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LEFT-INVARIANT RICCI COLLINEATIONS ASSOCIATED TO CANONICAL
CONNECTIONS ON THREE-DIMENSIONAL LORENTZIAN LIE GROUPS

YU TAO

ABSTRACT. In this paper, we classify Left-invariant Ricci collineations associated to canon-
ical connections and Kobayashi-Nomizu connections on three-dimensional Lorentzian
Lie groups.

1. INTRODUCTION AND MOTIVATIONS

The concept of symmetry was firstly proposed by ancient Greek and since the earliest
days of natural philosophy, symmetry has furnished insight into the laws of physics and
the nature of the cosmos. The two outstanding theoretical achievements of the 20th cen-
tury, relativity and quantum mechanics, involve notions of symmetry in a fundamental
way, being been studied in depth because of their interest from both a mathematical and
a physical viewpoint.For example, they simplify Einstein equations and provide a clas-
sification of the spacetimes according to the structure of the corresponding Lie algebra,
which contains Ricci and curvature collineations, among others(see [3],[61,[7],[8],[9]).

In this article we shall continue to concentrate on Ricci collineations which is, LQRNiCZ =0.
In [10], Michael and Pantelis had done two purposes, the first of which was to present a
useful method, which reduced the computation of the Ricci collineations and the Matter
collineations of a given metric to the computation of Killing vectors, the second of which
was to apply this method and determine all hypersurface orthogonal locally rotation-
ally symmetric spacetime metrics, which admit proper Matter collineations and proper
Ricci collineations. In[11], the mathematical concept of left-invariant Ricci collineation-
sis proposed to denote that Ricci tensors have a value of zero with a left-invariant Ricci
collineation ¢, having the mathematical meaning of a differential homomorphism of
preserving Ricci tensors. The purpose of [11] is to determine all left-invariant Ricci
collineations on three-dimensional Lie groups. Since the connection and Ricci tensor
are built from the metric tensor, it must inherit its symmetries where any homothetic
vector field is a Ricci collineation. In [12], Wang computed canonical connections and
Kobayashi-Nomizu connections and their curvature on three-dimensional Lorentzian
Lie groups with a special product structure.
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In this paper, our motivation is to classify all left-invariant Ricci collineations associ-
ated to canonical connections and Kobayashi-Nomizu connections on three-dimensional
Lorentzian Lie group. More precisely, the concept of Ricci collineation was extended to
canonical connection and Kobayashi-Nomizu connection on three-deimensional Lorentzian
Lie group equiped with a product structure. We classify all left-invariant Ricci collineations
on seven different three-dimensional Lie groups.

In section 2, we recall the definition of the canonical connection and the Kobayashi-
Nomizu connection on three-dimensional Lorentzian Lie group with a product structure
and their corresponding symmetric tensors and the definition of Ricci collineation with
some remarks. In section 3, we classify all left-invariant Ricci collineations associated

to canonical connections and Kobayashi-Nomizu connections on three-dimensional uni-
modular Lorentzian Lie groups. In section 4, we classify all left-invariant Ricci collineations
associated to canonical connections and Kobayashi-Nomizu connections on three-dimensional
non-unimodular Lorentzian Lie groups.

2. PRELIMINARIES

2.1 The symmetric tensors associated to cannonical connection and Kobayashi-Nomizu
connection
In this section,we recall the definition of the canonical connection and the Kobayashi-
Nomizu connection on three-dimensional Lorentzian Lie group with a product structure
and their corresponging symmetric tensors.
Let V be the Levi-Civita connection of G; and R its curvature tensor, taken with the
convention
R(X,Y)Z =VxVyZ —VyVxZ =V x y|Z.

The Ricci tensor of (Gj, g) is defined by

Ric(X,Y) = —¢(R(X,e1)Y,e1) —g(R(X,e2)Y,e2) + g(R(X,e3)Y, e3),

where {e1, e, e3} is a pseudo-orthonormal basis, with ez timelike and the Ricci operator
Ric is given by
Ric(X,Y) = g(Ric(X),Y).
A product structure | on G; was defined by
Jer =e1, Jea = e, Jes = —e3,
then ]2 = id and g(Je;, Je;) = g(ej, €;).
By [5], the canonical connection and the Kobayashi-Nomizu connection as follows:

1
VY = VY — E(vxj)nf,

1
VXY = V&Y = J(VyDIX = (V) X).
Then their curvature was given by

RU(X,Y)Z = V4V Z - VIVhZ -V, Z,

RY(X,Y)Z = VXVYZ = VyVXZ = Vix v Z.
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Left-invariant Ricci collineations associated to canonical connections on three-dimensional Lorentzian Lie groups

The Ricci tensors of (G, g, ) associated to the canonical connection and the Kobayashi-
Nomizu connection are defined by

Ric’(X,Y) = —¢(R%(X,e1)Y,e1) — g(R%(X,e2)Y, e2) + g(R%(X,e3)Y, e3),
Ricl(X,Y) = —g(RY(X,e1)Y,e1) — g(RY(X,e2)Y, e2) + g(R}(X,e3)Y, e3).
The Ricci operators Ric? and Ric! is given by
Ric’(X,Y) = g(Ric°(X),Y), Ric'(X,Y) = g(Ric'(X),Y).
Let

Ric’(X,Y) + Ric*(Y, X)
2

Ric}(X,Y) + Ric*(Y, X)
2 7

Ric (X, Y) = , Ric (X,Y) =

and

Ric'(X,Y) = g(Ric'(X),Y), Ric (X,Y) = g(Ric' (X),Y).

0 1
All the analysis so far tells us that Ric  and Ric are symmetric tensors.

Considering some different three-dimensional Lorentzian Lie groups, we have specific
classification about three-dimensional Lorentzian Lie groups in [2, 4](see Theorem 2.1
and Theorem 2.2 in [1]). We shall denote the connected three-dimensional unimodular
Lie groups equipped with a left-invariant Lorentzian metric ¢ by {G;}i—1,... 4 and having
a corresponding Lie algebra {g}i—1,... 4.

2.2 Three-dimensional unimodular Lorentzian Lie groups

Theorem 2.1. Assume (G, g, |) was a three-dimensional unimodular Lorentzian Lie group equipped
with a left-invariant Lorentzian metric g and a product structure | ,and had a Lie algebra g be-
ing one of the following:

81
le1,e2] = wep — Bes, [e1,e3] = —wer — Pea, [e, €3] = Ber + aer + ez, a # 0.
8-
le1,e2] = yeo — Pes, [e1,e3] = —Pea — yes, [e2, €3] = aep, v # 0.
83
le1,e2] = —yes, [e1,e3] = —Per, [ez,e3) = ey, a # 0.
84

le1,e2] = —ex+ (2 — Bles,n =1 or 1= —1, [e1,e3] = —Pex +e3, [ez,e3] = ey, .

Next we shall denote the connected three-dimensional non-unimodular Lie groups equipped
with a left-invariant Lorentzian metric ¢ by {G;}i—5¢7 and having a corresponding Lie
algebra {g}i—s567-

2.3 Three-dimensional non-unimodular Lorentzian Lie groups
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Theorem 2.2. Assume (G, g, ]) was a three-dimensional non-unimodular Lorentzian Lie group,equipped
with a left-invariant Lorentzian metric g and a product structure | ,and had a Lie algebra g be-
ing one of the following:

85+

le1,e2] =0, [e1,e3] = wey + Bea, [e2,e3] = ve1+dex, a+6 #0 ,ay+ Bd =0.
86+

le1,e2] = wep + Bes, [e1,e3] = yea + des, [ez,e3] =0, a+5#0 ,ay —Bé = 0.
87+

le1,e2] = —ae; — Pex — Pes, [e1,e3] = aer + Pex + Pes, [e2, €3] = ye1 +dex+desz, a+6 #0 ,ay = 0.

