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QUADRILATERALS THAT ALLOW CLOSED LIGHT-RAY PATHS

ANDA M. STAN AND AUREL I. STAN

ABSTRACT. We describe first the quadrilaterals for which there are light rays that hit each
of their sides (at a certain angle) and reflect (at an equal angle) to form closed quadrilater-
als. The amazing fact is that not all quadrilaterals possess such closed light ray paths, but
only the acute cyclic quadrilaterals. These closed quadrilateral light-ray paths, when they
exist, are the inscribed quadrilaterals with the minimum perimeter. Moreover, unlike the
case of acute triangles for which there is only one inscribed triangle of minimal perimeter,
the acute cyclic quadrilaterals possess infinitely many inscribed quadrilaterals that have
a minimal perimeter. All of these minimal perimeter inscribed quadrilaterals have corre-
sponding parallel sides. The opposite sides of a closed light-ray path are symmetric with
respect to the opposite diagonal of the acute cyclic quadrilateral.

1. INTRODUCTION AND MOTIVATIONS

In this section we present the motivation and a well known result related to the paper.
Fermat principle of minimality of time for the path traveled by a light ray, which for
a medium with a constant index of refraction becomes the principle of minimality of
distance, is responsible for the Law of Reflection, which states that the angle of incidence
is equal to the angle of reflection. This fact leads to the result known as Fagnano theorem,
which states that among all triangles inscribed in a given acute triangle, the one that has
the smallest perimeter is the orthic triangle, that means, the triangle made by the feet of
the altitudes of the given triangle. The orthic triangle is the only inscribed triangle that
has the minimum perimeter. We can imagine the orthic triangle as the triangular path
created by a light ray that hits each side of an acute triangle at a certain angle and reflects
from that side at an equal angle to form a closed triangular circuit. The orthic triangle is
the only closed triangular light-ray path inscribed in an acute triangle.

Theorem 1.1. (Fagnano 1775) In an acute triangle, there is only one closed light ray path,
namely the one formed by the feet of the heights. If ABC is an acute triangle, then the inscribed
triangle MNP with the minimum perimeter is the orthic triangle.
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Figure 1. M1

In Fig. 1 above, we can view the orthic triangle, MNP, as the path of a light-ray starting
at the point P on the side CA of the triangle ABC, hitting the side AB at an angle α and
reflecting from this side at an equal angle α. Then the light-ray hits the side BC at an an-
gle β and reflects from this side at an equal angle β. Finally the light-ray returns exactly
to the point P from where it started, and repeats this path forever. This is what we mean
by a triangular closed light-ray path inscribed in a triangle.

In this paper, we investigate the following problem. Given a quadrilateral ABCD, does it
exist a quadrilateral closed light-ray path MNPQ inscribed in it? If so, does this quadri-
lateral have the minimum perimeter among all inscribed quadrilaterals?
Let us explain first what we mean by an inscribed quadrilateral closed light-ray path
MNPQ in a quadrilateral ABCD. It means the path described by a light-ray starting at
a point Q on the side DA, hitting the side AB, at a point M, at an angle α and reflecting
at an equal angle α, then hitting the side BC, at a point N, at an angle β and reflecting at
an equal angle β, then hitting the side CD, at a point P, at an angle γ and reflecting at an
equal angle γ, and returning exactly at the point Q from where it started, and continuing
this path forever. See Fig. 2.

2. MAIN RESULTS

In this section we present the main results of the paper.
Let us suppose that the quadrilateral ABCD has a closed light ray path MNPQ, with
M ∈ (AB), N ∈ (BC), P ∈ (CD), and Q ∈ (DA), where for any two distinct points X
and Y in the plane, we denote by (XY) the open segment with the margins X and Y, that
means, the set of all points Z in the plane collinear with X and Y, such that Z is strictly
in between X and Y. Let m(∢AMQ) = m(∢BMN) = α, m(∢BNM) = m(∢CNP) = β,
m(∢CPN) = m(∢DPQ) = γ, and m(∢DQP) = m(∢AQM) = δ.
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Figure 2. M2

