

N(k)-CONTACT METRIC MANIFOLD AS *- GRADIENT ρ -EINSTEIN SOLITON

ANIRBAN MANDAL, KALYAN HALDER, ARINDAM BHATTACHARYYA

ABSTRACT. The purpose of this present paper is to study N(k) contact metric manifolds admits *-gradient ρ -Einstein soliton with the Einstein potential function f. Here, we proved that, (*i*) the manifold is locally isometric to the Riemannian product $E^{n+1}(0) \times S^n(4)$ and flat for n = 1. (*ii*) The manifold M is *-Ricci flat and (*iii*) the Einstein potential function f satisfies the Poisson's equation. Finally, the results are verified by an example.

1. INTRODUCTION

In 1959, *-Ricci tensor was introduced by S. Tachibana [17] on almost Hermitian manifolds and later T. Hamada [10] studied this on real hyper surfaces of non-flat complex space satisfied by

$$S^{*}(U_{1}, U_{2}) = g(Q^{*}U_{1}, U_{2}) = \frac{1}{2}(tr\{\phi \circ R(U_{1}, \phi U_{2})\}),$$
(1.1)

for all vector fields $U_1, U_2 \in \chi(M)$, where Q^* denotes the (1,1) *-Ricci operator. r^* is the *-scalar curvature and defined as $r^* = tr(Q^*)$.

In 1982, Hamilton [11] introduced the concept of Ricci flow. This is an evolution equation for metrics on Riemannian manifold as:

$$\frac{\partial}{\partial t}g + 2S = 0,$$

g denotes the Riemannian metric, *S* is the Ricci tensor. A self similar solution of the Ricci flow is said to be Ricci soliton [12] (*g*, *X*, λ) and it is defined as

$$2S + \mathcal{L}_X g = 2\lambda g,$$

where, $\mathcal{L}_X g$ is the Lie derivative operator along the vector field *X* and *r* is a scalar curvature of the metric *g*, λ is a real constant. G. Kaimakamis and K. Panagiotidou [14] introduced the concept of *-Ricci soliton *S** instead of the Ricci tensor *S*. The Ricci soliton is said to be gradient Ricci soliton if *X* is a gradient of smooth function *f* on *M* which is defined as

²⁰¹⁰ Mathematics Subject Classification. Primary 53C15; Secondary 53C25.

Key words and phrases. N(k) contact metric manifold, *-gradient ρ -Einstein soliton, Poisson's equation.

$$S + \nabla^2 f = \lambda g$$

where $\nabla^2 f$ denotes Hessian of the function *f*.

In 2016, the concept of Einstein soliton was introduced by Catino and Mazzieri [5], which generates self similar solution of the Einstein flow

$$\frac{\partial}{\partial t}g + 2\left(S - \frac{r}{2}g\right) = 0,$$

and introduced the notation of gradient Einstein soliton on Riemannian manifold M as

$$S + \nabla^2 f = \lambda g + \frac{r}{2}g,$$

where *r* is scalar curvature and λ is a real constant.

The so called Ricci-Bourguignon flow was introduced by Bourguignon [4] in 1979 which is defined as

$$\frac{\partial}{\partial t}g + 2(S - \rho rg) = 0,$$

where $\rho(\neq 0)$ is a constant. Catino and Mazzieri [5] introduced and deeply studied of gradient ρ -Einstein soliton as

$$S + \nabla^2 f = \lambda g + \rho r g,$$

here the function f is said to be Einstein potential function. Later, Venkatesha et al. [18] studied gradient ρ -Einstein soliton on almost Kenmotsu manifolds.

Definition 1.1. [8] An *n*-dimensional almost contact metric manifold is said to be *-gradient ρ -Einstein soliton if

$$S^* + \nabla^2 f = \rho r^* g + \lambda g, \tag{1.2}$$

where *f* is the smooth function, ρ is non zero constant and λ is a real constant.

In 2021, the authors D. Dey and P. Majhi [8] have proved that if the metric of (2n + 1) dimensional $(k, \mu)'$ -almost kenmotsu manifold admits *-gradient ρ -Einstein soliton, then the manifold is locally isometric to $\mathbb{H}^{n+1}(-4) \times \mathbb{R}^n$. A. A. Shaikh and C. S. Bagewadi [16] have proved that N(k)-contact metric manifolds with certain conditions is either the manifold is locally isometric to the Riemannian product $E^{n+1}(0) \times S^n(4)$ or the manifold is η -Einstein. In [9], the authors have proved that if N(k)- contact metric manifolds with *-critical point equation becomes locally isometric to $E^{n+1}(0) \times S^n(4)$ and flat for n = 1. The authors A. Bhattacharyya and S. Pahan [1] have studied on a class of N(k)-mixed generalized quasi-Einstein manifolds. Hui and Lemence [13] have studied on some classes of N(k)-quasi Einstein manifolds.