Definition 2.1. A Lorentzian Lie group of {G; }i—1,... 7 admits left-Ricci collineations if and only
if it satisfies:
LeRic =0, 1)

fori =1,2, where ¢ is a element of three-dimensional unimodular Lie group and § = Aqeq +
Arey + Azes ,and {e1,ex,e3} is a pseudo-orthonormal basis with es timelike. Let

LeRic (X, Y) = &(Ric (X, Y) — Ric ([2,X], Y) - Ric (X, ¢, Y)), (22)
and
LeRic (X, Y) = &(Ric (X, Y) — Ric ([, X], Y) - Ric (X, ¢, Y)), (23)

50 -1 .
Because Ric and Ric are symmetric tensors,we have
—~ ] —~ —~ i —~ i
LCRIC (61,62) = LéRIC (62, 61), LQRIC (81,63) = LgRlC (63, 81),
Remark 2.3. V¢ is spanned by Ricci collineations.
3. LEFT-INVARIANT RICCI COLLINEATIONS ASSOCIATED TO CANONICAL

CONNECTIONS AND KOBAYASHI-NOMIZU CONNECTIONS ON THREE-DIMENSIONAL
UNIMODULAR LORENTZIAN LIE GROUPS

3.1 Left-invariant Ricci collineation of G,

By (2.25) in [12], we have

Lemma 3.1. Ricci symmetric tensors of (Gi,g, J) associated to canonical connection are given

by
2
0 e1 - <‘X2 + %) 0 o oiTﬁ e1
Ric [ e | = 0 _ (ch + 5;) _%2 e |- (3.1)
€3 2 €3
? s o
By (2.2) and (3.1), we have
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Left-invariant Ricci collineations associated to canonical connections on three-dimensional Lorentzian Lie groups

Lemma 3.2. For Gy, the following equalities hold

__ __ 1 __
LelRiCO(El,EZ) = a(a® + Zﬁz), LglRiC0(€1,€3) = —a(a®+ Eﬁz), Le]RiCO(Ez, er) = a®B,
(3.2)

—~ 0 5 1 —~ 0 3 —~0 3
L, Ric (ep,e3) = —,8(1042 + 5,32), L, Ric (e3,e3) = Eofﬁ, Le,Ric (e, e1) = —2a(a® + zﬁz)

—~— 0 1 —~— 0 1 —~— 0 1
Le,Ric (e1,e2) = —szzﬁ, Lc,Ric (e1,e3) = ﬁ(ocz + 552) ,Le,Ric (ez,63) = Eoc(ocz + [52),

—~— 0 1 —~— 0 1 —~— 0 1
Le,Ric (e3,e3) = —uc(ocz + 5132) ,Le,Ric (e1,61) = 2a(042 + 5,32), Le,Ric (e1,e2) = Zazﬁ

—~— 0 3 —~ 0 —~— 0 1 1
Le,Ric (e1,e3) = —szﬁ,LQRm (e2,€2) = —a(a® + B*) ,Le;Ric (e2,63) = E“(“z + 552>~

By (3.2) and definition 2.1, we have
If the unimodular Lorentzian Lie group (Gy, g, J) admits left-invariant Ricci collineations

associated to the canonical connection V?, then Lgliivc?j =0,for i =1,2,3 and | =
1,2,3, so

—a(a?+ 3B%)As +a(a® + 1p*)A3 =0,

a(a® + 3p%)A — 3a?BAy + 1a?BAs =0,

—a(a®+ 1A + B(a® + 382 A2 — 3a?BA5 =0,

a?BA1 — a(a® + B?)A3 =0,

—B(2a2 + 1A + Ja(a? 4+ BA)As + da(a® + 1B%)A3 =0,
2a2BA —a(a® + 1B%)A; = 0.

By solving (3.3), we get

(3.3)

Theorem 3.1. the unimodular Lorentzian Lie group (G, g, |) does not admit left-invariant Ricci
collineations associated to the canonical connection V° .

Proof. We analyze each one of these factors by separate. Because « # 0, then we have
— (a2 + 3N+ (a2 + 1B2)A3 =0,

(% + 3B*)A1 — JaPAs + JaPAr =0,

—a(a®+ 1) A1 + B(a® + 3B A2 — 3a%BA5 =0,

afr — (&> + p*)A3 =0,

—B(50% + 5B A1 + ya(a? + B As — za(a® + 3B%)As =0,
%Déﬁ)tl — (062 + %,32)/\2 =0.

Now if B =0, wehave Ay = A, = A3 =0. If B # 0, naturelly we have
substitute these into Eq.(3.4) to get

(3.4)

A3 A,

(8% 4+ 3B (202 + ) — (o + S5 (@ + B =0,
(402 +3B%) (202 + B2) (a2 + B2) — a2B(4a% +-58%)] A1 =0
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Solving these, we have Ay = Ay = A3 = 0,ap # 0.
In summary, the unimodular Lorentzian Lie group (Gy, g, J) does not admit left-invariant
Ricci collineations associated to the canonical connection V.

By (2.23) in [12], we have

Lemma 3.3. Ricci symmetric tensors of (Gy,g,]) associated to Kobayasha-Nomizu connection
are given by

[ @ —(a*+ %) ap & e
Ric e = (x‘B — (0{2 + ﬁz) —“7 e . (3.5)
2
e -% 5 0 €
By (2.3) and (3.5), we have

Lemma 3.4. For Gy, the following equalities hold

__ 1 __ __
LelRic1 (e1,e0) = a(a® + EﬁZ)’ LelRiC1(€1,€3) = —a3 ,LelRic1 (e2,02) = —a®B, (3.6)

—~ 1 1 —~ 1 —~ 1 1
L, Ric (e2,e3) = ,B(Eocz — ,32) ,Le,Ric (e3,e3) =0, Le,Ric (e1,61) = —2&(042 + 552),

LoRic (e1,62) = 506, LoRic (e1,65) = 2, LoRic (ez,e3) = 50,

1 — 1 — 1 1
Lc,Ric (e3, e3) = oc(ﬂz — ocz) ,Le,Ric (e1,61) = 243, L,Ric (e1,e2) = —Etxzﬁ,

1 1 1 1
Le,Ric (e1,e3) =0, LeRic (ep,e2) = —a ,Le,Ric (e, e3) = Etx(oc2 - ﬁz)

By (3.6) and definition 2.1, we have

If the unimodular Lorentzian Lie group (G, g, J) admits left-invariant Ricci collineations

1
associated to the Kobayasha-Nomizu connection V! then LgRici]- =0,fori=1,23and j=
1,2,3, so

(—2a(a®+ 1B%)A + 20343 =0,

a(a® + %ﬁz))u + %042,8/\2 — %(xzﬁ/\g =0,
—063)\1 + ﬁ3)\2 = O,

02BA; + 3A3 = 0,

B(3a? — BHAL + 2aBAy + Ja(a? — B2)A5 =0,
a(p? —a?)Ay =0.

(3.7)

By solving (3.7), we get

Theorem 3.2. the unimodular Lorentzian Lie group (Gi,g,]) does not admit left-invariant
Ricci collineations associated to the Kobayashi-Nomizu connection V1 .
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Left-invariant Ricci collineations associated to canonical connections on three-dimensional Lorentzian Lie groups

Proof. We analyze each one of these factors by separate. Because & # 0, then we have

(—(a%+ 182N +a2A3 =0,

(0% + 3B%)A1 — aPAz — jaPrr =0,

—a3A + ,33)&2 =0,

BA1+ a3 =0,

B(3a% — BH)A + 3a3A; + Ja(a® — BF)A3 =0,
L (ﬁ — 062))L2 =0.

