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RIEMANNIAN GEOMETRY OF NONCOMMUTATIVE SUPER SURFACES

YONG WANG* AND TONG WU

ABSTRACT. In this paper, a Riemannian geometry of noncommutative super surfaces is
developed which generalizes [4] to the super case. The notions of metric and connections
on such noncommutative super surfaces are introduced and it is shown that the connec-
tions are metric-compatible and have zero torsion when the super metric is symmetric,
giving rise to the corresponding super Riemann curvature. The latter also satisfies the
noncommutative super analogue of the first and second Bianchi identities. We also give
some examples and study them in details.

1. INTRODUCTION

It is well known that 2-dimensional surfaces embedded in the Euclidean 3-space provide
the simplest yet nontrivial examples of Riemannian geometry. The Euclidean metric of
the 3-space induces a natural metric for a surface through the embedding; the Levi-Civita
connection and the curvature of the tangent bundle of the surface can thus be described
explicitly. In [4], Chaichian-Tureanu-Zhang-Zhang developed noncommutative defor-
mations of Riemannian geometry in the light of Whitney’s theorem. They deformed
the algebra of functions on a domain of the Euclidean space by introducing the Moyal
algebra, which is a noncommutative deformation of the algebra of smooth functions
on a region of R%. Then they developed a noncommutative Riemannian geometry for
noncommutative analogues of 2-dimensional surfaces embedded in 3-space. Working
over the Moyal algebra, they showed that much of the classical differential geometry for
surfaces generalized naturally to this noncommutative setting. In [2], the authors con-
structed deformation of the algebra of diffeomorphisms for canonically deformed spaces
with constant deformation parameter theta. The algebraic relations remained the same,
whereas the comultiplication rule (Leibniz rule) was different from the undeformed one.
Based on this deformed algebra a covariant tensor calculus was constructed and all the
concepts like metric, covariant derivatives, curvature and torsion was defined on the
deformed space as well. The construction of these geometric quantities was presented
in detail. In [3], Aschier found that the Lie algebra of infinitesimal diffeomorphisms on
noncommutative space allowed to develop differential and Riemannian noncommuta-
tive geometry. And noncommutative Einstein’s gravity equations were formulated. In
[5], Goertsches developed a theory of Riemannian supermanifolds up to a definition of

2010 Mathematics Subject Classification. 53C40; 53C42.

Key words and phrases. Noncommutative super surfaces; super connections; Moyal product; Bianchi identi-
ties.

281



Yong Wang* and Tong Wu

Riemannian symmetric superspaces. And various fundamental concepts needed for the
study of these spaces both from the Riemannian and the Lie theoretical viewpoint were
introduced.

On the other hand, it is well known that the classical differential geometry can be gen-
eralized to the super case. In [1], Bruce and Grabowski examined the notion of a Rie-
mannian Z7 manifold. They showed that the basic notions and tenets of Riemannian
geometry directly generalized to the setting of Z7-geometry. For example, the funda-
mental theorem holded in the higher graded setting. They pointed out the similarities
and differences with Riemannian supergeometry.

The motivation of this paper is to generalize [4] to the super case. In Section ??, we in-
troduce the super Moyal algebra and the notions of metric and connections on noncom-
mutative super surfaces and it is shown that the connections are metric-compatible and
have zero torsion when the super metric is symmetric, giving rise to the corresponding
super Riemann curvature. The latter also satisfies the noncommutative super analogue
of the first and second Bianchi identities. In Section 3, we give some examples and study
them in details.

2. NONCOMMUTATIVE SUPER SURFACES
Firstly we introduce some notations on Riemannian supergeometry.

Definition 2.1. A locally Z,-ringed space is a pair S := (|S|, Og) where |S| is a second-
countable Hausdorff space, and a Os is a sheaf of Z,-graded Z,-commutative associative unital
R-algebras, such that the stalks Os ,, p € |S| are local rings.

In this context, Z,-commutative means that any two sections s,t € Og(|U]|), |U| C
|S| open, of homogeneous degree |s| € Z; and |t| € Z; commute up to the sign rule
st = (—1)Blts. Zy-ring space U™ := (U, C%, @ AR"), is called standard superdomain
where C{}, is the sheaf of smooth functions on U and AIR" is the exterior algebra of IR".
We can employ (natural) coordinates x! := (x?, ¢4) on any Z,-domain, where x* form a
coordinate system on U and the &# are formal coordinates.