N(k)-contact metric manifold

From the above mentioned worked, a natural question arises

Question. Does the above results holds for N(k) contact metric manifolds when the manifolds admits *-gradient ρ -Einstein soliton?

we have tried to find the answer which needs some preliminaries given in section-2 and is demonstrated In section-3 by studying *-gradient ρ -Einstein soliton in the framework of N(k) contact metric manifolds. Finally, we set up an example to verify our main result

2. PRELIMINARIES

A smooth manifold M^{2n+1} has an almost contact structure (ϕ, ξ, η, g) , if it admits a Reeb vector field ξ , (1,1) tensor field ϕ and a 1-form η satisfying

$$\phi^2 U_1 = -U_1 + \eta(U_1)\xi, \qquad \eta(\xi) = 1, \quad \phi\xi = 0, \qquad \eta \circ \phi = 0,$$
 (2.1)

$$g(\phi U_1, \phi U_2) = g(U_1, U_2) - \eta(U_1)\eta(U_2), \qquad (2.2)$$

$$g(\phi U_1, U_2) = -g(U_1, \phi U_2), \tag{2.3}$$

$$g(U_1,\xi) = \eta(U_1),$$
 (2.4)

for all vector fields U_1, U_2 on *M*. For details we refer to Blair [2, 3].

If $g(\phi U_1, U_2) = d\eta(U_1, U_2)$ for all U_1, U_2 on M, then the almost contact metric structure becomes contact metric structure. h is a (1,1) tensor field and it's defined as $h = \frac{1}{2}\mathcal{L}_{\xi}\phi$. h is the symmetric operator and satisfies

$$h\phi + \phi h = 0, \ tr(h) = tr(\phi h) = 0, \ h\xi = 0$$
 (2.5)

$$\nabla_{U_1}\xi = -\phi U_1 - \phi h U_1. \tag{2.6}$$

The *k*-nullity distribution of a Riemannian manifold was introduced by Tanno [17], defined as

$$N(k) = \{U_3 \in T(M) : R(U_1, U_2)U_3 = k[g(U_2, U_3)U_1 - g(U_1, U_3)U_2],\$$

where *k* is a real number and T(M) is the Lie algebra for all vector fields on *M*. If the reeb vector field $\xi \in N(k)$, then the contact metric manifold is called N(k)- contact metric manifold.

An (2n+1)- dimensional N(k)- contact metric manifolds satisfies the following relations

$$h^2 = (k-1)\phi^2,$$
 (2.7)

$$R(U_1, U_2)\xi = k[\eta(U_2)U_1 - \eta(U_1)U_2],$$
(2.8)

$$R(\xi, U_1)U_2 = k[g(U_1, U_2)\xi - \eta(U_2)U_1],$$
(2.9)

$$(\nabla_{U_1}\eta)U_2 = g(U_1 + hU_1, \phi U_2), \tag{2.10}$$

$$(\nabla_{U_1}\phi)U_2 = g(U_1 + hU_1, U_2)\xi - \eta(U_2)(U_1 + hU_1), \qquad (2.11)$$

$$(\nabla_{U_1}\phi h)U_2 = [g(U_1 + hU_2) + (k-1)g(U_1, -U_2 + \eta(U_2)\xi)]\xi + \eta(U_2)[hU_1 + (k-1)(-U_1 + \eta(U_1)\xi)],$$
(2.12)

for any vector fields U_1 , U_2 on M, R is Riemannian curvature.

For further details of N(k)- contact manifolds, we refer the reader to see the references [6, 15].

3. MAIN RESULTS

In this portion, we consider the notation of *- Gradient ρ -Einstein Soliton in the framework of N(k)-contact metric manifolds. Before going to our main results, we now state the following lemmas which are needed for proving our results.

Lemma 3.1. An odd dimensional contact metric manifolds satisfying the condition $R(U_1, U_2)\xi = 0$ for all U_1, U_2 is locally isometric to the Riemannian product of a flat (n + 1)-dimensional manifold and an n-dimensional manifold of positive curvature 4, i.e., $E^{n+1} \times S^n(4)$ for n > 0 and flat for n = 1.