Now if B2 —a? = 0, wehave a = B or a+ B = 0, .If « = B ,naturelly we have
A1 = Ay = —Az,substitute these into Eq.(3.8), we get

(3.8)

1
—(ZDCZ + EﬁZ))\z = O,

Solving these, we have Ay = A, = A3 = 0.

If B2—a% # 0, then we have A, = 0. Similarly we put this into Eq.(3.8), we have
Ay = A3 =0.

In summary,the unimodular Lorentzian Lie group (Gy,g,J) doesnotadmit left-invariant
Ricci collineations associated to the Kobayashi-Nomizu connection V! .

3.2 Left-invariant Ricci collineation of G,

By (2.44) in [12], we have

Lemma 3.5. Ricci symmetric tensors of (Gy, g, ]) associated to canonical connection are given

by
o[ © B (’Yz + %> 0 0 e
Ric [ eo | = 0 (2 %ﬁ) &y _ By er |- (3.9)
e (4
3 0 77 B % 0 3

By (2.2) and (3.9), we have

Lemma 3.6. For Gy, the following equalities hold

L, Ric (e1,e3) = 0, Ly Ric (e1,e3) =0 , Lo, Ric (e3,02) = (292 + B2 + %«xﬁ), (3.10)
Lelliivco(ez,eg,) = —,B('y2 + %«xﬁ) ,Lelﬁi{co(egs, e3) = B(By — %a’y), LEZRAch(el,el) =0

LEZR\i/CO(el,Ez) = —y(v* + %ﬁz + Llitxﬁ), L321iiv(20(61,63) = %72(/3 + %DC) + %azﬁ ,LEZIi\i/CO(EL e3) =0,
Lo R (e5,03) = 0, LR (en, 1) = 0, LoRic” (e e2) = 292(B — 2) + 2ap(B — )

Le,Ric (e1,e3) = Eﬁ’y(ia —B), LeRic (e2,e2) =0 ,Lg,Ric (en,e3) = 0.

By (3.10) and definition 2.1, we have
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If the unimodular Lorentzian Lie group (G2, g, J) admits left-invariant Ricci collineations

associated to the canonical connection V?, then Lglii/cij =0,for i =1,2,3 and j =
1,2,3, so

(V¥ + 387+ jaB) A2 — [372(B — 3a) + 3aB(B— )] A3 =0,

[372(B+ 30) + 302B] A2 + 3By(3a — B)As =0,

v(29% + B+ 30B)A =0, (3.11)
B(v*+ 3aB)A1 =0,

B(By — 2ay)A =0

By solving (3.11), we get

Theorem 3.3. the unimodular Lorentzian Lie group (Ga, g, |) admits left-invariant Ricci collineations
associated to the canonical connection V° if and only if
(1)0( = ﬁ = 0,)\1 = /\2 = O,WRC = <€3>,

(2)0&750,[3750,' é g ‘#O/WIRC: <€2—%€3>.

Proof. We analyze each one of these factors by separate. Because y # 0, then we assume
that

3 P taptep

B=1v B) +ap(a—p),

C= 2B+ Jo) + a2, (312
D = By(z0 = p).

We get

‘é g‘:M%*Aﬁﬁ+uﬁmkﬂﬁﬁf+%%“4w%ﬂ4w¢+%%”4W¢

If « =0, we have

A B

C D ’ = 15272(.52 + ’)’2)‘
. A B

Note that if beta # 0 ,« = 0, we have cC D ’ # 0,then Ay = Ay = A3 =0.

A B
C D

Note that if = 0, then ’
Ifa #0,8 =0, we have

‘ =0, and we have A1 = A, = 0.

ay’Ay =0, (3.13)

73A2 + %0")’2)\3 = 01
’)/3)\1 =0.

Then we have A1 = A = A3 = 0.
Notice that when « # 0,8 # 0, we have A; = 0, whenever « = 2 or « # 2B. If

& #0,p#0, g‘#&mauM:Ang
. A B c
Andifa # 0,8 #0, c D= 0,then A3 = — A,

By (2.54) in [12], we have
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Left-invariant Ricci collineations associated to canonical connections on three-dimensional Lorentzian Lie groups

Lemma 3.7. Ricci symmetric tensors of (Go, g, ]) associated to Kobayasha-Nomizu connection

are given by
(@ — (B +7%) 0 0 e
Ric' [ e | = 0 —(P+ap) L || e |- (3.14)
€3 0 - % 0 €3

By (2.3) and (3.14), we have
Lemma 3.8. For Gy, the following equalities hold

LelRNic1 (e1,e2) =0, LelRNicl(el,eg) =0 ,LelRNic1 (e2,e2) = 29(7* + %(xﬁ), (3.15)
LelRNic1 (e2,63) = —B(Y* +ap) ,Lellgc1 (e3,e3) = —apy, LeZRNicl(el,el) =0

LeZﬁEI (er,e0) = —y(v* + %aﬁ), Lezlii/cl(el,@) = a(p*+ %'yz) ,Lezliivc1 (e2,e3) =0,
LgZRAi/Cl (e3,e3) =0 ,LEBRNicl(el,el) =0, LegRNjC1 (e1,e2) = v2(B — %oc)

1 1 —~ 1 S 1
Le,Ric (e1,e3) = szﬁ’y, Le,Ric (e2,e2) =0 ,Le,Ric (ep,e3) = 0.

By (3.15) and definition 2.1, we have

If the unimodular Lorentzian Lie group (G, g, J) is left-invariant Ricci collineations as-
sociated to Kobayashi-Nomizu connection V! then LgIzi/cl-lj =0,i=123and j=1,2,3,
SO

Y7+ 30B) A2 — (B — 3a)As =0,

a(B? +27°) A2 + 30P7As =0,

(v + 30B)A1 =0, (3.16)
+

By solving (3.16), we get

Theorem 3.4. the unimodular Lorentzian Lie group (G, g, ] ) is left-invariant Ricci collineations
associated to the Kobayashi-Nomizu connection V! if and only if

(1)06 = ‘B =A=A1 =0,Vrc =< e3 >,

(2)& =M= O,IB # 0,Vrec = <€2 -+ %63),

2 2 2 2
(B)A =0, #0,8#0,A5 = — LT 0 0 = 4B, Ve = (e — 5 Tes).

Proof. We analyze each one of these factors by separate. Because y # 0, then we have

(7 + 3ap) o = 7( — 3a)As =0,
a(B?+371)A2 + 30ByAs =0,

(7* + 30B)A1 =0,

B(7* +ap)h =0,

B(3a%* — A1 + 3a%Ay + Ja(a? — BH)A5 =0,
IXIB/\l =0.

(3.17)
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Notice that compare the third equation with the third fifth equation, A; must be equal
to 0.
If & =0, we get yAx — BAz = 0. At the same time,if § = 0, then A, = 0. And if
ﬁ 7é 0, then A3 = g)\z
If « #0, we get
(272 + ap)Az +v(a = 2B)As =0, (3.18)
(2[32 + ’)’2)/\2 + ByAz = 0. '

Now if B = 0, then simply we have A, = A3 = 0.
we assume that

A=29"+aB,

B =(a—2p),

C = 2‘52 + ,},2, (319)

D = By.
We get

A B
‘ C DI~ (“_4ﬁ)(ﬁ2+72)

Now if (« — 4B) (B> + 7*) # O,equal to « # 48, we have Ay = A3 = 0. If (o« — 4B) (B> +
7?) = 0, equal to & = 48, we have A3 = —2 ;;;7 Ap.