The sum of the angles in triangle AMQ is 180◦. Thus:

m(∢A) = 180◦ − δ − α. (2.1)

The sum of the angles in triangle BNM is 180◦. Thus:

m(∢B) = 180◦ − α − β. (2.2)

The sum of the angles in triangle CPN is 180◦. Thus:

m(∢C) = 180◦ − β − γ. (2.3)

The sum of the angles in triangle DQP is 180◦. Thus:

m(∢D) = 180◦ − γ − δ. (2.4)

Adding first (2.1) and (2.3) together, and then (2.2) and (2.4), we obtain:

m(∢A) + m(∢C) = m(∢B) + m(∢D) (2.5)
= 360◦ − α − β − γ − δ. (2.6)

Since the sum of the measures of the angles of quadrilateral ABCD is:

m(∢A) + m(∢B) + m(∢C) + m(∢D) = 3600, (2.7)

we conclude that:

m(∢A) + m(∢C) =
1
2
· 360◦

= 180◦. (2.8)

Thus a necessary condition for the existence of the light-ray path M − N − P − Q − M
is that the quadrilateral ABCD must be cyclic, which means there exists a circle passing
through all the four vertices A, B, C, and D of ABCD. See Fig. 3.
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We denote the lengths of the sides of ABCD as follows:

a := AB, b := BC, c := CD, and d := DA.

Let AM = x, where by AM we denote the length of the segment (AM).
In the triangle QAM, we apply the Law of Sines:

AQ
sin(α)

=
AM

sin(δ)
. (2.9)

Since AM = x, solving for AQ, we obtain:

AQ =
x sin(α)
sin(δ)

. (2.10)

Since AM + MB = AB = a, we have:

MB = a − x. (2.11)

In the triangle MBN, we apply the Law of Sines:

BN
sin(α)

=
MB

sin(β)
. (2.12)

Since MB = a − x, solving for BN, we obtain:

BN =
(a − x) sin(α)

sin(β)
. (2.13)
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Figure 3. M3
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Since BN + NC = BC = b, we obtain:

NC = b − BN

= b − (a − x) sin(α)
sin(β)

=
b sin(β)− a sin(α) + x sin(α)

sin(β)
. (2.14)

In the triangle NCP, we apply the Law of Sines:
CP

sin(β)
=

NC
sin(γ)

. (2.15)

Since NC = [b sin(β)− a sin(α) + x sin(α)]/ sin(β), solving for CP, we obtain:

CP =
b sin(β)− a sin(α) + x sin(α)

sin(γ)
. (2.16)

Since CP + PD = CD = c, we obtain:

PD = c − CP

= c − b sin(β)− a sin(α) + x sin(α)
sin(γ)

=
c sin(γ)− b sin(β) + a sin(α)− x sin(α)

sin(γ)
. (2.17)

In the triangle PDQ, we apply the Law of Sines:
DQ

sin(γ)
=

DP
sin(δ)

. (2.18)

Since DP = [c sin(γ)− b sin(β)+ a sin(α)− x sin(α)]/ sin(γ), solving for DQ, we obtain:

DQ =
c sin(γ)− b sin(β) + a sin(α)− x sin(α)

sin(δ)
. (2.19)

Since DQ + AQ = DA = d, using formulas (2.10) and (2.19), we obtain:

x sin(α)
sin(δ)

+
c sin(γ)− b sin(β) + a sin(α)− x sin(α)

sin(δ)
= d, (2.20)

which is equivalent to:

a sin(α) + c sin(γ) = b sin(β) + d sin(δ). (2.21)

Let us denote the measures of the following angles made by the diagonals and sides of
the cyclic quadrilateral ABCD (see Fig. 4) as follows:

m(∢CAD) = m(∢CBD) = m, (2.22)

m(∢ABD) = m(∢ACD) = n, (2.23)

m(∢ACB) = m(∢ADB) = p, (2.24)

m(∢BDC) = m(∢BAC) = q. (2.25)