Definition 2.2. A supermanifold of dimension m|n is a super ringed space M = (|M|, Op)
that is locally isomorphic to R and | M| is a second countable and Hausdorff topological space.

The tangent sheaf 7 M of a Z,-manifold M is defined as the sheaf of derivations of
sections of the structure sheaf, i.e., TM(|U|) := Der(Om(|U])), for arbitrary open set
|U| C |M]|. Naturally, this is a sheaf of locally free O)-modules. Global sections of the
tangent sheaf are referred to as vector fields. We denote the Oy (|M|)-module of vector
fields as Vect(M). The dual of the tangent sheaf is the cotangent sheaf, which we denote
as T *M. This is also a sheaf of locally free O-modules. Global section of the cotangent
sheaf we will refer to as one-forms and we denote the Oy;(|M|)-module of one-forms as
QY(M).

Definition 2.3. A Riemannian metric on a Zy-manifold M is a Z-homogeneous, Z,-symmetric,
non-degenerate, Oys-linear morphisms of sheaves (—, —) ¢ TMTM — Om. A Zs-
manifold equipped with a Riemannian metric is referred to as a Riemannian Z,-manifold.

We will insist that the Riemannian metric is homogeneous with respect to the Z,-degree,
and we will denote the degree of the metric as |g| € Z,. Explicitly, a Riemannian metric
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has the following properties:

WX Y) [ = X[+ Y[+ g],

@(X,Y), = (1), x)

3) If <X,Y>g =0forall Y € Vect(M), then X =0,

@) (fX+Y,Z), = f(X,Z), + (Y, Z),,

for arbitrary (homogeneous) X,Y,Z € Vect(M) and f € C®(M). We will say that a
Riemannian metric is even if and only if it has degree zero. Similarly, we will say that a
Riemannian metric is odd if and only if it has degree one. Any Riemannian metric we
consider will be either even or odd as we will only be considering homogeneous metrics.
Similar to [4], we give some notions about noncommutative super surfaces. Let us fix
a region U in R? and write the coordinate of a point ¢ in U as (t1,t2). Let h be a real
indeterminate, and denote by R[[k]] the ring of formal power series in h. Let A be the
set of the formal power series in i with coefficients being real smooth functions on U.
Namely, every element of A is of the form } ;- fihi, where f; are smooth functions on U.
Then A is an R[[l1]]-module in an obvious way. Let A" (&1, - - -, &) be Grassmann algebra,
wetakea, b € AQNA, thena =Y« <..<j<p fir i 8" 8% b= Yacji<..<j<p &1y -
¢ln, where fi,..i,, j-j, € A. Define their star product (or more precisely, Moyal product)

axb:= Z fiy iy *gj1-~-jq§i1 A A é’ik A é’jl . /\gfq,

2.1)

where fj ...;, * gj...j, is the star product of f;,..; and g;,..;, in A.

Obviously, star product in A ® A is associative. For the following part, we will denote
A® A\by A

Let x! := (t,tp,¢1,+ - -, &p), then

du(axb) = (dua)x b+ (=1)ll7lg59 b,
2.2)

where the operators d,: are derivations of the algebra A, a,b are homogeneous and
90| = [0 =0, [9¢,| =1 (1 <a <P).

Definition 2.4. Let Ti( = j{;%, a%, %,~ . -,%} be the free—lejff /T—modille and TX i
{%, a%, %,- " %}A be the free-right A-module. Let g : Ti( ® TX — A be a double A
module map defined by g; = <8x1,8x1>g ,and let g = g mod h, which is a inverse matrix of

smooth functions on U ® AL, then we call g the metric of the noncommutative super surface TX.

Given a noncommutative super surface TX with a metric g, there exists a unique matrix
[¢/K] over A, which is the right inverse of g, i.e.,
g+ g/ =},

where we have used Einstein’s convention of summing over repeated indices.
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Definition 2.5. Fora,b,c; (1 <i < P), then d,: in A generate the left A-module TX and right
A-module TX, defined by

P P
TX:a*8t1+b*at2+Zci*a§i, TX:atl*a—i—atz*b—angi*Ci.
i=1 i=1

That is the left and right tangent bundles of the noncommutative super surface respectively, we
call also TX a noncommutative super surface.

Proposition 2.1. The metric induces a homomorphism of two-sided A-modules,
8 TX @y TX — A
defined forany Z = Z' 9,0 € TX and Z = 9,0 x Z' € TX by
ZR7Z <Z,Z>g = ZI*gU*Z].