3.3 Left-invariant Ricci collineation of G3

By (2.64) in [12], we have

Lemma 3.9. Ricci symmetric tensors of (Gs, g, ]) associated to canonical connection are given

by
o[ @ —yas 0 0 e1
Ric (3 = 0 —Yas 0 (] . (3.20)
e3 0 0 0 e3
where
1 1 1
61125(“—5—7)/%225(“—54‘7)/ 5(0‘+ﬁ )
By (2.2) and (3.20), we have
Lemma 3.10. For G, the following equalities hold
LelRm e1,e2) =0, Lo Ric (61,63 0 ,Le,Ric (e, ez) —0, (3.21)

Ric (ey, e3 —Byas ,LelRIC es,e3) =0, L62R1c (e1,e1) =0

(e1,2) = ) =
“eres) = (
L62R1c (e1,e2) =0, Lelec (e1,e3)
(e3,e3) = ) =
(e1,e3) = ) =

ayas ,L62R1c (e2,e3) =0,

L, R1c (e1,€2) = (B —a)yas
0
63Ric: (e2,e3) = 0.

L. R1c es,e3) =0 , L, R1C (e1,e1

L33R1c e1,e3 0, e3R1C (e2, 2
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Left-invariant Ricci collineations associated to canonical connections on three-dimensional Lorentzian Lie groups

By (3.21) and definition 2.1, we have
If the unimodular Lorentzian Lie group (Gs, g, J) admits left-invariant Ricci collineations

associated to the canonical connection VY, then LgIzi/cij =0,i=123and j=1,2,3,s0

(B—a)yasAs =0,
ayasAy =0, (3.22)

ByasAr =0,
By solving (3.22), we get

Theorem 3.5. the unimodular Lorentzian Lie group (Gs, g, | ) admits left-invariant Ricci collineations
associated to the canonical connection VO if and only if

(1)7 =0, W]RC = <611621 63>/

(2)y #0,0 = p=0,Vge = (e1,2,¢3),

(3)“ = 0/’)’ 7& O/ﬁ 7& O/,B = ’}’/W]RC - <€1, €2, 63>/

(4)“ = 0/')’ 7’é O/ﬁ 7& O,ﬁ 7é ')//W]RC = <62>/

(5)y #0,a #0,7v =a+ B, Vre = (e1,€2,¢3),

(6)’}/ # 0, 7'é 0/7 7& u +;B/a = :BIWIRC = <€3>.

Proof. We analyze each one of these factors by separate. Because a3 = 3(a +  — ), then
we have

ayAy(a+B—7) =0, (3.23)
Bri(a+p—7) =0,

If y=0, wegetA; € R,Ax € R, A3 € R.

If v # 0, we get

{ 1B -a)(@+B—-7)A =0,

ahy(a+ B —7) =0, (3.24)
pM(a+p—)=0.

Now if « = 0,8 = 0 ,then simply we have A; € R,A; € R, A3 € R.

If « =0,B8+# 0, we have
(B—7)A3 =0,
3.25
{ (B—7)AM =0. (3.25)
then if B —y = 0, simply having A; € R,A; € R,A3 € R and if B — v # 0, simply
having A, = A3 = 0.
Now if &« # 0,, we have

{(ﬁw)f\s(ﬂéJrﬁv)O,

(@ +B—7)A2=0, (3.26)
Bla+ B —7)A = 0.
In this case, if y = « + , wehave A; € R,A; € R,A3 € R and if y # a + B, we have
Ay = 0. Furthermoreif § # 0, # B, weget Ay = A3 =0, andif B # 0,0 = B, we get
A1 =0 whereif f =0, then we have A3 = 0.

{ (B—a)(a+p—7)A3=0,

By (2.69) in [12], we have
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Lemma 3.11. Ricci symmetric tensors of (Gs, g, ]) associated to Kobayashi-Nomizu connection

are given by
P (a1 — az) 0 0 er
Ric e = 0 —’)/(EIQ + a3) 0 (] . (3.27)
e3 0 O 0 €3

By (2.3) and (3.27), we have

Lemma 3.12. For Gs, the following equalities hold

L.,Ric (e1,e2) = 0, Le,Ric (e1,e3) = 0 , Le,Ric (e2,e2) = 0, (3.28)

—~— 1 —~ 1
LelRIC er,e3) = —By(az +az) ,LeRic (e3,e3) =0, L,Ric (e1,e1) =0

L, R1c e3, €3 0,L. R1c (e1,e1) =0, Le31iivcl(el,ez) = By(az + a3) + ay(ay — az)

(e1,e2) =
(e2,e3)
L, R1c (e1,€2) =0, LEZIii/cl(el,eg,) =way(as —a) ,LEZRNicl(ez,eg,) =0,
(e3,e3) =
(e1,e35) = 0, Le,Ric (e2,e2) = 0, Le,Ric (e2, e3) = 0.

Le, RIC e1,63

By (3.28) and definition 2.1, we get

If the unimodular Lorentzian Lie group (Gs, g, J) admits left-invariant Ricci collineations

1
associated to the Kobayashi-Nomizu connection V! then LgRici]- =0,i=123and j=
1,2,3, so

ay(az —ay)Ay =0, (3.29)

{ [By(a2 +a3) + ay(a1 — a3)]As =0,
By(az +az)Ay = 0.
By solving (3.29), we get

Theorem 3.6. the unimodular Lorentzian Lie group (Gs, g, ]) is left-invariant Ricci collineations
associated to the Kobayashi-Nomizu connection V1 if and only if ( easy to prove )

(1)aBy =0, Vge = (e1,e2,€3),
(2)apy # 0, Vre = (e3).

3.4 Left-invariant Ricci collineation of G4

By (2.81) in [12], we have

Lemma 3.13. Ricci symmetric tensors of (Ga, g, J) associated to canonical connection are given
by

R (27 — B)bs — 1] 0 0 el
Ric ( e ) = ( 0 (27— B)bs —1] BB ) ( e ) . (3.30)
e3 0 bSZ_IS 0 e3
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where
b == + n—PBbr==—1nb= 2 +7
By (3.30) and (2.3)

Lemma 3.14. For Gy, the following equalities hold

Le,Ric (e1,¢2) = 0, Le,Ric (e1,¢3) = 0 LelRm (exe2) = G =p)(ts +p) =2 63D

Lo Ric' (e2,e5) = Bl(2y — B)bs — 1] , Le,Ric (e3,e3) = p(bs — B), LeRic (er,e1) =0,

LRic (e1,62) = (b5 + B) (36 — 1) + 1, LoRic (o1, e5) = al (B — 29)bs + 1]+ 5(6 — bs),
LRic' (63,¢5) = 0, L Ric (e1,01) = 0, LeRic (en,62) = (a — B)[(27 — B)bs — 1]+ 5 (b5~ B) ,

—~ 0 —~ 0 1 —~ 0 —~— 0
L¢,Ric (e2,e3) = 0,L,Ric (e1,e3) = Eﬁ(ﬁ —b3), LeRic (ep,e2) =0 ,Lg,Ric (ep,e3) = 0.

By (3.31) and definition 2.1, we have
If the unimodular Lorentzian Lie group (Gy, g, J) admits left-invariant Ricci collineations

—~— 0 . .
associated to the canonical connection V9, then LgRicij =0,for i =1,2,3 and | =
1,2,3, so

[(bs+ B) (3B — '7)+1JA2+{(w—f5>[(217—[3)b3—1]+%(b3—f5>}A3:0,
{af(B— 217)b3+1] 5(B—b3) A2+ 5B(B—b3)A3 =0,

(27— B)(bs+B) — ]Al =0, (3.32)
Bl(2n—p)bs —1] A =0,
p(bs — p)A1 = 0.