Formulas (2.1), (2.2), (2.3), and (2.4) become now:

q + m = 180◦ − δ − α, (2.26)
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m + n = 180◦ − α − β, (2.27)

n + p = 180◦ − β − γ, (2.28)

p + q = 180◦ − γ − δ. (2.29)

Let R be the radius of the circle that is circumscribed to the cyclic quadrilateral ABCD.
Using the Law of Sines, we have:

a = 2R sin(p), (2.30)

b = 2R sin(q), (2.31)

c = 2R sin(m), (2.32)

d = 2R sin(n). (2.33)

Substituting the last four formulas into the equation (2.21), we obtain:

2R sin(p) sin(α) + 2R sin(m) sin(γ) = 2R sin(q) sin(β) + 2R sin(n) sin(δ). (2.34)

Dividing both sides of this equation by R, we get:

2 sin(p) sin(α) + 2 sin(m) sin(γ) = 2 sin(q) sin(β) + 2 sin(n) sin(δ). (2.35)

Using the formula of changing the product into a sum:

2 sin(u) sin(v) = cos(u − v)− cos(u + v), (2.36)

the necessary condition (2.35) becomes:

cos(α − p)− cos(α + p) + cos(γ − m)− cos(γ + m) (2.37)
= cos(β − q)− cos(β + q) + cos(δ − n)− cos(δ + n).
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Moving the terms around in the last equation, we obtain:

cos(α − p)− cos(β − q) + cos(γ − m)− cos(δ − n) (2.38)
= cos(α + p)− cos(β + q) + cos(γ + m)− cos(δ + n).

Using the formula of changing the product into a sum:

cos(u)− cos(v) = 2 sin
(

v − u
2

)
sin

(
u + v

2

)
, (2.39)

formula (2.38) becomes:

2 sin
(

β − α + p − q
2

)
sin

(
α + β − p − q

2

)
+2 sin

(
δ − γ + m − n

2

)
sin

(
γ + δ − m − n

2

)
= 2 sin

(
β − α + q − p

2

)
sin

(
α + β + p + q

2

)
+2 sin

(
δ − γ + n − m

2

)
sin

(
γ + δ + m + n

2

)
.

Let us observe that the left-hand side of the last equation is 0, since:

α + β = 180◦ − m(∢B)
= m(∢D)

= p + q

and

γ + δ = 180◦ − m(∢D)

= m(∢B)
= m + n.

Thus, we have:

sin
(

α + β − p − q
2

)
= sin

(
γ + δ − m − n

2

)
= sin (0◦) = 0.

Therefore, we conclude that:

sin
(

β − α + q − p
2

)
sin

(
α + β + p + q

2

)
= − sin

(
δ − γ + n − m

2

)
sin

(
γ + δ + m + n

2

)
. (2.40)

We have:
(α + β) + (p + q)

2
=

m(∢D) + m(∢D)

2
= m(∢D),

(γ + δ) + (m + n)
2

=
m(∢B) + m(∢B)

2
= m(∢B),
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and

sin(∢D) = sin(∢B)
̸= 0.

Thus, dividing both sides of (2.40) by sin((α + β + p + q)/2) = sin((γ + δ + m + n)/2),
we obtain:

sin
(

β − α + q − p
2

)
= sin

(
−δ + γ − n + m

2

)
.

Moving all terms to the left, we obtain:

sin
(

β − α + q − p
2

)
− sin

(
−δ + γ − n + m

2

)
= 0.

This is equivalent to:

2 sin
(

β + δ − α − γ + q + n − p − m
4

)
cos

(
β + γ − δ − α + q + m − p − n

4

)
= 0.

Since β + γ = q + m = m(∢A) and δ + α = p + n = m(∢C), we obtain:

2 sin
(

β + δ − α − γ + q + n − p − m
4

)
cos

(
2m(∢A)− 2m(∢C)

4

)
= 0.

