-2 l_{+}^{2} \cdot F^{+} N^{2}=l_{+} l_{-} \cdot F^{+} F^{-} \cdot O N .
$$

Taking into account (1.5), (1.4), (1.1), (1.6) and performing a simple calculation, we obtain

$$
\frac{2}{576 \Delta^{2}}\left[\left(2 l_{+}^{2}-l_{-}^{2}\right) f-\left(2 l_{-}^{2}-l_{+}^{2}\right) f\right]=\frac{f}{8 \sqrt{3} \Delta},
$$

what is checked immediately. So, the proof is concluded.

Figure 1

Remark 1.1. If $A B C$ is an isosceles triangle, the points O and H, as well as F^{+}and F^{-}, are on the axis of the triangle (i.e. Euler line and Fermat axis coincide with this axis). Then, the points F^{+}, F^{-}, O, N are collinear. This is a limiting case: Lester's circle degenerates into the axis of the isosceles triangle.

2. Some quadruples of concyclic points

The cosymmedian triangle associated with $A B C$ is the triangle $A^{\prime} B^{\prime} C^{\prime}$ with vertex A^{\prime} defined by $A^{\prime}=A K \cap(A B C), A^{\prime} \neq A$, and B^{\prime}, C^{\prime} defined similarly $((X Y Z)$ denotes the circle determined by the points $X, Y, Z)$. Both triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are inscribed in the circle $\mathcal{C}_{0} \equiv(A B C)$. The orthocentroidal circle of triangle $A B C$ is the circle on $H G$ as diameter, denoted here \mathcal{C}_{1}. Obviously, his center is M. It is known that the triangle $A_{1} B_{1} C_{1}$ determined by the projections of G on the altitudes of $A B C$ and the triangle $A_{1}^{\prime} B_{1}^{\prime} C_{1}^{\prime}$ determined by the projections of H on the medians of $A B C$ are cosymmedian and inscribed in \mathcal{C}_{1}. Recall that $A_{1} B_{1} C_{1}$ is called the orthocentroidal triangle associated with $A B C$. We agree to denote with $H^{\prime}, G^{\prime}, N^{\prime}, M^{\prime}, F^{\prime+}, F^{\prime-}$ etc. and $H_{1}, G_{1}, N_{1}, M_{1}, F_{1}^{+}, F_{1}^{-}$ etc. the notable points corresponding to the triangle $A^{\prime} B^{\prime} C^{\prime}$ and $A_{1} B_{1} C_{1}$, respectively. We assume that the basic properties of cosymmedian triangles and orthocentroidal circles are known (see [1], [4], [7] and others). Thus, we will use below that the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ have the same isodynamic points (i.e., $J^{\prime+}=J^{+}$and $J^{\prime-}=J^{-}$) and the fact that $A B C$ and $A_{1} B_{1} C_{1}$ are inversely similar and $J_{1}^{+}=F^{+}, J_{1}^{-}=F^{-}$.
The certain connection between the triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ and $A_{1} B_{1} C_{1}$ is emphasized by the following theorem.

Proposition 2.1. The following properties are true (Fig. 2):

1) $G G^{\prime}\left\|H H^{\prime}\right\| N N^{\prime} \| M M^{\prime}$,
2) $F^{+} J^{+}\left\|F^{-} J^{-}\right\| e\left([8]\right.$, Table 5.3, p.139) and $F^{\prime+} J^{+}\left\|F^{\prime-} J^{-}\right\| e^{\prime}$,
3) $F^{+} F^{\prime+}\left\|F^{-} F^{\prime-}\right\| M M^{\prime}$,
4) $F_{1}^{+} F^{+}\left\|F_{1}^{-} F^{-}\right\| e_{1}$.

Figure 2

Proof. 1) The relative positions of points O, H, G, N, M and $O^{\prime}, H^{\prime}, G^{\prime}, N^{\prime}, M^{\prime}$ on Euler lines e and e^{\prime}, respectively, are determined by the same constant distance-ratios. Then we apply Thales' theorem.
2) We'll just show that $F^{+} J^{+} \| e$. In the same way it is shown that $F^{-} J^{-} \| e$. For this it is enough to check that the equation

$$
\begin{equation*}
\frac{K F^{+}}{F^{+} M}=\frac{K J^{+}}{J^{+} O} \tag{2.1}
\end{equation*}
$$

holds. Indeed, in [5] it was established the formulae:

$$
\begin{align*}
K F^{+} & =\frac{\sqrt{f}}{\sqrt{3}\left(a^{2}+b^{2}+c^{2}\right)} \frac{l_{-}}{l_{+}} \quad \text { and } \quad F^{+} M=\frac{\sqrt{f}}{12 \Delta} \cdot \frac{l_{-}}{l_{+}} \tag{2.2}\\
K J^{+} & =\frac{\sqrt{3} a b c}{a^{2}+b^{2}+c^{2}} \cdot \frac{l_{-}}{l_{+}} \quad \text { and } \quad J^{+} O=\frac{a b c}{4 \Delta} \cdot \frac{l_{-}}{l_{+}} \tag{2.3}
\end{align*}
$$

By substitution, we immediately verify that (2.1) is true.
3) Let's prove that $F^{+} F^{\prime+} \| M M^{\prime}$. It is enough to show that

$$
\begin{equation*}
\frac{K F^{+}}{F^{+} M}=\frac{K F^{\prime+}}{F^{\prime+} M^{\prime}} \tag{2.4}
\end{equation*}
$$

The terms $K F^{+}$and $F^{+} M$ are given by (2.2), while $K F^{\prime+}$ and $F^{\prime+} M^{\prime}$ have expressions of the same shape in the sidelengths of the of the triangle $A^{\prime} B^{\prime} C^{\prime}$. Then, (2.4) is equivalent to

$$
\frac{\Delta}{a^{2}+b^{2}+c^{2}}=\frac{\Delta^{\prime}}{\left(a^{\prime}\right)^{2}+\left(b^{\prime}\right)^{2}+\left(c^{\prime}\right)^{2}}
$$

or

$$
\frac{a b c}{a^{2}+b^{2}+c^{2}}=\frac{a^{\prime} b^{\prime} c^{\prime}}{\left(a^{\prime}\right)^{2}+\left(b^{\prime}\right)^{2}+\left(c^{\prime}\right)^{2}}
$$

(because $4 R \Delta=a b c$ and $4 R \Delta^{\prime}=a^{\prime} b^{\prime} c^{\prime}$). Since the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are cosymmedians, the sidelenghts of the one are proportional to the medians of the other
([7], p.283; [4], p.3); more specifically, we have $a^{\prime}=k \cdot m_{a}, b^{\prime}=k \cdot m_{b}, c^{\prime}=k \cdot m_{c}$ with $k=\frac{3}{4} \frac{a b c}{m_{a} m_{b} m_{c}}$. Then the previous equation is written in the form

$$
\frac{a b c}{a^{2}+b^{2}+c^{2}}=\frac{k \cdot m_{a} m_{b} m_{c}}{\left(m_{a}\right)^{2}+\left(m_{b}\right)^{2}+\left(m_{c}\right)^{2}} .
$$

Finally, taking into account the fomula $\left(m_{a}\right)^{2}+\left(m_{b}\right)^{2}+\left(m_{c}\right)^{2}=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)$ and the expression of k, we get $1=1$.
4) It is the first property in 2) written for the triangle orthocentroidal.

The proof is complete.
Corollary 2.1. The triangles $K F^{+} F_{1}^{+}, K J^{+} F^{+}, K F^{-} F_{1}^{-}$, and $K J^{-} F^{-}$are similar, i.e. we have:

$$
\begin{equation*}
K F^{+} F_{1}^{+} \sim K J^{+} F^{+} \sim K F^{-} F_{1}^{-} \sim K J^{-} F^{-} . \tag{2.5}
\end{equation*}
$$