By solving (3.32), we get

Theorem 3.7. the unimodular Lorentzian Lie group (G, g,]) admits left-invariant Ricci
collineations associated to the canonical connection V° if and only if
(B=0n=1a=0A =A3 =0,Vgec = (e1),

2)B=0,7=1,(a+2)(a+ %) =0,A1 = A, =0, Vgc = {e3),
(3)‘3:0,17:—1,0(20,)\22/\3:0,\7]1{@:<€1>,
(4)p=0,1=—1(a —2)(x— 1) =0,A = Ay =0, Vge = (e3),
(G)B#0,1=1a=0,8=1,Vrc = (e1,2,¢3),
(6)p#0,1=1a=2,8=2Vgc = (e3),

DB £0n=10+2226| & P | =0Vee = (e~ e
8)B#0,n=—-1,a=0,=—1,VRrc = (e1,e2,€3),

9B #0,1=-1La=-2B=-2,Vgc = (e3),

(10)B #0,n = —1,a —2 # 2B, ‘ Ié g ‘:OIVRC: (e2 — Ses).
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Proof. We analyze each one of these factors by separate. Because b3 = sa+ B, if B =
0, then we have

(—bsn + 1)A2 + (2anbs + 5b3)As =0, (3.33)

(217b3 - 2)/\1 = 0,
(—20(1’]193 +a— %bg)/\z =0.

Now if 7 =1, we have
0(/\1 =0
—Sh+ (@®+ Ja+ 1Az =0, (3.34)
(a2 + 20+ 1A =0.

Furthermore if x = 0, thenwe get A\ = A3 = 0. Ifa #0 and (¢ +2)(a+ 1) #0, we
get A=A =A3=0. Ifa #0 and (064—2)(0(—{-%) =0, weget Ay =1, =0.

Although we assume 7 = —1, we still have
DC/\1 = 0,
M+ (=2 + 5a—1)A3 =0, (3.35)
((x2 — %CK + %))\2 =0.

Furthermore if & = 0, thenwe get A\, = A3 =0. If « #0 and (a —2)(a — ;) # 0, we
get A=Ay =A3=0. Ifa #0 and (« —2)(x — 1) =0, we get Ay =7, =0.
If B # 0, then we have

[(bs+B) (3 11] [(2’7 B)bs — 1] + 3(bs — B)}A3 =0,
{af(B - 2’7 bs + 1 + 3 ( bs }/\z + 3B(B—1b3)As =0,

(27 = B) (b3 +B) —2] A1 =0
[(2y = B)bs —1] A1 =10,

(b3 — ))\1 = 0.

(3.36)

~

Now if # =1, we have

(G +1+p) (8 —1) +1] la+ {(a—B) [2—B)(3+1) — 1] +3(3 +1-p)}As =0,
{a[(B=2)(5 + 1D +1+3(B— 5 -1} 2 +38(B—5 1A =0,

(2-B)(3 +1+ﬂ) 2] M =0,

(2—5)(%+1)—1]A1=0,

(3+1-B)A&=0.

(3.37)
We notice that if « +2 = 28, Eq.(3.37) would reduce to
{ (B=1)A2+(2-B)(B—1)*A3 =0,
(B—1)°A2 =0, (3.38)
(B—1)A =0.

Sowhen f =1, thenA; =0,A2 € R,A3 € R. When # 1,8 #2, then A = Ay = A3 =
0. When B#1,=2, thenA; = A, =0,A3 € R.
Butif « +2 # 2B, then we have A; = 0.
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We assume that

A=[(5+1+B)(3—1) +1],
B:{( _ﬁ)[(z_ﬁ)(%+l)_l]+%%+1_ﬁ)}/ (3‘39)
C={al(B-2)(5+1)+1+3(B-5 -1},
D=3B(B—5-1)
We get
‘ ‘é ;]_-3) ‘ = 4a*B? — 16a*B + 16a* — 403 B% + 3243 8% — 684> + 400> — 1642p% + 730% B>~
(3.40)
98a?p + 41a* — 2008 + 60ap* — 60aB + 20a + 4B8* — 168° + 2487 — 168 + 4
Next if
' ’é g ’:0, (3.41)
we get A3 = —%Az.
We continue to assume that 7 = —1, we have
(G +1-B)GB+1) +1 A+ {(a—p) [(-2-B)(5 —1) —1] +3(5 —1-B)}As =0,
{a[(B+2)(5+1) =1+ 3(B— 5+ DA+ 38— 5 +1)As =0,
(~2— )5 ~1+8) ~2] 11 =0,
(—2-B)(5-1)~1] A1 =0,
(3 -1-p)A1=0.
(3.42)

We notice that if « = 2 428, Eq.(3.42) would reduce to

{ (B+1)°A2— (2+B)(B—1)*A3 =0,
(B+1)°A2 =0, (3.43)
(B+1)A; = 0.

Sowhen B = —1, then Ay = 0,A € R,A3 € R. When f # —1,8 # —2, then
AM=A=A3=0. When,B # —1,ﬁ = -2, thenA; = A, =0,A3 € R.

Butif « + 2 # 2B, then we have A1 = 0.

We assume that

A=[(5-1+p)GB+1) +1],
B={(a—p)[(-2-p)(5-1)-1] +3(5-1-B)}, (3.44)
C={a[(B+2)(5 -1 +1+3(B-5+1)},
D=3p(p—§+1)
We get
’é g‘:4zx4ﬁ2+16a4/3+16o¢4—4043/53—32“3/32—68043/3—40“3+16“253+73“2:32+

(3.45)
98a%B + 41a* — 20> — 60a B> — 60ap — 20a + 4B* + 168> 4 24B% 4+ 168 + 4
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Next if
' =0, (3.46)

we get A3 = —%/\2-

By (2.89) in [12], we have

Lemma 3.15. Ricci symmetric tensors of (Ga, g, ]) associated to Kobayashi-Nomizu connection
are given by

(@ —[1+ (B —21)(bs — b1)] 0 0 e
Ric <e2)( 0 —[1+ (B—27)(by + b3)] W) <e2).
es 0 ﬂ(+b3;blfﬂ 0 e3

(347)
By (3.47) and (2.3), we have
Lemma 3.16. For Gy, the following equalities hold
LglliTcl(el,ez) =0, LyRic (e1,5) =0, Lo Ric (e5,00) = —2 — a(B —27), (3.48)

—~ 1 —~ 1
L31R1c (e2,63) = [1 +a(B —21)] ,Le,Ric (e3,e3) = af, Lg,Ric (e1,e1) =0
—~ 1 1 —~ 1
L62R1c (e1,e2) =1+ uc(ﬁ 217), Le,Ric (e1,e3) = “[E + B(B—21)] ,Le,Ric (e2,e3) =0,
L32R1c (e3,e3) =0 ,L, R1c (e1,1) =0, Lesliivcl(el,ez) =p— %

__ 1 __ __
Le,Ric (e1,e3) = b, Lo,Ric (e2,2) = 0 , Le,Ric (e2, e3) = 0.

By (3.48) and definition 2.1 we have
If the unimodular Lorentzian Lie group (Gy, g, J) admits left-invariant Ricci collineations

1
associated to the Kobayashi-Nomizu connection V! then L(:Rici]- =0,i=123and j=
1,2,3, so

[1+ 3a(B - M?M+@—)M—a

w2 +B(B—21)] A2 — tapAs =0

[—2—a(B—21)]A1 =0, (3.49)
Bll+a(B—21n)]A =0,

Déﬁ)\l =0.

