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OBTUSE TRIANGLE, RECTANGULAR HYPERBOLA AND DE LONGCHAMPS’
CIRCLE

PARIS PAMFILOS

ABSTRACT. In this article we study conics inscribed in a triangle, which appear always
in a group of related four. We find conditions that such a group contains simultaneously
a rectangular hyperbola and a parabola. These conditions involve the de Longchamps
circle of the triangle of reference, which necessarily it is obtuse.

1. INTRODUCTION

This article grew out from an attempt to understand “inconics” of a triangle, i.e. con-
ics inscribed in a triangle, which always appear in a group of four and which I call a
“four inconics group”. In fact, given an inconic κD of the triangle ABC, its “perspec-
tor” D w.r.t. the triangle ( [1, p. 105], [2]) is defined by the common point of the lines
{AA′, BB′, CC′} joining the vertices with the contacts {A′, B′, C′} on the opposite sides
(see Figure 1). Conversely, a point D, not lying on a side-line of the triangle, uniquely
defines its “traces” {A′, B′, C′} on the sides and through them an inconic κD tangent to
the corresponding side-lines of the triangle at these three points. With tr(X) we denote
in the figure the “trilinear polar” or “tripolar” of the point X ([3, p.134], [4]). The inconic
with perspector X is the envelope of the tripolars tr(Y) of points Y ∈ tr(X) ([2]).

Starting with an inconic κD and taking the three “harmonic associates” ([5, p.102]) of
its perspector, i.e. the harmonic conjugates of the point D :

A∗ = D(AA′) , B∗ = D(BB′) , C∗ = D(CC′) ,

we define three other inconics {κA, κB, κC} having the points {A∗, B∗, C∗} as perspectors.
There is a kind of symmetry in this configuration, and the role of D can be in-

terchanged with the role of any one of the points {A∗, B∗, C∗}, e.g. with B∗. Then,
{A∗, C∗, D} are again obtained as harmonic conjugates of the corresponding pairs de-
fined by the traces {A′′, C′′, B′} of B∗ : {A∗ = B∗(CC′′) , C∗ = B∗(AA′′) , D = B∗(BB′)}
and the conics {κA, κC, κD} are defined through their perspectors {A∗, C∗, D}.

The four perspectors {D, A∗, B∗, C∗} define a “complete quadrilateral” and ABC is its
“diagonal triangle” ([6, p.7]). Also, each conic out of the four is tangent to the other three,
with common tangent a different side of the triangle.
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Figure 1. A “four inconics group” {κD, κA, κB, κC} of the triangle ABC

A naturally arising question, representing also the core subject of this article, is the one
about the kinds of the four inconics group. Which kinds appear in such a group? In the
example seen in figure 1 appear two ellipses and two hyperbolas. It is also well known
([1, p.107], [5, p.127]), that the kind of the inscribed conic is determined by the location
of its perspector relative to the “Steiner ellipse” σ circumscribing the triangle.

Inconics with perspectors lying inside/on/outside σ are correspondingly ellipses/
parabolas/hyperbolas. Figure 2 shows an example with two perspectors {D, B∗} inside
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Figure 2. A four inconics group with two elliptical members

the Steiner ellipse σ. Certainly one, corresponding to the perspector D lying inside the
triangle, hence also inside σ, defines an ellipse. Thus, one ellipse is mandatory and every
four inconics group contains at least one ellipse. It is also easily seen that at most two
ellipses can be contained in such a group, as in figure 2, in which besides κD we have
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the ellipse κB with perspector B∗ lying also inside σ. One can then easily show that
the polars of the other perspectors {A∗, C∗} w.r.t. to the inner ellipse κD intersect this
ellipse, consequently intersect also the Steiner ellipse σ containing κD, hence {A∗, C∗}
lie outside the ellipse σ, and the corresponding conics {κA, κC} are hyperbolas.
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Figure 3. Angle ϕ = D̂AE “viewing” a branch is greater than ω

Next section handles the case of rectangular hyperbolas, locating the position of per-
spectors which deliver an inconic of this kind. Talking of hyperbolas inscribed in trian-
gles we should notice that in such configurations there is always an angle, Â say, of the
triangle with both sides tangent to the same branch of the hyperbola at two points {D, E}
of it (see Figure 3). Then, using general and elementary properties of the hyperbola ([7]),
one can show that angle Â is greater than the angle ω of the asymptotes under which
the center O of the hyperbola is “viewing” this branch. Thus, a triangle circumscribing
such a hyperbola has one of its angles greater than ω. In particular, a triangle circum-
scribing a rectangular hyperbola has an angle greater than 90◦, i.e. it is obtuse and
the rectangular hyperbola has a branch contained in the obtuse angle. This justifies the
adopted below restriction to obtuse triangles, when considering the problem of inconics
of rectangular hyperbola type. This implies also, that in a four inconics group there is
at most one rectangular hyperbola member, which, if existing, has a branch contained in
the obtuse angle.

