A GENERALIZATION OF IONESCU-WEITZENBÖCK'S INEQUALITY, USING HUYGENS-STEINER'S THEOREM FROM MECHANICS

MARTIN CELLI

AbStract. The purpose of this note is to give a new proof of a known generalization of Ionescu-Weitzenböck's inequality, using Huygens-Steiner's theorem from mechanics. This will show an unexpected link between rigid body dynamics and triangle geometry.

1. HUYGENS-STEINER'S THEOREM FROM MECHANICS

Huygens-Steiner's theorem ([6]) expresses the moment of inertia as a quadratic function. Huygens-Steiner's theorem. Let A_{1}, \ldots, A_{N} be N points and m_{1}, \ldots, m_{N} be N numbers. Let us define the moment of inertia function about a point M, in the following way:

$$
F(M)=\sum_{k=1}^{N} m_{k} A_{k} M^{2} .
$$

Then we have, for all Ω, M,

$$
F(M)=F(\Omega)-2\left(\sum_{k=1}^{N} m_{k} \overrightarrow{\Omega A_{k}}\right) \cdot \overrightarrow{\Omega M}+\left(\sum_{k=1}^{N} m_{k}\right) \Omega M^{2} .
$$

This theorem just follows from the identity

$$
A_{k} M^{2}=\left\|\overrightarrow{A_{k} \Omega}+\overrightarrow{\Omega M}\right\|^{2}=A_{k} \Omega^{2}+2 \overrightarrow{A_{k} \Omega} \cdot \overrightarrow{\Omega M}+\Omega M^{2} .
$$

In mechanics, the m_{k} are positive masses. So their sum is non-zero. Thus, we can choose the center of inertia as Ω :

$$
\Omega=O+\frac{1}{\sum_{k=1}^{N} m_{k}} \sum_{k=1}^{N} m_{k} \overrightarrow{O A_{k}} .
$$

This definition does not depend on the origin O. Taking $O=\Omega$, we obtain

$$
\sum_{k=1}^{N} m_{k} \overrightarrow{\Omega A_{k}}=\overrightarrow{0}
$$

[^0]This gives us a simpler form of Huygens-Steiner's theorem:

$$
F(M)=F(\Omega)+\left(\sum_{k=1}^{N} m_{k}\right) \Omega M^{2} .
$$

In dimension 3, we can obtain a variant of this theorem called the parallel axis theorem, by replacing the center of inertia Ω with a line passing through Ω, the point M with a line parallel to Ω, the distance $A_{k} \Omega$ with the distance between the point A_{k} and the line Ω, the distance $A_{k} M$ with the distance between the point A_{k} and the line M, the distance ΩM with the distance between the line Ω and the line M.

2. A GENERALIZATION OF IONESCU-WEITZENBÖCK'S INEQUALITY

Here, we will take fictitious positive and negative masses m_{k} whose sum is 0 . In this case, the vector of inertia

$$
\vec{U}=\sum_{k=1}^{N} m_{k} \overrightarrow{O A_{k}}
$$

does not depend on the origin O, and we obtain another simpler form of HuygensSteiner's theorem:

$$
F(M)=F(\Omega)-2 \vec{U} \cdot \overrightarrow{\Omega M}
$$

More precisely, let us take

$$
A_{2}=B, A_{3}=C, m_{1}=2, m_{2}=m_{3}=-1, \Omega=B, M=A .
$$

As A_{1} and O, we can choose the point such that the triangle $A_{1} B C$ is equilateral, situated on the same side of $B C$ as A (see the figure).