By (3.49), we get

Theorem 3.8. the unimodular Lorentzian Lie group (Ga, g, |) admits left-invariant Ricci collineations
associated to Kobayashi-Nomizu connection V' if and only if

(Da =B =AM =21 =0,Vgc = (e3),

(2)a =M1 =0, #0,Vgre = (&2 — ge3),

(B)a #0,=0,an =1, Vrc = (e1),

(4)a #0,8# 0,7 = 1,0 = 4B, Ve = (e + L=504805),
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Q1

B)a#0,p#0,n=1a=2=171 = —As,\zfuzc = (e2 —e3),
(6)a #0,8#0,71=—1,a =4, Vpc = (e + “548¢5),
(7)0( 75 O,ﬁ 75 O,i’] =—-1a= —2,ﬁ =—-1,A = /\SIVIRC = <€2—|—€3>,

Proof. We analyze each one of these factors by separate and because by = 5 +7 — ,b3 =
% +1, if a« =0, then Eq.(3.49) would reduce to

/\2 + ﬁA?) = 0/
{ A =0, (3.50)
Furthermore if B = 0, then we have Ay = A = 0, and if B # 0, then we have A3 =

—pha.
Butifa #0,5 =0, we get

(1—an)A, — Jad3 =0, (3.51)
Ay =0.

aslongasay =1, then A; € R, Ve = (e1), otherwise V¢ is empty set.

Considering & # 0, B # 0, then naturely A; =0, and when# =1, we have

14+ 30(B=2)] A+ (B—5)A3 =0,
{%§+&ﬁ—mﬁki;@@iof (3.52)

{ (=2+2an)A =0,

We assume that

A= [+ dnip-2)),
= i’
C:Eﬁﬁﬁ 2)], (3.53)
D=—"1p.
We get
A B 1
& D] Gape-r @a54)
If =1, wehave (1— %a)()tz +A3) =0, so Ay + Az equals to 0 with a = 2.
Ifa =48, wehave (1+2p%—4B) —BA3 =0, soA; = 1+2ﬁ;_4ﬁ)t2 _ a2728;+8)\2.
Now if # = —1, we have
[1+32(B+2)] A2+ (B—5)As =0,
{ [1+B(B+2)] 12— 1BAs =0, (3:55)
We assume that
A=[1+1a(B+2)],
B=f-%
C= [} +h(6+2), @56
D=—"18.
We get
A B 1
&= Gaper 657



YU TAO

If 6 = —1, we have(1 + %a)()\z —A3) =0, soAy+ A3 equals to 0 with & = —2.

If o = 4p, wehave(l + 2% +4B) — fAs =0, s0 A3 = S, — alifais )

4. LEFT-INVARIANT RICCI COLLINEATIONS ASSOCIATED TO CANONICAL
CONNECTIONS AND KOBAYASHI-NOMIZU CONNECTIONS ON THREE-DIMENSIONAL
NON-UNIMODULAR LORENTZIAN LIE GROUPS

4.1 Left-invariant Ricci collineation of G5

By (3.5) in [12], we have

Lemma 4.1. Ricci symmetric tensors of (Gs, g, J) associated to canonical connection are given

by
0 e1 0 00 e
Ric [e |=[000 e |- (4.1)
es 0 0O es

Lemma 4.2. For Gs, the following equalities hold Lgliivco(i,j) =0,for i=123 and j=
1,2,3.

If the non-unimodular Lorentzian Lie group (Gs, g, ] ) admits left-invariant Ricci collineations

—~ 0 . .
associated to the canonical connection V9, then LgRicZ-]- =0,i=123 and j=1,23,
so there are no constraints for Gs.

Naturelly, we get

Theorem 4.1. the non-unimodular Lorentzian Lie group (Gs, g, ] ) admits definitely left-invariant
Ricci collineations associated to the canonical connection V° .

By [12], we have

Lemma 4.3. Ricci symmetric tensors of (Gs, g, ]) associated to Kobayashi-Nomizu connection
are given by

. €1 0 00 €1
Ric ez |=1000 e | . (4.2)
€3 0 0 O €3

Lemma 4.4. For Gs, the following equalities hold LgI/{ivcl(i,j) =0,i=123 and j=1,2,3.

If the non-unimodular Lorentzian Lie group (Gs, g, J) admits left-invariant Ricci collineations

1 ) .
associated to Kobayashi-Nomizu connection V! then LgRici]- =0,1=123and j =
1,2, 3, so there are no constraints for Gs.

Naturelly, we get
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Theorem 4.2. the non-unimodular Lorentzian Lie group (Gs, g, | ) admits definitely left-invariant
Ricci collineations associated to Kobayashi-Nomizu connection V1 .

4.2 Left-invariant Ricci collineation of G¢

By (3.18) in [12], we have

Lemma 4.5. Ricci symmetric tensors of (Ge, g, J) associated to canonical connection are given

by
o[ @ 3B(B—v) —a? 0 0 e
Ric | e | = 0 BB—7)—a®  Flya—36(B—17)] e |.
& 0 3=+ 368 —7)] 0 e
4.3)

By (4.3) and (2.2), we have
Lemma 4.6. For G, the following equalities hold

—~0 — 0 50 1
LR (er,02) = 0, LR (eg,05) = 0, Lo Ric' (e e2) = 20° + ay — B(B— 7)o + 20),

(4.4)

— 0 1 1 — 1
Le Ric (e, e3) = Erx’y(&x +9)+ E(’y — B)(ad + 5%+ By), LeRic (e3,e3) = I:Dé’)’ + 5(5(7 — ﬁ)] ,

__q __, 1 1 1

Le,Ric (e1,e1) =0, Le,Ric (€1, 02) = —a” = Sapy + 5 B(B = 7)(w + 59),
0 1 1 —~ 0

Le,Ric (e1,e3) = Ea [—a’y+ Ed(ﬁ — ’y)} ,Le,Ric (e3,e3) =0,

. . g 1 1 1
L,Ric (e3,e3) =0 ,Ly,Ric (eg,e1) =0, LyRic (e1,ep) = —a’y — Eoc’yé + E(ﬁ —7)(By + 5(52)
1

—~ 0 1 —~ 0 —~ 0
Lc,Ric (e1,e3) = E’y [—oc'y + 55(,3 — 'y)] , Le,Ric (e,62) =0 ,Lg,Ric (ep,e3) = 0.

By (4.4) and definition 2.1, we have

If the non-unimodular Lorentzian Lie group (G, g, J) is left-invariant Ricci collineations
associated to the canonical connection VY, then LgRNici]- =0,i=123and j=1,2,3,s0

[0 = 30By + 3B(B — 1)@ + 30)] Ax - [~aty — 3070 + 3 (B —7)(By +36%)] A3 =0,

g [—ay +30(B—m)] Ao+ 37 [—ay + 30(B—7)] A =0,

[20% + aBy — B(B—7)(a+30)] A1 =0,

[30v(3a + ) + 5 (7 — ) (@6 + 6% + py)] 1 =0,

7 [y +36(y — B)] A = 0.

(4.5)

By solving (4.5), we get
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Theorem 4.3. the non-unimodular Lorentzian Lie group (Ge, g, ] ) is left-invariant Ricci collineations
associated to the canonical connection V° if and only if

(1)y = 0,a(2a® — B?) = 0, Vgc = (e1,e2,€3),

(2)y = 0,a(2a® — B?) #0,, Vrc = (e3),

(3)’)’ 3& O,IX = [B = 0,(5 ;é O,Al = /\3 = OIWIRC = <€2>,
4)y#0,a#0,a+B=0,7y+35=0,0 #0,A; =0,A3 = §A2, VRrc = (e2 + §e3),
(5)’)’ 7£ 0,06 7é 0,0C = ﬁ,’)/ = 5,(5 75 0,)\1 = O,)\3 = —%)\ZIV]RC = <82 — %€3>.