That means, we have:

sin
(

β + δ − α − γ + q + n − p − m
4

)
cos

(
m(∢A)− m(∢C)

2

)
= 0. (2.41)

Due to the fact that: ∣∣∣∣m(∢A)− m(∢C)
2

∣∣∣∣ <
m(∢A) + m(∢C)

2
= 90◦, (2.42)

we conclude that:

cos
(

m(∢A)− m(∢C)
2

)
̸= 0.

Thus, equation (2.41) implies:

sin
(

β + δ − α − γ + q + n − p − m
4

)
= 0. (2.43)

Since we obviously have:

β + δ − α − γ + q + n − p − m
4

>
−α − γ − p − m

4

>
−180◦ − 180◦ − 180◦ − 180◦

4
= −180◦
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and
β + δ − α − γ + q + n − p − m

4
<

β + δ + q + n
4

<
180◦ + 180◦ + 180◦ + 180◦

4
= 180◦,

we conclude from equation (2.43) that:

β + δ − α − γ + q + n − p − m
4

= 0◦. (2.44)

Thus, we have:

β − α + q − p = γ − δ + m − n. (2.45)

We solve first for δ and β, in terms of α, from equations (2.26) and (2.27), and obtain:

δ = 180◦ − α − q − m (2.46)

β = 180◦ − α − m − n. (2.47)

We solve now for γ, first in terms of β, from equation (2.28), and then substitute β in
terms of α, from formula (2.47), obtaining:

γ = 180◦ − β − n − p
= 180◦ − (180◦ − α − m − n)− n − p
= α + m − p. (2.48)

Substituting now β, γ, and δ, from formulas (2.47), (2.48), and (2.46), into formula (2.45),
we obtain:

(180◦ − α − m − n)− α + q − p = (α + m − p)− (180◦ − α − q − m) + m − n.

This equation is equivalent to:

360◦ = 4α + 4m, (2.49)

from which it follows that:

α = 90◦ − m. (2.50)

Similarly, we obtain:

β = 90◦ − n, (2.51)

γ = 90◦ − p, (2.52)

and

δ = 90◦ − q. (2.53)

Of course, formulas (2.50), (2.51), (2.52), and (2.53) make sense if and only if m < 90◦,
n < 90◦, p < 90◦, and q < 90◦, that means if and only if the quadrilateral ABCD is acute,
where we introduce the following definition:

Definition 2.1. A quadrilateral is called acute if each interior angle made by a diagonal with a
side of that quadrilateral is acute.
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Let AC ∩ BD = {I}. We draw the perpendiculars from I to AB, BC, CA, and AB, and
denote the feet of these perpendiculars by M, N, P, and Q, respectively. We will show
that MNPQM is a closed light-ray path, and we will call this particular closed light-ray
path, for reasons that will become obvious later, the circum-light-ray path of the cyclic
acute quadrilateral ABCD. See Fig. 5 above.
Indeed, because the angles ∢IAB and ∢IBA are both acute, the foot, M, of the altitude

IM of the triangle IAB, belongs to the interior (AB) of the side [AB] of the quadrilateral
ABCD. Similarly, N ∈ (BC), P ∈ (CD), and Q ∈ (DA). Since m(∢IMA) + m(∢IQA) =
90◦ + 90◦ = 180◦, the quadrilateral IQAM is cyclic. Thus we have:

m(∢AMQ) = m(∢AIQ)

= 90◦ − m.

Similarly, we have m(∢BMN) = 90◦−m, m(∢BNM) = m(∢CNP) = 90◦−n, m(∢CPN) =
m(∢DPQ) = 90◦ − p, and m(∢DQP) = m(∢AQM) = 90◦ − q.
Hence, MNPQ is a quadrilateral closed light-ray path.
Therefore, we have proven the following theorem:

Theorem 2.1. A quadrilateral admits a quadrilateral closed light-ray path if and only if it is
acute and cyclic.