Lemma 3.2. A (2n + 1)-dimensional N(k)- contact metric manifold is *- η -Einstein and the *-Ricci tensor is given by

$$S^*(U_1, U_2) = -k[g(U_1, U_2) - \eta(U_1)\eta(U_2)].$$
(3.1)

Theorem 3.1. If *M* be a N(k)-contact metric manifold with (2n + 1) dimensional admitting *-Gradient ρ -Einstein Soliton with Einstein potential *f*. Then,

- (1) The manifold M is locally isometric to $E^{n+1}(0) \times S^n(4)$ and flat for n = 1.
- (2) The manifold M is *-Ricci flat.
- (3) The Einstein potential f satisfies the Poisson's equation $\Delta f = (2n+1)\lambda$

Proof. Tracing (3.1) yields

$$r^* = -2nk. \tag{3.2}$$

Substituting the values of (3.1) and (3.2) in (1.2), we get

$$\nabla^2 f(U_1, U_2) = [\lambda - 2nk\rho + k]g(U_1, U_2) - k\eta(U_1)\eta(U_2),$$

which implies that

$$\nabla_{U_1} Df = [\lambda - 2nk\rho + k]U_1 - k\eta(U_1)\xi.$$
(3.3)

Differentiating (3.3) covariantly along the vector field U_2 and using (2.6), we obtain

$$\nabla_{U_2} \nabla_{U_1} Df = (\lambda - 2nk\rho + k) \nabla_{U_2} U_1 - k(\nabla_{U_2} \eta(U_1))\xi -k\eta(U_1)(-\phi U_2 - \phi h U_2).$$
(3.4)

Interchanging U_1 and U_2 in the previous equation, we have

$$\nabla_{U_1} \nabla_{U_2} Df = (\lambda - 2nk\rho + k) \nabla_{U_1} U_2 - k(\nabla_{U_1} \eta(U_2))\xi -k\eta(U_2)(-\phi U_1 - \phi h U_1).$$
(3.5)

Also,

$$\nabla_{[U_1, U_2]} Df = (\lambda - 2nk\rho + k)(\nabla_{U_1} U_2 - \nabla_{U_2} U_1) - k\eta(\nabla_{U_1} U_2)\xi + k\eta(\nabla_{U_2} U_1)\xi$$
(3.6)

Now, it is well known that

$$R(U_1, U_2)Df = \nabla_{U_1} \nabla_{U_2} Df - \nabla_{U_2} \nabla_{U_1} Df - \nabla_{[U_1, U_2]} Df.$$
(3.7)

Substituting (3.4)-(3.6) in the equation (3.7) and using (2.10), we get

$$R(U_{1}, U_{2})Df = k[(\nabla_{U_{2}}\eta)U_{1} - (\nabla_{U_{1}}\eta)U_{2}]\xi +k[\eta(U_{2})(\phi U_{1} - \phi h U_{1}) - \eta(U_{1})(\phi U_{2} + \phi h U_{2})] = k[g(U_{2} + h U_{2}, \phi U_{1}) - g(U_{1} + h U_{1}, \phi U_{2})]\xi +k[\eta(U_{2})(\phi U_{1} - \phi h U_{1}) - \eta(U_{1})(\phi U_{2} + \phi h U_{2})]$$
(3.8)

Taking $U_1 = \xi$ in (3.8) we get

$$R(\xi, U_2)Df = -k[(\phi U_2 + \phi h U_2)].$$
(3.9)

Taking inner product in the previous equation with U_1 , we obtain

$$g(R(\xi, U_2)Df, U_1) = -k[g(\phi U_2, \phi U_1) - g(\phi h U_2, U_1)].$$
(3.10)

Again since

$$g(R(\xi, U_2)Df, U_1) = -g(R[\xi, U_2]U_1, Df)$$

= $-kg(U_1, U_2)(\xi f) + k\eta(U_1)(U_2 f)$
(3.11)

from (3.10) and (3.11), we have

$$-k[g(\phi U_2, \phi U_1) - g(\phi h U_2, U_1)] = -kg(U_1, U_2)(\xi f) + k\eta(U_1)(U_2 f)$$
(3.12)

Anti-symmetrizing the previous equation, we get

$$2kg(\phi U_1, U_2) = k\eta(U_1)(U_2f) + k\eta(U_1)(U_2f)$$
(3.13)

Replacing U_1 by ϕU_1 and U_2 by ϕU_2 , we obtain

$$2kg(\phi U_1, U_2) = 0, \tag{3.14}$$

which implies k = 0, so, from (3.1), we get $S^*(U_1, U_2) = 0$, therefore the manifold M is *-Ricci flat and from (3.2) $r^* = 0$. Again, from (2.7), we get $R^*(U_1, U_2) = 0$ and from Lemma-3.1, it follows that the manifold M is locally isometric to $E^{(n+1)}(0) \times S^n(4)$ and flat for n = 1.

