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A GENERALIZATION OF IONESCU-WEITZENBÖCK’S INEQUALITY,

USING HUYGENS-STEINER’S THEOREM FROM MECHANICS

MARTIN CELLI

ABSTRACT. The purpose of this note is to give a new proof of a known generalization
of Ionescu-Weitzenböck’s inequality, using Huygens-Steiner’s theorem from mechanics.
This will show an unexpected link between rigid body dynamics and triangle geometry.

1. HUYGENS-STEINER’S THEOREM FROM MECHANICS

Huygens-Steiner’s theorem ([6]) expresses the moment of inertia as a quadratic function.
Huygens-Steiner’s theorem. Let A1, . . ., AN be N points and m1, . . ., mN be N numbers. Let
us define the moment of inertia function about a point M, in the following way:

F(M) =
N

∑
k=1

mk Ak M2·

Then we have, for all Ω, M,

F(M) = F(Ω)− 2

(

N

∑
k=1

mk
−−→
ΩAk

)

· −−→ΩM +

(

N

∑
k=1

mk

)

ΩM2·

This theorem just follows from the identity

Ak M2 = ||−−→AkΩ +
−−→
ΩM||2 = AkΩ2 + 2

−−→
AkΩ · −−→ΩM + ΩM2·

In mechanics, the mk are positive masses. So their sum is non-zero. Thus, we can choose
the center of inertia as Ω:

Ω = O +
1

∑
N
k=1 mk

N

∑
k=1

mk
−−→
OAk·

This definition does not depend on the origin O. Taking O = Ω, we obtain

N

∑
k=1

mk
−−→
ΩAk =~0·
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This gives us a simpler form of Huygens-Steiner’s theorem:

F(M) = F(Ω) +

(

N

∑
k=1

mk

)

ΩM2·

In dimension 3, we can obtain a variant of this theorem called the parallel axis theorem,
by replacing the center of inertia Ω with a line passing through Ω, the point M with a
line parallel to Ω, the distance AkΩ with the distance between the point Ak and the line
Ω, the distance Ak M with the distance between the point Ak and the line M, the distance
ΩM with the distance between the line Ω and the line M.

2. A GENERALIZATION OF IONESCU-WEITZENBÖCK’S INEQUALITY

Here, we will take fictitious positive and negative masses mk whose sum is 0. In this
case, the vector of inertia

~U =
N

∑
k=1

mk
−−→
OAk

does not depend on the origin O, and we obtain another simpler form of Huygens-
Steiner’s theorem:

F(M) = F(Ω)− 2~U · −−→ΩM·
More precisely, let us take

A2 = B, A3 = C, m1 = 2, m2 = m3 = −1, Ω = B, M = A·
As A1 and O, we can choose the point such that the triangle A1BC is equilateral, situated
on the same side of BC as A (see the figure).

We obtain

2A1 A2 − BA2 − CA2 = 2A1B2 − BC2 + 2(
−−→
A1B +

−−→
A1C) · −→BA,

2A1 A2 = BA2 + CA2 + BC2 − 2R

(

2H

−→
BC

BC

)

· −→BA,

where H is the altitude of the equilateral triangle A1BC and R is the rotation of angle 90

degrees in the direction (
−→
BC,

−→
BA). Thus,

BC2 + CA2 + AB2 = 2
√

3R(
−→
BC) · −→BA + 2A1 A2 = 4

√
3A+ 2A1 A2,
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where A is the area of the triangle ABC. This gives us the following theorem:
Theorem. Let ABC be a triangle with area A. Let A1 be the point such that the triangle A1BC
is equilateral, situated on the same side of BC as A. Then we have

BC2 + CA2 + AB2 = 4
√

3A+ 2A1 A2·
This theorem states that for any constant points B, C, the level curves of CA2 + AB2 −
4
√

3A, seen as a function of A, are the circles with center A1. An immediate consequence
of this theorem is Ionescu-Weitzenböck’s classic inequality:

BC2 + CA2 + AB2 ≥ 4
√

3A·
Another proof of this theorem can be found in [4], proofs of other generalizations of
Ionescu-Weitzenböck’s inequality can be found in [1], [2], [3], [5], and [7] (where another
vector argument is used).
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