We have <aax1’ax1b>g = axgy*band | <axfraxf>g | = |g] + [941] + [9,s|. Here we don’t
assume that gj; = (—1)%1Palg;;.

Next we define the Levi-Civita connections V and V. We define l"fj and f%] in A such
that

1/0 o) )
r%] =T+ g8, Tk = 5 <agx]§< + (_1)|3x1\\axl\% — (_1)3XK(|ax1+aX1)aiIK]> ;

T = gkl Tyyp, Ty = (—1)Pul(0ul+oy
Vo, 0x =T, Vi 0y =0ul].

(2.3)
Define
Vo, (f3x)) = @uf)axd + (~)VII £ 475 0y
and
Va, (@ f) = (=), 3 f) + Vo 00  £.
Then we get the following lemma ,
Lemma2.1. Forall Z € TX,Z € TX and f € /T,
Vo (f+2) = @uf)+Z+ (-1)/Plfx v, 7,
Vo (Zxf) = (Va,Z)+ f+(-1)71Z 9.
' (2.4)

Proof. Let Z = 10,5, Z = 9,y f1, we have
Vo, (f*Z)=Va [(f*fi1)o,]
= 0 (f * f1)aw + (—1)WHADRAl (£ 5 £1) 5 V5 0
= [@uf) * fr + ()Pl F 20, filoy + (1) AN (£ ) 5 95 9,
= (91f) * (fd) + (D) I(f 28, f1)a + (1)1l f 15975 0,]
= (uf)* Z+ (~)Vlf v, Z,
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(2.5)

Vo (Zxf) =V, (0ufi*f)

= (=1)"%1919, 5 [0, (fy % £)] + Va0 * (f1 * f)

= (=)0, 0,0 fi x f o+ (1) fy 50,0 f] + (Vo 00 % f1) 5
= ( 1)|axl‘|ax”ax1 * ( xlfl) f+( )laﬂ (@ l+1AD) (axf *fl) *axlf
+ (v Xzax] *f1) * f

= (Vo Z)x f+ (-1)/APulZ 50, f,
(2.6)

then we get (2.4). O

Proposition 2.2. For Z € TX, Z € TX, when |g| = 0, gjx = (1)1l gy, then the
connections are metric compatible in the following sense:

Ay <Z,Z>g = <Vax12/2>g + (—1)RaliZI <Z, Vo, Z) .

8
2.7)
Proof. Let Z = f10,, Z= 0.« f2, then
9, <z,z>g = 0,1 (f10,, 05k f2)
= 0u(f1 % gjK * f2)
= fix g * fo + (= 1) %W w9+ fo
—+ (_1)‘axl|(|fl|+|gﬂ<‘)f1 * g]K * afoZI
2.8)
and
(Vo,2,2) + (1P (2,9,,2)
= (Vo (), 0ucfa) + (1) ((A0,), 95, (9 f2))
8 8
= @ufi) i ot (VP (Vo 00,90) ¢ faot (<1) 200101
x 8
(_1)I3X1<H3x1|f1 % TK * Oyt fo + (_1)\3)(1|(|f1|+|3xf|)f1 <ax1,€a xK> % fa.
2.9)
Because by |¢| =0,
(—1) 1 lUAl+10g 1) (—1)0uklPu| = (—1)Rurl(Al+Igl
(2.10)
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We only prove
<Vaxzax1/ax’<> + (_1)@1”8"]' <ax]l 6axlax’<> = 0, gJK-
8 8
(2.11)
Then by (2.3), we have

<va ,ax,,axK> +(=1)lu o] <ax,,% a>
g g . g
_ <r§]axL,axK>g +(—1)Rally] <ax,,aer§K>g
= T # gy + (= 1)1 P gy « T
=Tk + (_1)\3x1||3x1|fn<].
2.12)
By (2.3)-(2.8) and T'jx; = (—1)P (#0111 we have
N (_1)\ale\ax1|fIKI

_ 1 (9gx 19,1//0,| 981K 10,11(19,11+1a, 1) 9811 19,110,
_Z(axl—i—(—l)r XW—(—l)X x x ﬁ +(—1)x x

1 (98k; 9,11[0,| 9811 19,71(19,1]+1a, ) 981K
3 (B (ot B Pl

1
= 59K + (—1) 1% 10kl g

= ang]K.
(2.13)

Therefore, (2.7) holds. O
Proposition 2.3. When g;; = (—1)1%11%1¢;, then torsion vanishes in the following sense:

™V =0, TV =0. (2.14)
Proof. By [1], we have

TV (9,1,0,) = Vo 00 — (—=1)/P1v5
=THou — (—1)PullaThg
= (1"%1 - (—1)|ax’”a*'|r%1)axb
(2.15)
By (2.3), we have
1“%] — (_1)|3x/||3xl\1“%1

_1 9gK i (_1)|ax,\|ax,\3811< _ (_1)\8xz<\(\8x1|+laxu)@ x oKL
2\ 9 d K

1/9 0 )
(Yol 2 (98IK Lyl O8TK _ _qyI0ukl(8,]+19,]) 98TT KL
(—1) 2\ 5, +(-1) N (—1) 9. ) *8

xI xf
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(1)l (Bl <(_1)|axz|axfagﬂ _ E)gU>

Ok Oy
=0.
(2.16)
Similarly, TV(3,1,9,) = 0. Therefore, we get Proposition 2.3. O

Next we consider curvatures and Bianchi identities in noncommutative super surfaces.
Let[Va,, Va ] := Vs, Vo, —(—=1)%%IVy vy and [Vy , Vo ] :=Va Vo — (=1)%P01v; v, .
Straightforward calculations show that forall f € A,

Vo, Vo )(f 2) = ()0 f (v, V5 ]2, Z € TX,

Vo, Vo I(Zxf) =V, Vo, 1Zxf ZeTX.

Clearly the right-hand side of the first equation belongs to TX, while that of the second
equation belongs to TX. We restate these important facts as a proposition.

Proposition 2.4. The following maps
Vo, Vo, : TX = TX, [Vy,V, ]:TX = TX.
are super left and super right A-module homomorphisms, respectively
Write
[Vaxl, Vax]]axk = R(axl,ax])axk = R%]K * axL,
[ﬁaxl, %axl]axk = R(axl,ax])axx = axL * ﬁbK’
(2.17)
for some RLy, Rby € A
Definition 2.6. We refer R%]K, ﬁ%}K' respectively, as the super Riemann curvatures of the left
and right tangent bundles of the noncommutative super surface X.
Lemma 2.2. The following equalities holds:
R%]K — ax,(r%K) _ (_1)|Bx1\laxf\ax,(r§l<) + (_1)|axl‘(‘ax]|+|axK|+‘axM|)r%{< % F%M
_ (_1)\3x1\(|axkl+|3xml)r% % F%M,
ﬁ%}[( = T%M " f% _ (_1)\ax1|\axl|f%M * f% + (_1)|ax1\|axL\axl (f%K)
— (=1)Pyl(0ul+ouhg (TE).

Proposition 2.5. The super Riemann curvatures of the left and right tangent bundles coincide
in the sense that RI]KL = —(—1)(‘axl|+|ax1‘)‘axK‘RULK.

PT’OOf. Define RI]KL = R%IK * IML and ﬁI]KL = 9LM * ﬁ%lK Then,

RykL = <(vaxlvax] - (_1)|8x1\lax/\vax1vaxl)axK,ax,>g
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- <vax, vax,axK,axL>g

= axl <Vaxfaxl</ axL>g - (_1)‘axl|(|axl‘+‘axﬂ) <Vax]axl</ ﬁaxlaxL >g - (_1)|axl‘|ax]|

— (—)Palal (v, vax,axK,axL>g

3y <Vax18xx,8xL> 4 (1) Pl (1), 100, 1+, <Vax,axxﬁax,8xL>g-

8
(2.18)

By Proposition 2.2 and
<Vaxlaxl<, ﬁax,axL> =0, <ax1<, ﬁax,axL> — (—1)|axKHaxj| <ax1<, 63){1 ﬁaxlaxL> ,
8 8 8
then we have

Ry = (—1) 100,11+, (1) Ry l10.x] <axk,6a Vo a>
X x g
— (—1) Pkl 12 ] <3xr<ﬁaxz 6axfaxL>g

= (1) Pl DK R
(2.19)

Let
R%]K;P = axP(R%]K) + (_1)|a"P‘(‘a"l|+|ax]‘+|a"KH|axsDR?}K * rszs - r?)l * Ré]K
— (_1)\8le(|3xs\+|3x1\)1*15)] s Rbs e — (=1)(0ut [F0 D0kl +10,s DTS, 4 R%]s'
Then we get the following theorem

Theorem 2.1. When g = (—1)1%/1%u g, the super Riemann curvatures of the left and right
tangent bundles of the noncommutative super surface X satisfies the first Bianchi identity and
the second Bianchi identity