Proposition 2.1. Let ABCD be an acute cyclic quadrilateral with sides AB = a, BC = b,
CD = c and DA = d, and let R be the radius of its circumscribed circle. Let us denote the angles
made by the diagonals with the sides in the following way: m(∢ACB) = m(∢ADB) = uAB,
m(∢BDC) = m(∢BAC) = uBC, m(∢CAD) = m(∢CBD) = uCD, and m(∢DBA) =
m(∢DCA) = uDA. Then, we can choose a point M on (AB), such that AM = x, and construct
a closed ray-path starting at M, MNPQM, with N ∈ (BC), P ∈ (CD), and Q ∈ (DA), if and
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only if:

2R · max
{

0,
sin(uAB) cos(uCD)− sin(uBC) cos(uDA)

cos(uCD)

}
< x

< 2R · min
{

sin(uAB),
cos(uBC) sin(uDA)

cos(uCD)

}
.

Proof. Of course, we have:

x = AM
< AB
= 2R sin(uAB). (2.54)

We know that α = m(∢BMN) = 90◦ − uAB. For N to belong to the interior (BC) of the
side [BC], we must have BN < BC. Thus, according to equation (2.13), we have:

BN =
(a − x) sin(α)

sin(β)

< BC
= b. (2.55)

Solving this inequality for x, we obtain:

x >
a sin(α)− b sin(β)

sin(α)

=
2R sin(uAB) sin(90◦ − uCD)− 2R sin(uBC) sin(90◦ − uDA)

sin(90◦ − uCD)

= 2R · sin(uAB) cos(uCD)− sin(uBC) cos(uDA)

cos(uCD)
. (2.56)

For P to belong to (CD), we must have CP < CD. Thus, using (2.16), we have:

CP =
b sin(β)− a sin(α) + x sin(α)

sin(γ)
< CD
= c. (2.57)

Solving this inequality for x, we obtain:

x <
a sin(α) + c sin(γ)− b sin(β)

sin(α)

= 2R · sin(uAB) sin(90◦ − uCD) + sin(uCD) sin(90◦ − uAB)

sin(90◦ − uCD)

−sin(uBC) sin(90◦ − uDA)

sin(90◦ − uCD)

= 2R · sin(uAB) cos(uCD) + sin(uCD) cos(uAB)− sin(uBC) cos(uDA)

cos(uCD)

= 2R · sin(uAB + uCD)− sin(uBC) cos(uDA)

cos(uCD)
.
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Since uAB + uBC + uCD + uDA = 180◦ (due to the fact that they are measures of an-
gles with the vertices on the circumscribed circle of the cyclic quadrilateral ABCD, and
together they subtend the entire circumscribed circle of this quadrilateral), we have
sin(uAB + uCD) = sin(uBC + uDA). Thus, the last inequality becomes:

x < 2R · sin(uAB + uCD)− sin(uBC) cos(uDA)

cos(uCD)

= 2R · sin(uBC + uDA)− sin(uBC) cos(uDA)

cos(uCD)

= 2R
cos(uBC) sin(uDA)

cos(uCD)
. (2.58)

Finally, for Q to belong to the interior (DA) of the side [DA], we must have DQ < DA.
Thus, according to equation (2.19), we have:

DQ =
c sin(γ)− b sin(β) + a sin(α)− x sin(α)

sin(δ)
< DA
= d. (2.59)

Solving this inequality for x, we obtain:

x >
a sin(α) + c sin(γ)− b sin(β)− d sin(δ)

sin(α)

= 2R · sin(uAB) cos(uCD) + sin(uCD) cos(uAB)

cos(uCD)

−sin(uBC) cos(uDA) + sin(uDA) cos(uBC)

cos(uCD)

= 2R · sin(uAB + uCD)− sin(uBC + uDA)

cos(uCD)

= 2R · 0
cos(uCD)

= 2R · 0
= 0.

So, this inequality is automatically satisfied if x > 0.
Therefore, x must satisfy conditions (2.54), (2.56), and (2.58), which means:

2R · max
{

0,
sin(uAB) cos(uCD)− sin(uBC) cos(uDA)

cos(uCD)

}
< x

< 2R · min
{

sin(uAB),
cos(uBC) sin(uDA)

cos(uCD)

}
.