Proof. We analyze each one of these factors by separate ,if v # 0,& = 0, we have

1BS(B—=m) A2+ (B—7)(By+ 37)A3 =0,6(B — 7)A3 =0,
BS(B—7)A =0,(B—7)(BY+7)A =0, (4.6)
S(Bp—v)AM =0,ay—B6=0,a+6 #0.

Notice that 6 # 0 for « + 6 # 0 and furthermore p = 0 for ay — B6 = 0, so Eq.(4.6)
would reduce to

5yAs = 0, (4.7)

Naturelly we get A1 = A3 =0,A, € R.

Ify#0,a4 #0, wehave B #0,6 # 0, ay + %(5(7 — B) # 0, otherwise ay — 6 # 0.
Naturelly we have A1 = 0 and we assume that

A= o = Japy + 3B(B — 7)(a + 39),

B = _“2'7 - %DC")/(S + %(ﬁ - 7) (,B'Y + %52)/ (4 8)
C=ia[-ary+16(B—7)], '
D=3y [-ay+35(B—7)].

{ (BY+372)As =0,

We get
A B 1
solving
xy— o =0,
{ @ — By — 0. (4.10)

weget x +=0,7+35=0,A3=5A or a =B,7=06,A3 = —5Aa.
If v = 0, we naturely have g6 = 0, then we get

(2a% —ap*)A; =0,
{ (203 — aﬁz))\; =0. (4.11)

When a(2a? — g2) = 0, we get A; € R,Ay € R,A3 € R and when a(2a% — %) # 0, we
get/\1 =A=0,A3 € R.

By (3.23) in [12], we have
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Lemma 4.7. Ricci symmetric tensors of (Ge, g, ]) associated to Kobayashi-Nomizu connection
are given by

[ & —(a>4+pBy) 0 0 e1
Ric [ e | = 0 —a? 0 e | . (4.12)
e3 0 0 O e3
By(4.12) and (2.3), we have
Lemma 4.8. For G, the following equalities hold
LelRlc (e1,€2) =0, LglRIC (61,63) =0 LelRIC (82, e) = 243, (4.13)

Lel RiC €,63

’)/, LelRIC (6’3, 63) = 0, LeZRiC (81,61) = 0,

1
—ab, LEZRiC (e1,e3) =0 LeZRiC (e2,e3) =0,

) =
es)

—~ 1
L., Ric (e1,e2)
) L33R1c (e1,e1) =0, Le3R1c (e1,e2) = —a?y,

) =

(

(

—~ 1
Lc,Ric (e3,e3
LeSIiivc (e1,e3 E3Ric (e2,62) =0 ,LeSRic (e3,e3) = 0.

By (4.13) and definition 2.1, we have
If the non-unimodular Lorentzian Lie group (Gg, g, J) admits left-invariant Ricci collineations

1
associated to Kobayashi-Nomizu connection V1, then LgRicij =0,fori=1,23and j=
1,2,3, so

a3Ay + a?yAz =0,
2037, = 0, (4.14)
w?yA; = 0.

By solving (4.14), we get

Theorem 4.4. the non-unimodular Lorentzian Lie group (G, g, ]) admits left-invariant Ricci
collineations associated to Kobayshi-Nomizu connection V' if and only if

(1)DC = ,8 = 0/5 7& O/W]RC = <€1,€2,€3>,
(2)0{ #0,Ay = _%)\&VRC = <—%€2 +€3>.

Proof. We analyze each one of these factors by separate. If « = 0, wehave 6 # 0, =
0 fora +6 # 0,0y — B6 = 0, and naturely A; € R,A; € R,A3 € R.
And if « # 0, we get

IXAZ + ’Y/\?) = 0/
{ Y (4.15)

So A, = —%)\3,\7]1{@ = <—%€2 + e3).
4.3 Left-invariant Ricci collineation of Gy
By (3.34) in [12], we have
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Lemma 4.9. Ricci symmetric tensors of (Gy, g, ]) associated to canonical connection are given

by
(@ — (a2 + B7) 0 Sy + %) e1
Ric | e | = 0 (a2 4 By —L(a2 4 BYy e |. @16
® —3(re+ ) 3@+ ) 0 ®
By (4.16) and (2.2),we have
Lemma 4.10. For Gy, the following equalities hold
L, Ric (e1,e2) = —a” — 1[5(57, L, Ric (e1,e3) = a” + 1[557 (4.17)

—~ 0 1 —~ 0 1
Lo Ric (e, e2) = —p(a” + 5B7), Lo Ric (e2,65) = (a” + 5B7),
—~ 0 1 —~ 0 1
Le,Ric (e3,63) = —B(a + 5 B7), LeRic (e1,e1) = 20° + - poy

116 =)+ 2350 — )

1 1 —~0 1
257 + 3B), LeRic (es,e5) = (377 — o — 5$7)

—~ 0 1 — 0 1
LE3RIC (61, 61) = —20{3 — —557,L63R1c (81,(32) = —(')’+ E,B)(OC + E,B’)/) — 1(52’)’

—~ 0 1 1 —~ 0
Lc,Ric (e1,e2) = Eﬁ(zxz + E,B’y),Lelec (e1,€3) =

0
Le,Ric (ez,e3) =

—~ 0 —~ 0 1
Le;Ric (e1,e3) = *ﬁ(ﬂé + 137) LeRic (62, €2) = —d(a + 5 )

—~0 1 1 1
Le;Ric (e2,e3) = —157 - EcS(oc +5B7)-

By (4.17) and definition 2.1, we have
If the non-unimodular Lorentzian Lie group (G, g, J) admits left-invariant Ricci collineations

. . . —~ 0 . .
associated to the canonical connection V?, then LgR]Cij =0,i=123and j=1,2,3,s0

(20( —l— zﬁ(S’)’)()Lz — )Lg,) =0,
(—® = 3poy) A+ 3P(a2 + 2B7) A2 + [+ 3B) (@ + 3B7) — 6% A3 =0,
(“3 + 4:357)A1 + [47(52 52) 213(7 - 0‘2)] Az + %,B(az + %,57))\3 =0,
Ba* + %,37))\1 +6(a* + 257)/\3 =0,
Pl * 2P 30(07 +3pY)As + [~3077 + 30(a” + 3P7)] Aa =0,
( 2;3’)’))\1‘}'5(2’)’ _0‘ _2,5’)’))\2—0
(4.18)
By solving (4.18), we get

Theorem 4.5. the non-unimodular Lorentzian Lie group (Gy, g, J) admits left-invariant Ricci
collineations associated to the canonical connection V' if and only if

(1)a =0,6 #0,7 # 0, =0,A2 = A3 = 0, Vg = (e1),

(2)a =0,0 #0,7 =0, Vrec = (e1,e2,€3),

276



Left-invariant Ricci collineations associated to canonical connections on three-dimensional Lorentzian Lie groups

(3)0( 75 0,y=0=0,A=0,A = A3, VRrc = <€2+€3>.

Proof. We analyze each one of these factors by separate. If « = 0, we have ¢ # 0, for
x+6#0,ay =0, and

By(A2 —A3) =0,

BovM — BPyAa + [BY(27 + B) +6%7] A3 =0,

BéYAL + [7(6% — B?) + 2B7?] A2 + B*yAs =0, (4.19)
ﬁz’)f/\1 + BydAz =0, )
2B2 M + Bydds + (B0 — 697)As =0,

B2yA1 + (Byé — 87*)Ay = 0.