(_1)|a*’”a"K|le]K + (_1)|3x1\|3x1\R%K1 + (_1)|9X/II9XK|RIL<U =0, (2.20)

(—1)‘ax1’”ax7|R§]K;p + (_1)|3x1\|311\RIL)IK;] + (_1)\3xpl\3x1|R1pr;I —0. (2.21)
Proof. Note
Bi(9,1,0,7,0,x) := R%]K + (_1)|ax1\(\3X1|+|3,CK|)R%K1 + (—1)(‘3’“’|+|a"")‘axK‘RIL<U-
(2.22)

By gy = (—1)|axl‘|axllg]1, then T(axl,ax]) = 0, that is Vaxlax] = (—1>‘ax1||aX]|Vaxlaxl. So
using the definition of the Riemann curvature tensor, then

Bi(9,1,9,1,0.x)

= [Va,, Vo, 10y + (=1) 1 CaFRaD 7, | 75 Jo,r + (—1) 1% 0000w, w75 o,
= Vs, Vo, du — (—1)%P01vy 5 0+ (=)l 101H04D 17, 9 40,

— (1)W1 8,9,] + (—1) P TRV, V5 9, — (—1)P 19KV, V0]
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= Vo, [Va, 0k — (=1)%1°xIv, 0] — (=1)P1Pal7, [V 9k — (—1)20 1K1V 9]
— (1) Pul+ DRI, [V, 8, — (~1)PalPalv, 3]
= 0.

Therefore, the first Bianchi identity holds. To prove the second Bianchi identity, let oY =
d,xg"", then by [Vaxll Vax,]axx = R%]KBXL, we have

=, L
RIL]K = <[Vaxl,Vax1]axk,ax >g'

By Proposition 2.2, we have

Loy _ Syl
9yr (Rjx) =0y <<[Vax,fvax,]axl<,a >g>
= (¥3,(1%3,. %3, 10),5"),

+ (= 1) (@412, 412D <[Vax,,Vax,]8xx,€axp5"L> .

8
(2.23)
Obviously,
(_1)|axp|axf|{ =3 (REy) + (V. [V, vax,]axK),5XL>g
+ ()PP (9,95 10, 99, =0
(2.24)
Replace (P, I, J) with (], P, I), we get
(—1)Pal, { ~ 3 (Rbix) + (Vo ([Va, vaxl]axx),ng>g
+ (APl P o) (195, 9 e, T, 3 } ~o.
(2.25)
Similarly, replace (P, I, ]) with (I, ], P), we get
(_1)|af|ax1|{ — 0 (Rbp) + <vax1([vax,,vaxp]axk),gx%
(1)l 42,0+, <[VaxwVaxp]axm%ﬁx% } —o
(2.26)

By adding the above three equations (2.24), (2.25) and (2.26) together, and by further
computations. Then the second Bianchi identity can be proved. H
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First by [1], we get the the formula of the Ricci curvature tensor Ric and scale curvature
tensor S in noncommutative super surface.

. 1
Ric(@y1,3y0) = 1(—1) 1Pt R ) 2 [RE -+ (~1)0 sl R )
I
(2.27)

g .— E(_l)(|axl\+1)\aX;|RH g,
1J
(2.28)

where Rj; denotes the Ricci curvature tensor Ric(d,,9,1).

3. EXERCICES

In this section, we consider in some detail four concrete examples of noncommutative
super surfaces.

Exercice 1. Let R2(t1, t5) be double warped, and h and f are functions of t1 and t; respectively,
where f(t2) # 0, h(t1) # 0,and fi(h);_o =1, fa(h);_, = 1.
Then we define the metric g on R,Zl(tl, t)

gu=fi(h)f(ta), gu2=28n=0, gn=fa(h)h(t).

Then the inverse metric is given by

1 1
11 12 _ 21 22
= — P g = g = 0, g = — .
1(h)f(t2) 2(M)h(t)
The computations are quite lengthy, thus we only record the results here. For the Christoffel
symbols, by (2.3), we have

=0 Tp= —lfl(ﬁ) af(tz), I = 1fl(ﬁ) ofta).

2 at2 2 atZ ’
1 . — oh(t 1. — of(t 1 . — oh(t
I = Efz(h) G(tll)' I = Efl(h) J;(t;), Iy = Efz(h) a(tll);
1 oh(t
Iy = —Efz(h) a(tll , Top=0

By (2.3), for R?, the following equalities holds

1"%1:0, 1“%1: lfl(ﬁ)f’(tz)* 1 1 1f(k),

2 (k) n(h) 272 (k)
o _ W) o _1f'() o 1H(h)
27 on(t)” "2 T2 (k) H T 2h(h)’

1f(h 1
1—%2 = —*fZ(f)h/(t ) X 1—%2 =0.