Proof. By Proposition 2.1, $F^{+} J^{+} \| F^{-} J^{-}$and $F_{1}^{+} F^{+} \| F_{1}^{-} F^{-}$. Hence, $K J^{+} F^{+} \sim$ $K J^{-} F^{-}$and $K F^{+} F_{1}^{+} \sim K F^{-} F_{1}^{-}$.
On the other hand, $\frac{K F_{1}^{+}}{K F^{+}}=\frac{K F_{1}^{+}}{K J_{1}^{+}}\left(\right.$since $\left.J_{1}^{+}=F^{+}\right)$and $\frac{K F_{1}^{+}}{K J_{1}^{+}}=\frac{K F^{+}}{K J^{+}}\left(\right.$since $A_{1} B_{1} C_{1} \sim$ $A B C$). Hence, $\frac{K F_{1}^{+}}{K F^{+}}=\frac{K F^{+}}{K J^{+}}$. This equality and $\widehat{F^{+} K F_{1}^{+}}=\widehat{J^{+} K F^{+}}$(same angle) imply that $K F^{+} F_{1}^{+} \sim K J^{+} F^{+}$(Fig. 2). So, (2.5) is proven.
Proposition 2.2. The points in quadruples $\left(F^{+}, F^{-}, J^{+}, F_{1}^{-}\right)$and $\left(F^{+}, F^{-}, J^{-}, F_{1}^{+}\right)$are concyclic. The radical axis of the determined circles is the Fermat axis $F^{+} F^{-}$(Fig. 3).
Proof. From (2.5) we have $K J^{+} F^{+} \sim K F^{-} F_{1}^{-}$. So $\widehat{K F^{+} J^{+}}=\widehat{K F_{1}^{-} F^{-}}$or $\widehat{F^{-} F^{+} J^{+}}=$ $\widehat{J^{+} F_{1}^{-} F}$, from which it follows that $F^{+}, F^{-}, J^{+}, F_{1}^{-}$are concyclic points.
In the same way it is shown that $F^{+}, F^{-}, J^{-}, F_{1}^{+}$are concyclic points. The circles intersect in F^{+}and F^{-}, so $F^{+} F^{-}$is their radical axis.

Figure 3

Second proof. To show that $F^{+}, F^{-}, J^{+}, F_{1}^{-}$are concyclic points it is enough to check that

$$
K F^{+} \cdot K F^{-}=K J^{+} \cdot K F_{1}^{-}
$$

Because $A B C \sim A_{1} B_{1} C_{1}$, we have $K F_{1}^{-}=\frac{H G}{2 R} \cdot K F^{-}$. Then, the previous equation takes the form

$$
\begin{equation*}
2 R \cdot K F^{+}=K J^{+} \cdot H G \tag{2.6}
\end{equation*}
$$

This is checked immediately using the formulae (2.2), (2.3), and $H G=\frac{\sqrt{f}}{6 \Delta}$ and making a simple calculation. Similarly for the points $F^{+}, F^{-}, J^{-}, F_{1}^{+}$.
All statements of the proposition are proven.
Remark 2.1. The circles $\left(F^{+} F^{-} J^{+} F_{1}^{-}\right)$, and $\left(F^{+} F^{-} J^{-} F_{1}^{+}\right)$belong to the intersecting coaxal system determined by Fermat points F^{+}and F^{-}.

In the same manner we will show the following result.
Proposition 2.3. The points in quadruples $\left(F^{+}, J^{+}, M, M_{1}\right)$ and $\left(F^{-}, J^{-}, M, M_{1}\right)$ are concyclic. The radical axis of the determined circles is the Euler line e_{1} of the orthocentroidal triangle $A_{1} B_{1} C_{1}$ (Fig. 4).

Proof. We only show that F^{+}, J^{+}, M, M_{1} are concyclic points. The remaining statements are shown by the same reasoning.
By (2.5), we have: $K J^{+} F^{+} \sim K F^{+} F_{1}^{+}$. Since $F^{+} F_{1}^{+} \| M M_{1}$, we infer that $K F^{+} F_{1}^{+} \sim K M M_{1}$. Hence, $K J^{+} F^{+} \sim K M M_{1}$ and we obtain: $\widehat{K J^{+} F^{+}}=\widehat{K M M_{1}}$ or $\widehat{M_{1} J^{+} F^{+}}=\widehat{F^{+} M M_{1}}$. Therefore, the points F^{+}, J^{+}, M, M_{1} are concyclic.