We obtain

$$
\begin{gathered}
2 A_{1} A^{2}-B A^{2}-C A^{2}=2 A_{1} B^{2}-B C^{2}+2\left(\overrightarrow{A_{1} B}+\overrightarrow{A_{1} C}\right) \cdot \overrightarrow{B A} \\
2 A_{1} A^{2}=B A^{2}+C A^{2}+B C^{2}-2 R\left(2 H \frac{\overrightarrow{B C}}{B C}\right) \cdot \overrightarrow{B A},
\end{gathered}
$$

where H is the altitude of the equilateral triangle $A_{1} B C$ and R is the rotation of angle 90 degrees in the direction $(\overrightarrow{B C}, \overrightarrow{B A})$. Thus,

$$
B C^{2}+C A^{2}+A B^{2}=2 \sqrt{3} R(\overrightarrow{B C}) \cdot \overrightarrow{B A}+2 A_{1} A^{2}=4 \sqrt{3} \mathcal{A}+2 A_{1} A^{2}
$$

where \mathcal{A} is the area of the triangle $A B C$. This gives us the following theorem:
Theorem. Let $A B C$ be a triangle with area \mathcal{A}. Let A_{1} be the point such that the triangle $A_{1} B C$ is equilateral, situated on the same side of $B C$ as A. Then we have

$$
B C^{2}+C A^{2}+A B^{2}=4 \sqrt{3} \mathcal{A}+2 A_{1} A^{2}
$$

This theorem states that for any constant points B, C, the level curves of $C A^{2}+A B^{2}-$ $4 \sqrt{3} \mathcal{A}$, seen as a function of A, are the circles with center A_{1}. An immediate consequence of this theorem is Ionescu-Weitzenböck's classic inequality:

$$
B C^{2}+C A^{2}+A B^{2} \geq 4 \sqrt{3} \mathcal{A} .
$$

Another proof of this theorem can be found in [4], proofs of other generalizations of Ionescu-Weitzenböck's inequality can be found in [1], [2], [3], [5], and [7] (where another vector argument is used).

References

[1] Alsina, C., Nelsen, R.B. Geometric proofs of the Weitzenböck and Hadwiger-Finsler inequalities. Math. Mag., 81, N. 3 (2008): 216-219. https://doi.org/10.1080/0025570X.2008.11953553
[2] Bătinețu-Giurgiu, D.M., Bencze, M., Sitaru, D. About Finsler-Hadwiger's inequality. Rom. Math. Mag. (2021).
http:/ /www.ssmrmh.ro/wp-content/uploads/2021/06/ABOUT-FINSLER-HADWIGERSINEQUALITY.pdf
[3] Bătinețu-Giurgiu, D.M., Stanciu, N. Some generalizations of Ionescu-Weitzenböck's inequality. J. Sci. Arts, 22, N. 1 (2013): 27-32.
http:/ /josa.ro/docs/josa_2013_1/a_03_Batinetu_Giurgiu_Stanciu_1.pdf
[4] Celli, M. Vectors and a half-disk of triangle shapes in Ionescu-Weitzenböck's inequality. Balk. J. Geom. Appl., 24, N. 2 (2019): 1-5.
http:/ /www.mathem.pub.ro/bjga/v24n2/B24-2ce-ZG46.pdf
[5] Heo, N.G. A new proof of the Ionescu-Weitzenböck inequality. Math. Mag., 94, N. 2 (2021): 135-136. https:/ /doi.org/10.1080/0025570X.2021.1869494
[6] Kane, T.R., Levinson, D.A. Dynamics, theory and applications. McGraw-Hill, New York (2005).
[7] Stoica, E., Minculete, N., Barbu, C. New aspects of Ionescu-Weitzenböck's inequality. Balk. J. Geom. Appl., 21, N. 2 (2016): 95-101.
http://www.mathem.pub.ro/bjga/v21n2/B21-2st-b21.pdf
DEPARTMENT OF MATHEMATICS, UNIVERSIDAD AUTÓNOMA METROPOLITANA
AV. SAN RAFAEL ATLIXCO, 186, C.P. 09340, COL. VICENTINA
ALC. IZTAPALAPA, MEXICO CITY, MEXICO.
Email address: cell@xanum.uam.mx

[^0]: 2010 Mathematics Subject Classification. 51M16; 70B10.
 Key words and phrases. Ionescu-Weitzenböck's inequality, Huygens-Steiner's theorem, parallel axis theorem, center of inertia, moment of inertia, rigid body dynamics, triangle geometry.