2h(m) - fk)
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We now find the super curvature tensors with respect to h,

C1H(h) () ZONES
Rl = 1 * i~ &) * e * iy
Rl — —3f"(t2)f(t2) + 3f'(12)? N 1f22:) ( ()2

1
o 2 |G ) * )
R — LW (t)h(h) — 3 (h)? +1f1(ﬁ) [zf”(fz)f(fZ)—f'(fz)z* 1 ]
2172 h(ty)? 2 f(h) 2f(t2) h(t) ]’

2 ; fll) 1 1f(t) (k)
R = g0+ 5 iy ~ T

By (2.27), we can also compute the Ricci curvature tensor,

Re _ _LH'(B)R(H) — 3 (t)? N 1£(h) [Zf”(tz)f(tz —f(t)?) 1 ] _
T2 h(h)? 2 fo(h) 2f (k2) n(t))’

e AR () L W) 1 1, fl) 1
M‘M“zhwbf@fﬁﬂmwdﬁﬂm‘ﬁm“ﬂé*ww
+me*'<q

If(e) " hn))

() f(R) +f () 1) [(1H (), , 1
R = ==y +2ﬁw)K2Mh) hmo f@J'

By (2.28), we get the scalar curvature

S:_{1h”(t1)h(t1)—§h’(f1)2+1f1(h) [2f“(tz>f(tz—f’(tz)2)* 1 ]}* 1
2 h(t)? 2 f(h) 2f(t2) W) ) A

Lo f) 1 1) K, 1
+{J”“ k) “R(E) 4 f(n) mm} Hh(h)

Exercice 2. Let f(tp) > 0, h(t1) > 0, and the metric g satisfies the following equalities
g1 =f(t), g12=0, g1 =1, g =h(t).

Then the inverse metric is given by
11 1 12 21 1 1 n_ 1

prmn — f— O, = ——FX %k 7 — TN .

(I N OV (G BN T
Then the computations can be carried out in much the same way as in the case of Example 1, and
by (2.3) we mainly get

_ _1of(t) _10f(h).
' =0, Thip= 2o I = 2 o
1oh(t) . _19f(k) [~ 10h(t)
7 atl ’ 211 2 atz 7 212 2 atl ’

122 =
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o, — _ Loh(t)
21= " 5
By (2.3), the following equalities holds

rh =00 s ey Th= 2 ) iy Th= 2y
wo_ L HE), 1 1f(m) o 1f() 1R 1
*T 2w S T2 ) 2
. W) 1 1 .

2= %) 2T 2 (1) = @,

We now find the super curvature tensors with respect to h,

Rl _ W()P=2h(t)h" () 1 (k) —2f"(R)f() 1 1
B 4h(t)? f(t2) 4f(t2)? h(t1) ~ f(t2)
+1f/(t2) L L fk) 1K) fk) 1] +1h/(t1) G
4 h(t1)  f(t2)> 4 h(t) f(ta) h(t) f(t)  4h(t) f(t)

1 1 1 Kn) 1 1, . KHt) 1

) |
) Fi 4 ) )
1 1H(h)  f(t) | f(t)*—2f(t2)f"(t2)

+ ) s ey
)
2t 4f (t2)?

Rl _ W(#)* = 2h(t)h" (1 § §
2 4h(ty) f(t) 4 h(t1)  f(t)
— 1h,(lf ) * fit2) * ! * L _1r(n) * L * UAGY * L

VU f() Ch(h) f() 4k(h)  f(k) h(h) (k)
+} f’(tz)*h’(tl)* 1
4 f(k) h(h) f(t2)’
R2 _ 2h(t)h"(t) — h'(tl)z+2f(tz)f”(fZ)—J"(f2)2>k 1 1K (t)
1217 4h(t1) 4f(t) h(t;) ' 4 h(t)
L) 1 () % 1 1 W(t)

f(fz) h(t1) h(
_1 *f/(fz)* 1 _lh/(h)*f’(tz UG
Rl = g0 S * iy~ a6 * i * iy

VIO,
4 h(t)?"
By (2.27), we can also compute the Ricci curvature tensor,

Ry = 2R (1) W(t)?  2f(k)f"(t) = f'(t)*> 1 1K(t)