Figure 4

Second proof. Let's check that

$$
K F^{+} \cdot K M=K M_{1} \cdot K J^{+},
$$

is true. But $K M_{1}=\frac{H G}{2 R} \cdot K M$. Then, we have to verify that

$$
2 R \cdot K F^{+}=H G \cdot K J^{+}
$$

what was done above. So, F^{+}, J^{+}, M, M_{1} are concyclic points.
The proposition is now completely proven.
The results of Propositions 2.2 and 2.3 can be easily extended.
Starting from the triangle $A_{1} B_{1} C_{1}$ and doing the same as with $A B C$ at the beginning of the previous section, we get the triangles $A_{2} B_{2} C_{2}$ and $A_{2}^{\prime} B_{2}^{\prime} C_{2}^{\prime}$. Repeating this method we finally get two sequences of triangles $\left(A_{n} B_{n} C_{n}\right)_{n \geq 0}$ and $\left(A_{n}^{\prime} B_{n}^{\prime} C_{n}^{\prime}\right)_{n \geq 0}$ (with $A_{0} B_{0} C_{0}=$ $A B C$ and $\left.A_{0}^{\prime} B_{0}^{\prime} C_{0}^{\prime}=A^{\prime} B^{\prime} C^{\prime}\right)$.
Our attention is directed to the sequence $\left(A_{n} B_{n} C_{n}\right)_{n \geq 0}$. This is the sequence of orthocentroidal triangles starting from the triangle ABC. In [4], Section 3, many properties of this sequence were highlighted. The notations $O_{n}, H_{n}, G_{n}, F_{n}^{+}, F_{n}^{-}, J_{n}^{+}, J_{n}^{-}$relates to the triangles $A_{n} B_{n} C_{n}$ and they are easy to understand (with $O_{0} \equiv O, O_{1} \equiv M, O_{2} \equiv M_{1}$).

Corollary 2.2. For any $n \geq 0$, the points in the quadruples $\left(F_{n}^{+}, F_{n}^{-}, J_{n}^{+}, F_{n+1}^{-}\right)$, $\left(F_{n}^{+}, F_{n}^{-}, J_{n}^{-}, F_{n+1}^{+}\right),\left(F_{n}^{+}, J_{n}^{+}, O_{n+1}, O_{n+2}\right)$ and $\left(F_{n}^{-}, J_{n}^{-}, O_{n+1}, O_{n+2}\right)$ are concyclic.
Proof. By Propositions 2.2 and 2.3, the statement is true for $n=0$. Since any triangle is similar to its orthocentroidal triangle, we have: $A_{n} B_{n} C_{n} \sim A B C$, for any $n \geq 1$. From these, the claims requested result immediately.

Remark 2.2. J. Lester also conjectured in [9] the existence of a circle through the symmedian point, the Feuerbach point, the Lemoine-Clawson point, and the homothetic center of the orthic and the intangent triangles. This statement was validated in [14]. Since $O_{n}, F_{n}^{+}, F_{n}^{-}, J_{n}^{+}, J_{n}^{-}, n \geq 0$, are centers of the triangle $A B C$ [4], Propositions 17 and 18 , the four quadruple sequences of concyclic points above are inscribed in the same order of things.

References

[1] Altshiller-Court, N. College Geometry, 2nd ed., Barnes \& Noble, New York, 1952.
[2] Beluhov, N.I. An elementary proof of Lester's theorem. Journal of Classical Geometry 1 (2012): 53-56.
[3] Beluhov, N.I. Erratum to "An elementary proof of Lester's theorem". J. of Classical Geometry 4 (2015).
[4] Bîrsan, T. Properties of orthocentroidal circles in relation to the cosymmedians triangles. GJARCMG 12 (2023): 1-19.
[5] Bîrsan, T. Distances involving notable points $F^{+}, F^{-}, J_{+}, J_{-}$. GJARCMG 12 (2) (2023): 187-202.
[6] Duff, M. A short projective proof of Lester's theorem. Math. Gaz. 89 (2005): 505-506.
[7] Johnson, R.A. Advanced Euclidean Geometry. Dover, New York, 1960.
[8] Kimberling, C. Triangle centers and central triangles. Congressus Numerantium 129 (1998): 1-285.
[9] Lester, J. Triangles III: Complex triangle functions. Aequationes Math. 53 (1997): 4-35.
[10] Rigby, J. A simple proof of Lester's theorem. Math. Gaz. 87 (2003): 444-452.
[11] Scott, J.A. Two more proofs of Lester's theorem. The Mathematical Gazette 87 (2003): 553-566.
[12] Shail, R. A proof of Lester's theorem. Math. Gaz. 85 (2001): 226-232.
[13] Weisstein, E.W. Fermat Points. MathWorld, available at https://mathworld.wolfram.com/FermatPoints.html
[14] Yiu, P. The Circles of Lester, Evans, Parry, and Their Generalizations. Forum Geometricorum 10 (2010): 175-209.

Gh. Asachi Technical University of Iaşi
Carol I Bd., nr. 11A, 700506 Iaşi, Romania.
Email address: tbirsan111@gmail.com

[^0]: 2010 Mathematics Subject Classification. 51M04.
 Key words and phrases. Fermat (isogonic) points; isodynamic points; Lester's circle; cosymmedian triangles; orthocentroidal circle.