From (1.2) $\nabla^2 f = \lambda g$, which is implies $\Delta f = (2n + 1)\lambda$. Hence, the Einstein potential f satisfies the poisson's equation. This complete the proof.

4. EXAMPLE

In [7], the authors gave an example of three dimensional $N(1 - \beta^2)$ contact metric manifolds, where β is a real number. Using this example, we can calculate the followings

$$S^*(e_1, e_1) = 0, S^*(e_2, e_2) = -(1 - \beta^2), S^*(e_3, e_3) = -(1 - \beta^2).$$

The *-scalar curvature $r^* = S^*(e_1, e_1) + S^*(e_2, e_2) + S^*(e_3, e_3) = -2(1 - \beta^2)$

Tracing (1.2) we have $r^* + \nabla f = 3\lambda g + 3\rho r^*$

If $\beta = 1$, then the manifold reduces to flat manifold and $\Delta f = 3\lambda$ So, our main results are verified.

Acknowledgments. The author Anirban Mandal is thankful to the University Grants Commission, New Delhi, India for the financial support in the form of Senior Research Fellowship (UGC-Ref. No.: 1120/(CSIR-UGC NET DEC.2018)).

References

- [1] A. Bhattacharyya and S. Pahan, On a class of N(k)-mixed generalized quasi-Einstein manifolds, Acta et Commentationes Universitatis Tartuensis de Mathematica vol 22, 167-178, (2019).
- [2] D.E. Blair, Contact Manifold in Riemannian Geometry, vol. 509. Lecture Notes on Mathematics. Springer, Berlin (1976).
- [3] D. E. Blair, Riemannian Geometry on contact and symplectic manifolds, Progr. Math., Birkhäuser, Boston, 203(2010).
- [4] J. P. Bourguignon, Ricci curvature and Einstein metrics, Global Differential Geometry and Global Analysis, Berlin, 1979, 42-63, Lecture notes in Math. 838, Springer, Berlin, (1981).
- [5] G. Catino, L. Mazzieri: Gradinat Einstein solitons. Nonlinear Anal. 132, 66-94 (2016)
- [6] A. De and J. B. Jun, On N(k)-contact metric manifolds satisfying certain curvature conditions, Kyung-pook Math. J. 51, 457-468 (2011).
- [7] U. C De, A. Yildiz and S. Ghosh: On a class of N(k)-contact metric manifolds, Math. Reports 16, 207-217 (2014).
- [8] D. Dey, P. Majhi, On a class of almost Kenmotsu manifolds admitting an Einstein like structure, Sao Paulo Journal of Mathematical Sciences, 15, 335-343 (2021).
- [9] D. Dey, P. Majhi, *-Critical point equation on N(k)-contact manifolds. Bull. Transilv. Univ. Brasov Ser. III(12), 275-282 (2019).
- [10] T. Hamada: Real hypersurfaces of complex space forms in terms of Ricci *-tensor, Tokyo J. Math. 25, 473-483 (2002).
- [11] R.S. Hamilton, Three manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255-306 (1982).
- [12] R.S. Hamilton, Ricci flow on surfaces. Contemp. Math. 71, 237-261 (1988).
- [13] S. K. Hui, and R. Lemence. "On some classes of N (k)-quasi Einstein manifolds." Int. J. Math. Anal 7, no. 37 (2013): 2821-2832.
- [14] G. Kaimakanois, K. Panagiotidou, *-Ricci solitons of real hypersurface in non-flat comlex space forms.
 J. Geom. Phys. 86, 408-413 (2014).
- [15] C. Ozgur, Contact metric manifolds with cyclic-parallel Ricci tensor, Diff. Geom. Dynamical systems, 4(2002), 21-25.
- [16] A. A. Shaikh, C.S. Bagewadi, On N(k)-contact metric manifolds, CUBO A Mathematical Journal, 12(1), 181-193, (2010).
- [17] S. Tachibana, On almost-analytic vectors in almost Kaehlerian manifolds. Tohoku Math. J. 11, 247-265 (1959).
- [18] V. Venkatesha, H. Aruna Kumara, Gradient ρ-Einstein soliton on almost Kenmotsu manifolds. Ann. Univ. Ferrara Sez. VII Sci. Mat. 65, 375-388 (2019).

DEPARTMENT OF MATHEMATICS, SIDHO-KANHO-BIRSHA UNIVERSITY, PURULIA, WEST BENGAL-723104, INDIA.

DEPARTMENT OF MATHEMATICS, JADAVPUR UNIVERSITY, KOLKATA, WEST BENGAL-700032, INDIA.

Email address: 25anirbanmandal1994@skbu.ac.in, drkalyanhalder@gmail.com, bhattachar1968@yahoo.co.in