4h(t)? 4f(f2) “hh) 4 h(h)
* fit) * ! ! '(fp) * L * 1 * Pit).
f(t2) h(t1) 4 h(t1) ~ f(t2)  h(t1)’
Rir— Ror = 1 W(t)?=2h(t)h"(t) 1 fl()?=2f"()f(t) 1 1
2o 4h(t)? " () 4f(t2)? h(t1) ~ f(t2)

— %ll’l/(tl) *

fll) 1 +1h’ ), flk) 1 _f)? 1 +1h'(f1)2.
flt) “h(t) T Anh)  f(l) k() f(k)  h(h) 4 h(h)?
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Ry =

W(t)? = 2h(t)h"(t) 1 1K(t) f/(fz)+f/(f2)2—2f(f2)f”(t2>
4h(t1) f(ta) 4 h(t) f(t)? 4f(t2)?
() 1 1 1K

(t2 h() f(t2) 4 h(k

L1, fllk) W) 1

4 f(ta)  h(t1) f(t)

By (2.28), we get the scalar curvature

o { B KN 2 S ff LK) )

) 1 () 1
) f(t)  h(t1)  f(t2)

_ lh/(h) J}/

4h(t;)? 4f (1) “h(t)  4n(h) " flk)  h(h)
1 1 H(H) 1[h’(t1)2—2h(t1)h (), 1

1o * * Z
T2y h<t1>} f(tz)+{2 mne )
(

SR ) L L L () RUICACI
if (1) W(h) " flb) 4 f(t2) h<> ih(t) " flk) FH(n)

Cf(R? 1 1H(h) 1 W (t)2 —2h(t)R" (1) 1
Ft) "t 3 <>”( h(t) f(z>+ &) " F()
L) f) | (0226 0) 1y F) L

inn) “flb)2 if () i flt) "t " )
CIR(), 1 W), 11 f(e) K(h) } 1

4 h(t) f(t) h(t) f() 4 f(t2) h(t1) f(t2)) h(t)

Exercice 3. Another simple example is described by A = (a?l a? aaf;

even and asymmetry, then g(a%, %) # 0. And the metric g satisfies

), and let the metric g is

gu=p1(h)fi(t), §2=0, gi3=2¢¢ gun=0;
g0 =¢(h)fa(t1), §23=0, g =¢ gn=0, g33=1,

where fl(tl) > O, fz(tl) > 0, qbl (E)H:O = 1, and (PZ(E)EZO =1.
Then the inverse metric is given by

1 1 12 13 1 21
= = , §8°=0, ¢9=—-el—+——, ¢ =0
¢1(h) f1(t1) ¢1(h) f1(t1)
» 1 23 31 1 32 33
= — , =0, =—&—=—, =0, =1
$2(h) f2(t1) g $ ¢1(h) f1(t) § g
Then by (2.3), we have

I = %¢1(E)f1'(t1)/ [ = %¢2(E)fz/(t1)r laz = ¢
I = %¢2(E)le(f1), Iy = —%¢2(E)fz/(f1), I313 =¢, T331 =0,

where T'rjx = 0 for else (1, ], K).
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By (2.3), the following equalities holds

/

1f] 1 1
b= 2fy Th0 M= —gefc thoo =50

13, =0, Tl = —¢¢ t)fl(l) r2,=0, Th=¢
_ _1f(h) _ __1¢o(h) f5(t) _
R Y R P I
¢2(h) f5(t1) > 11 2 _ .
5 C (h)fi( h) [5=T5=03=0, T} = 2§¢1(E)m' I3 =0

3 3 1 2 3
=g [p=05=05=03=05=05=0
We now find nonzero components of the super curvature tensors with respect to h,

Rl _ _Lga(h) 2ff (t1)f1(t1)—fz’(t1)f1’(t1)+1¢2(E) f3(t)?

2774 () filtr)? 49, (h) filt) (1)’
R2 Zf (tl)fZ(tl)—fz,(tl)z _lfl( l)fﬁ(tl) R2. — _1 25 ) (t) .
2 4f2(t1)? 4fih)fa(t) T ¢1(h )fl( 1) fa(t1)’
1 ¢a(h) f(t) | 1 . ¢o(h) 2ef3(t1) — f3(t)? _ 1 fi(t)
Rize = 3% puli) i) 2% (i) ?1<t1>fz<51> Rl =290 e
3z 1 1 1 _ o L1 s 1 3 _ 2.
o i) T Ay 4>1(h)f() Rig1 =€