Obviously A1 € R,A; € R, A3 € R withy =0, and when B # 0, we have A, = A3. Then
we have

B*A1 + oA, =0, (4.20)

{ ,3(5/\1 + (52 + 2‘5’)/)}\2 =0,
B2y + (BS — 579)As = 0.

Soweget Ay = A = A3 =0.
when ¢ # 0, Eq.(4.19)would easily reduce to

([ B(A2—A3) =0,

BoA — BPAy + [B(2y + B) + 6%] A3 =0,
BOAL + (62 — B2 +2BY)As + B2A3 =0,

B2\; + BoAs = 0, (4:21)
2‘32/\1 + BoA2 + (‘55 — 5’)/))\3 =0,
BZA1 + (B8 — 69)A2 = 0.
simplify this equation, we still get A, = A3 = 0,A; € R with § =0.
If « # 0, then we have v = 0. And we get
1x3(/\2 — )\3) = 0,
a3 + 3a%B(As — Ay) =0, (4.22)
BA1L+6A = 0.

Because o # 0, so we get A, = A3. Put Ay = A3 into wdA + %(/\3 — A2) =0, we have
A1 = 0. So another equation would reduce to A, =0, and then § = 0.
By (3.42) in [12], we have

Lemma 4.11. Ricci symmetric tensors of (G, g, J) associated to Kobayashi-Nomizu connection
are given by

[ @ —a’ 3(B6 —ap) —p(a+9) el
Ric | e | =| z(Bo—ap) —(a>+p+py) —3(By+ad+25) e |-
& Bla+06)  3(By+ad+28%) 0 e

(4.23)

By (4.23) and (2.3),we have

277



YU TAO

Lemma 4.12. For Gy, the following equalities hold

_ 1 _ 1

Le,Ric (e1,e2) = —a® + SB35+ %), Le,Ric (e1,e3) = a® — SBA(30+a), (4.24)
__ __ 5, 1

Lo Ric' (e2,¢2) = B(206 — 30% — 267 — By + 20%), L, Ric (e, 5) = B(oa + a6 + B2 + 1),

Lglf{ivcl(eg,eg) = —pB(2a* + 306 + By + 2(52),Lezlgcl(el,el) = 20% — B*(35 +u),

LEZRVicl(el, e)) = %/3(3&2 +2B% + By — 206 — 252),L32I€i’c1(e1, e3) = —B(a® + 252 4208 + %,87),

__ 1 __
Lo,Ric (e2,03) = 6(a® + 2 — 8 — szé),ngRicl (e3,e3) = —0(3By + ad +20%),

_ _ 1
L,Ric (e1,e1) = —2a% + B2(36 + ), Le,Ric (e1,e2) = SB(56 — 302 — 2% — py + 3a0),

ST 1 2 2 T 2 2 2
Le,Ric (e1,e3) = Eﬁ(2zx +3ad + By +267), Le,Ric (e, e2) = 6(20° + ad — 2a” — 27),

__ 1
L,Ric (e, e3) = S0(3By + b +26%).

By (4.24) and definition 2.1, we have
If the non-unimodular Lorentzian Lie group (G, g, J) is left-invariant Ricci collineations

1
associated to the Kobayashi-Nomizu connection V1, then LgRicij =0,i=123and j=
1,2,3, so

[20(2 B35+ a)] A2 + [—24° +,82(3(5+tx)] Az =0,

L ,32 35 + )] A+ 3B(3a2 + 22 + By — 206 — 26%) A+

B —2B% — By +3ab)A3 =0,

[ 35 +a)] A — B(a® + 36% + 200 + $By) Az + 3B(2a% 4 3ad + By + 202)A3 = 0,
B(2 ms 3a — 2% — By +28%)A + 5(252 + wé —20% —2B%)A3 =0,

B(3a% + tad + B2+ By)A + 8(a? + B> — 6% — Jay) Ay + 25(3By + ad + 262)A5 = 0,
,B(ZDc + 3a0 + By +28%)A1 + 5(3By + ab + 26%)Ay = 0.

(4.25)

By solving (4.25), we get

Theorem 4.6. the non-unimodular Lorentzian Lie group (Gy, g, J) is left-invariant Ricci collineations

associated to the Kobayashi-Nomizu connection V1 if and only if

(D)a=0,6 #0,#0,7 =0,A2 = A3 = —EA;, Ve = (e1 — Loy — Be3),
(2)a=0,6#0,=0,1, = A3 =0,Vrc = (e1),

(3)(% 7’é O,’)/ =0,0=0A1 =071, = /\S/WIRC = <€2 —|—€3>.
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Proof. We analyze each one of these factors by separate because ay = 0, and if & = 0, we
have ¢ # 0 for a +J # 0, and Eq.(4.25) would reduce to

( B2(A2— A3) =0,
gﬁle + zﬁ(Zﬁzﬁv 26%) A2 + ﬁ(552 B2 —3B7)As =0,

2B20M + B(30% + B)A2 ~ B(3BY +0%)As =0, (426)
,8( —2B% — By +26%)A1 +6(20% — 28%)A3 =0, :
B(B*+ By)A + 8(B? — 6%) Az + 6(3B7 + 0%)A3 =0,
B(By + 26%)A1 + 6(3By + 26%)A, = 0.

If B #0, we have A, = A3. Put A, = A3 into Eq.(4.26), we get

A 46A3 =0,
{ f )& i 0‘3 (4.27)

Sovy =0, —EM = Ay = A3, otherwise ¥ # 0,A1 = Ap = A3 =0.
)

If B =0, then we get
53A3 =0,
BAr =0, (4.28)

3B3(As— Ap) = 0.

So we have Ay = A3 =0, Ve = (e1).
Ifa #0,7v =0, we get

[20(2 52 30 + DC)] ()\2 — )\3) =0,
(20 + B2(36 +a)] A1 + B(3a2 + 282 — 208 — 62) Ay + /3(552 — 302 —2B% +3ad)A3 =0,
= Zoc + /52 30 +a)| A+ B(20% + 4ad + 56%) Ay — ﬁ(Zoc +3ad +26%)A3 =0,
B(3a2 + jad + B2)A1 + 6(a® + B2 — 6% — ad)Ar + 8(2ad + 6%)A3 = 0,
ﬁ(2¢x + 300 +26%)A1 + 6(aé +26%)Ay = 0.
(4.29)

If 2a%2 — B?(35 + &) # 0, then we have Ay = A3. Put A, = A3 into other equations, we
get

B(302 + 1ad + )M + 6(a? + B2)A3 =0, (4.30)

[—20% 4 B2(30 + o) ] A1 + B(36% + 3ad) Az =0,
B(2a? + 3ad + 28%) A1 + 5(ad + 26%)A3 = 0.

When 6 = 0, so 2a? — B? # 0. Put this into other equations, Eq.(4.30)would reduce
to )\1 =0, so W]RC = <€2 + €3>.

When d # 0, weget Ay = A, = A3 =0.

If 242 — B2(36 + ) = 0, B # 0, otherwise a = 0 in error.

Furthermore if § = 0, we get 2a> — B2 = 0, A¢. Put these into Eq.(4.30) , we get Ay = As.

If 5§ # 0, then we have § = a(22 ) . We assume that

32
a1 = 0,a10 = —(a® + %52 +2a6),a13 = a® + %zx& + 52
ay = 302+ Jad + B2 an = 5(a® + P2 — 6% — Jad), a3 = 6(3a6 + %) (4.31)
az] = ‘3(2062 + 3ad + 252),6132 = 5(0&(5 -+ 2(52),ﬂ33 =0.
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We get

a1 a2 413
ay ax 43 | #0, (4.32)
az1 a4z 4as3

Sowehave A = A, = A3 =0.
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