2. THE ROLE OF DE LONGCHAMPS’ CIRCLE

Here we work with barycentric coordinates or “barycentrics” ([5], [4]). The general form
of an inconic described through these coordinates {(x : y : z)} is

L2x2 + M2y2 + N2z2 − 2LMxy − 2MNyz − 2NLzx = 0, (2.1)

with D
( 1

L : 1
M : 1

N

)
representing the perspector of the inconic [8, p.131]. Notice that

Du(L : M : N) is the “isotomic conjugate” ([5, p.31]) of D. The “de Longchamps circle” of
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the triangle ABC is the circle centered at the “de Longchamps point” of the triangle, de-
noted by X(20) in Kimberling’s notation ([9]). This is the symmetric of the orthocenter
w.r.t. to the circumcenter of the triangle. The de Longchamps circle λ is represented in
barycentrics through equation ([4])

a2x2 + b2y2 + c2z2 + 2SCxy + 2SAyz + 2SBzx = 0 . (2.2)

The constants appearing there are the side-lengths {a = |BC|, b = |CA|, c = |AB|} and
the “Conway triangle symbols”

SA =
b2 + c2 − a2

2
, SB =

c2 + a2 − b2

2
, SC =

a2 + b2 − c2

2
.

The de Longchamps circle is real for obtuse triangles and is orthogonal to the “power cir-

X(20)

A

B C

λ

Figure 4. The de Longchamps circle of an obtuse triangle ABC

cles” i.e. the circles centered at the middles of the sides and passing through the opposite
vertex of the triangle ([10]) (see Figure 4). Next theorem shows that the two notions are
intimately connected.

Theorem 2.1. The inconic of the obtuse triangle ABC is a rectangular hyperbola, if and only
if the isotomic Bu(L : M : N) of its perspector B∗(1/L : 1/M : 1/N) is a point of the de
Longchamps circle λ of the triangle.

Proof. Assuming the equation of the inconic in the form (2.1), its points at infinity are the
intersections with the line at infinity represented in barycentrics through x + y + z = 0.
Thus, setting z = −x − y in equation (2.1) we arrive at the equation in (x, y) :

(N + L)2x2 + 2(N2 + MN + LN − LM)xy + (N + M)2y2 = 0 which for t =
x
y

⇒

(N + L)2t2 + 2(N2 + MN + LN − LM)t + (N + M)2 = 0 . (2.3)

The roots {t1, t2} of this equation determine the points {(u : v : w), u + v + w = 0} of the
inconic at infinity, representing also in barycentrics the directions of its asymptotes.

(u1 : v1 : w1) = (t1 : 1 : −(1 + t1)) , (u2 : v2 : w2) = (t2 : 1 : −(1 + t2)) (2.4)
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The condition of orthogonality, valid for the directions of the asymptotes of a rectangular
hyperbola, leads to the equation satisfied by these two points ([4]):

SAu1u2 + SBv1v2 + SCw1w2 = 0 ⇔ (2.5)

SAt1t2 + SB + SC(1 + t1)(1 + t2) = 0 ⇔

(SA + SC)
(N + M)2

(N + L)2 − 2SC
N2 + MN + LN − LM

(N + L)2 + (SC + SB) = 0 ⇔

a2L2 + b2M2 + c2N2 + 2SCLM + 2SA MN + 2SBNL = 0 ,

which is the desired equation (2.2) of the de Longchamps circle. □
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Figure 5. Points {Bu(L : M : N)} defining inconics of rectangular hyperbola type

Next corollary is a refinement of a well known result for rectangular hyperbolas in-
scribed in a triangle ([11, p.338], [1, p.105], [5, p.128], [12]).

Corollary 2.1. The center O of the inconic corresponding to the point Bu(L : M : N) on the
de Longchamps circle is homothetic w.r.t to the centroid G in ratio (−1 : 2) to Bu and lies on
the polar circle µ of the triangle ABC (see Figure 5).

Proof. The center of the inconic defined by equation (2.1) through the point Bu(L : M : N)
of the de Longchamps circle λ is given by O(M + N : N + L : L + M). The collinearity
of the three points {Bu, G, O} follows trivially from the vanishing of the determinant∣∣∣∣∣∣

M + N N + L L + M
1 1 1
L M N

∣∣∣∣∣∣ = 0 .