R2 — —*82 (7) fZl(tl) =) 2 782 1 f (tl) R — _2¢ 2 1) 1 ,
231 §¢1(h)2 A2 32T ¢ o (12 Fi(t) fa(tr)’ 331 = o () fi(hr)
where RUK =0, foranyelse (I,],K,L).
By (2.27), we can also compute asymptotic expansions of the Ricci curvature tensot,
f1(t)? 1AMAH(H) | o
Ry = - , Rip=0;
" aRmP 2 ) AR) | AAE) T T

_ 2 ~ fill) 1 _ )
AR <h>< Ry A ) = R

_1¢o(h) 2f5 () fi(t) — f5(1) fi(t1) 1452@

4¢n(h) fi(t)? ") itk

By (2.28), we get the scalar curvature

[ f5(t)? n 1 fi(t)f2(t)

4f2(t)? =2f7 (k) f2(t1) 4 fi(t) fa(tr)

n [_1 1 2f(t)fAi(t) — (k) fi(k)
4¢1(h) fi(t)?

S =
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Exercice 4. The last example is described by A = (-2 9 a? , aag) and let the metric g is even and

asymmetry, then g(x, aT;) # 0. And the metric g satisfies

g1 =f(ta), g12=0, g3=¢C, g1 =0;
g ="h(t1), §3=0, g1=0, g32=0, gz=1

Then the inverse metric is given by

1 1
gl = ¢2=0, ¢B=—¢f 21 _

f(t2)’ 8 f(t2)’ ’
22 1 23 33
— s - OI - 0 - 0 =1
& =y 8 gh=0, 87=0 g

Then by (2.3), we have
1, 1, 1,
T2 = —Qf (t2), T = Ef (t2), Tiop = Eh (t1), Tz =¢

1 1 1
I = Ef/(tz), I'yp = Eh/(tl)/ Iy = _Eh/(tl)/ I'313 =

where T'rjx = 0 for else (1, ], K).
By (2.3), the following equalities holds

1 1 1£/(t) 11 (1)
1 = 2 = — — / _— 3 = 1 = - 2 = - M
Fll =0, rll - 2f (tZ) * h(tl)’ Fll 0, r12 2 f( )/ r12 2 ]’l(tl) 7

I, = ;8 ]}/((tzz)), I, =T1=0, I3, =¢ Ty = ;j;(( 2)), 5= ;};ll((:ll)),
I3 = ;5 J}((t;))/ I = —%h’(tl) * f(ltz)' [5,=0, T3 = *Egh/( 1) * f(ltz);

[ =T33 =03 =03 =T} =03 =03 =T, =03 =0%=0.

We now find the super curvature tensors with respect to h,

L _1H(h) | f(k) W) 1 Rl — W(t)*=20"(t)h(t) 1

b= ) * i~ ) e iy (h) * )
PR 2f () (1) o W) W (0 | 2f ) () (02 | 1

4f(t2)? oo 4h(ty)? 4f(t2) h(t1)’
Ll f) . 1 1f(h Wit Fl(t) 1.f(t)
R122 h(tl)* %

+

)
* )’ Riy = —

°0(h) " fl) 2% f(b)
/ 2
(eh’/( )+h/(t1)—;shh((ttll)) >*f(i2)

" / 2 / /
f (t2>j;<(tfz))2 f <t2) ’ R?en = 182, R%sz = 18f (t2> R%31 411 fj;(<tt22))

4" f(k)’
1
R232 = —Egh/(tl) *

+ 1ngl(tZ) * h(t1) f(tZ)’ R%ZZ - %

+ €g
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where Ry = 0, for any else (I, ], K, L).
By (2.27), we can also compute the Ricci curvature tensor,

o Wk (0P 2 () )R 1 1, o 1K()
= 4h(t )2 4f () h(t) 277 TR T 8h(th)  ft)
L, W) 11, f) 1 1f(n) K(h) 1) .
8/ ) T Fe " Y e Ry T8 A ) ) (o0
CWRPR - (h(h) 1 F(R—2f () 1, 1
Ro= =iy T T armE i ) ry

Ro3 = Raz=o.

By (2.28), we get the scalar curvature

. [_ W()h(h) — ()P 2f"(E)f()f ()P 1 1 2} 1
P

ah(t)2 i) h) 25T i) f(B)

[h/(tl)z_zh//(tl)h(tl) . 1 +f/(t2)2—2f//(t2)f(t2) 18h/(t1)* 1

1} Lo
f(ta)]  h(t)

4h(t1) f(t2) 4f (t2)? 4
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