The proof for the homothety results from the equality

G =
1
2

(
Bu

L + M + N

)
+

(
O

2(L + M + N)

)
,
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expressing the barycentric coordinates of G (up to a factor) as combination of the ab-
solute barycentrics of the points {Bu, O}. The other claim relating the de Longchamps
circle to the polar circle is a well known fact ([10]). □

Notice that the corollary implies an easy construction of all the rectangular hyperbolas
inscribed in an obtuse triangle. To define such a conic select a point O on the polar circle
µ and consider the symmetric w.r.t. to O of the side-lines of the triangle. The conic can
then be drawn as one tangent to five given lines.

3. COMBINING A PARABOLA WITH A RECTANGULAR HYPERBOLA

Here we seek to find conditions for an obtuse triangle to accept a four inconics group
having a parabola and a rectangular hyperbola member. As we noticed already, the per-
spector, C∗ say, of the parabola lies on the Steiner ellipse σ of the triangle of reference
ABC. Thus, we can start with such a point C∗ ∈ σ and see when the other perspectors
of the group defined by C∗ determine a rectangular hyperbola.
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Figure 6. For X ∈ σ point Y = X(AZ) lies on the hyperbola ηA

Figure 6 shows a point X varying on the Steiner ellipse σ of the triangle ABC. Its
harmonic associate Y varies then on a conic circumscribing the triangle of reference.

Theorem 3.1. For a point X lying on the Steiner ellipse σ of the triangle ABC, the corre-
sponding harmonic associate Y = X(AZ) with Z = AX ∩ BC lies on a hyperbola ηA , whose
isotomic image is the line εA parallel to BC through the middle B0 of AC.

Proof. We work in barycentrics ([5], [4]) w.r.t. the triangle ABC. The Steiner ellipse in
these coordinates is represented through equation

σ : xy + yz + zx = 0 .

For a point X(u : v : w) ∈ σ point Z = (0 : v : w) and writing X = uA + Z we have
Y(u′ : v′ : w′) = X(AZ) = uA − Z = (u : −v : −w) satisfying equation

u′v′ − v′w′ + w′u′ = 0 .

This is a conic circumscribing the triangle and also is the isotomic image of the line
εA : −x + y + z = 0 passing through the middles {B0(1 : 0 : 1), C0(1 : 1 : 0)} of the sides
{AC, AB}. The conic is obviously a hyperbola, since for X obtaining the position of
the two intersections of σ ∩ εA the corresponding Y takes the position of two distinct
points at infinity. □
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A similar property can be proved for the harmonic associate Y′ = X(CZ′) with point
Z′ ∈ AB, and we get a second hyperbola ηC containing all these {Y′} and its isotomic
image, which is a line εC parallel to AB through the middle B0 of AC. Figure 7 shows
the two hyperbolas, their isotomic lines {εA, εC}, and the de Longchamps circle λ, which
play a fundamental role in next theorem.

A

B

C

Β
0

η
Α

σ

ε
Α

ε
C

η
C

λX(20)

Figure 7. Lines {εA, εC} isotomic of {ηA, ηC} and the de Longchamps circle λ

Theorem 3.2. With the preceding notation and conventions, the obtuse triangle ABC admits a
four inconics group containing a parabola and a rectangular hyperbola, if and only if one of the
lines {εA, εC} intersects the de Longchamps circle λ . Depending on the number of intersections
of this circle with the two lines, we may have 0 to 4 such inconics groups.

Proof. In fact, assume that there is a four inconics group containing a parabola and a
rectangular hyperbola. Then, as we noticed at the end of section 1, the hyperbola will
have a branch contained in the obtuse angle, which we may assume to be B̂. Then the
parabola will be contained to one of the other angles. The isotomic conjugate Bu of the
perspector B∗ of this hyperbola will be a point of the de Longchamps circle λ. Since the
parabola and the rectangular hyperbola are members of the same four inconics group,
their perspectors, {C∗, B∗} say, will lie, C∗ on the Steiner ellipse and B∗, in one of the
hyperbolas, ηA say. It follows, that the isotomic Bu of B∗ will be a point of the line εA
and since B∗, by assumption, defines a rectangular hyperbola, Bu will be also a point
of the de Longchamps circle λ. This shows the necessity of the condition. The argument
though can be reversed and shows also the sufficiency. □

4. SOME ADDITIONAL PROPERTIES

Figure 8 shows the pair of a parabola and a rectangular hyperbola belonging to a four
inconics group. By theorem 2.1, the perspector B∗ of the hyperbola κB has its isotomic
conjugate Bu at an intersection of the de Longchamps circle λ and the line εA, parallel
to BC through the middle B0 of AC. Point C∗ is a harmonic associate of B∗ and lies
on the Steiner ellipse σ. It is also the perspector of a parabola κC of the four inconics
group defined by the rectangular hyperbola κB.
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Figure 8. Pair of rectangular hyperbola and parabola defined by Bu ∈ λ ∩ εA

Theorem 4.1. With the preceding notation and conventions, an intersection point Bu of the de
Longchamps circle λ and one of the lines {εA, εC}, εA say, lies on the rectangular hyperbola κB
whose perspector is the isotomic conjugate B∗ of Bu and its tangent there is the line εA.

Proof. In fact, a parameterization of the line εA is given by { (1 : t : (1 − t)) , t ∈ R.} The
corresponding inconic given by equation (2.1) for (L : M : N) = (1 : t : (1 − t)) is

f (x, y, z) = (z + y)2t2 − 2(z2 + yz − xz + xy)t + (z − x)2 = 0 .

It is readily seen that the equation is satisfied for Bu = (1 : t : (1 − t)) and its tangent
there is expressed through

2t(1 − t)(−x + y + z) = 0 ,

coinciding with line εA. □

Corollary 4.1. With the preceding notation and conventions, the center O of the hyperbola
coincides with the middle of the segment A′′Bu.

Proof. Since εA and BC are parallel tangents to the hyperbola, its center lies on the
middle of the segment joining the corresponding contact points. □

Notice that a four inconics group cannot contain more than one parabola. Since if it con-
tained two parabolas, then the corresponding perspectors, {A∗, C∗} say, would lie on
the Steiner ellipse, which contains also the collinear to them vertex B of the triangle of
reference ABC, i.e. the ellipse σ would intersect a line in three distinct points, which is
impossible.

In figure 8 we notice also an other phenomenon. Since {Bu, B∗} are isotomic con-
jugate, points {B′, B1} are symmetric w.r.t. the middle B0 of AC, point B′ being the
contact point of κB with AC and B1 the intersection B1 = AC ∩ BB′′ .

Regarding the number of four inconics groups of a given obtuse triangle, we have to
count the intersections of the lines {εA, εC} with the de Longchamps circle λ. Replacing
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the parameterizations of the lines

εA : (1 + t, 1, t) and εC : (1, t, 1 + t) ,

in equation (2.2) representing the de Longchamps circle. This leads to two equations in
t :

(2(a2 + c2)− b2)t2 + (3a2 + b2 + c2)t + (2(a2 + b2)− c2) = 0 , (4.1)

(2(b2 + c2)− a2)t2 + (a2 + b2 + 3c2)t + (2(a2 + c2)− b2) = 0 , (4.2)

which determine the points on the de Longchamps circle defining the four inconics
groups of the triangle. The discriminants of the quadratic polynomials are respectively

D1 = 9b4 − 2(a2 + 9c2)b2 + (c2 − a2)(7a2 + 9c2) , (4.3)

D2 = 9b4 − 2(9a2 + c2)b2 + (a2 − c2)(9a2 + 7c2) , (4.4)

and their simultaneous vanishing leads to a special triangle. In fact their difference is

D1 − D2 = 16(c2 − a2)(a2 + c2 − b2) ,

and its vanishing, taking into account that our triangle ABC is obtuse, is only possible, if
a = c, i.e. the triangle is isosceles. Replacing this into equation (4.3) we find the relations

b =
2
√

5
3

a and a = c ⇒ cos B̂ = −1
9

.

This leads to the following theorem.

Theorem 4.2. The only triangle for which both lines {εA, εC} are tangent to the de Longchamps
circle λ is the isosceles ABC, whose apex angle B̂ has cos(B̂) = − 1

9 .
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Figure 9. An exceptional isosceles with cos(B̂) = − 1
9
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Figure 9 shows such an exceptional triangle and a rectangular hyperbola κB together
with the associated parabola κC of the four inconics group determined by the point Bu

of the de Longchamps circle, according to our discussion. The triangle possesses two
such four inconics groups, the other one lying symmetrically to that suggested by the
figure w.r.t. to the bisector of the obtuse angle B̂.
The rationality of cos(B̂) implies simple relations between the distances of points and
angles appearing in this configuration. Taking |AB| = |BC| = 9 we notice some of them,
their proofs being easy exercises:

(1) |AB| = |BC| = 9 ⇒ |AC| = 6
√

5 and |BB0| = 6 .
(2) The radius of the polar circle is 3

2

√
5 and its double, which is the radius of the de

Longchamps circle is 3
√

5 .
(3) This implies that the de Longchamps circle λ has a diameter EF parallel and

equal to AC and the tangents at its extremities pass respectively through {A, C}.
(4) The triangle BCE is isosceles and the four angles at B are equal.
(5) |AB′|

|B′B0| =
3
2 , |B′C|

|CA| =
7

10 , |AB|
|BC′| =

7
4 , |B∗B|

|B∗Bv| =
24
5 .
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