□

The proposition that we have just proven shows that there are infinitely many closed
light ray-path in an acute cyclic quadrilateral, each of them being determined uniquely
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by the length x = AM.
We prove now that all of these closed light-ray paths have the same total length.

Proposition 2.2. Given an acute cyclic quadrilateral ABCD, then for every number x =
AM greater than 2R ·max{0, [sin(uAB) cos(uCD)− sin(uBC) cos(uDA)]/ cos(uCD)} and less
than 2R · min{sin(uAB), [cos(uBC) sin(uDA)]/ cos(uCD)}, the total length of the closed light-
ray path MNPQM (that means, the perimeter of the quadrilateral MNPQ) is:

MN + NP + PQ + QM =
AB · CD + BC · DA

R
(2.60)

=
AC · BD

R
. (2.61)

This perimeter is independent of the value of x.

Proof. Let us draw the perpendiculars AA1, BB1, CC1, and DD1 to the sides QM, MN,
NP, and PQ, respectively, of the closed light-ray path MNPQM, where A1 ∈ QM, B1 ∈
MN, C1 ∈ NP, and D1 ∈ PQ. See Fig. 6. Since both angles ∢AMQ and ∢AQM of the
triangle AMQ are acute, the foot, A1, of the altitude AA1, belongs for sure to the interior
(QM) of the side [QM]. Similarly, B1 ∈ (MN), C1 ∈ (NP), and D1 ∈ (PQ). Due to this
fact, the perimeter of the quadrilateral MNPQ can be broken up as:

MN + NP + PQ + QM = (A1M + MB1) + (B1N + NC1)

+(C1P + PD1) + (D1Q + QA1). (2.62)
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Using the definition of cosine in the right traingles AA1M and BB1M, and the Law of
Sines in the triangle ACD, we obtain:

A1M + MB1 = AM · cos(∢AMA1) + MB · cos(∢BMB1)

= AM cos(α) + MB cos(α)
= (AM + MB) cos(α)
= AB cos(α)
= AB cos (90◦ − uCD)

= AB sin (uCD)

= AB · CD
2R

=
AB · CD

2R
. (2.63)

Similarly, we have:

B1N + NC1 =
BC · DA

2R
, (2.64)

C1P + PD1 =
CD · AB

2R
, (2.65)

and

D1Q + QA1 =
DA · BC

2R
. (2.66)

Summing up the equations (2.63), (2.64), (2.65), and (2.66), and using the decomposition
equation (2.62), we obtain:

MN + NP + PQ + QM = 2 · AB · CD
2R

+ 2 · BC · DA
2R

=
AB · CD + BC · DA

R
.

Since the quadrilateral ABCD is cyclic, by Ptolemy theorem, we have:

AB · CD + BC · DA = AC · BD. (2.67)

Thus, the perimeter of the quadrilateral MNPQ can also be written as:

MN + NP + PQ + QM =
AC · BD

R
.

□

We show now that if a quadrilateral ABCD admits a closed light-ray path, then among
all quadrilaterals MNPQ inscribed in ABCD, the cloosed light-ray path quadrialterals
have the smallest perimeter. Our proof is inspired by the proof of Fagnano Theorem
from [1].

Theorem 2.2. Let ABCD be an acute cyclic quadrilateral. Then for any point M ∈ (AB),
N ∈ (BC), P ∈ (CD), and Q ∈ (DA), we have:

MN + NP + PQ + QM ≥ AC · BD
R

. (2.68)

216



Quadrilaterals that allow closed light-ray paths

The equality holds in inequality (2.68) if and only if MNPQM is a closed light-ray path.

Proof. Applying the Law of Cosines in triangle AQM, we have:

QM2 = AQ2 + AM2 − 2AQ · AM · cos (∢QAM)

= AQ2 + AM2 − 2AQ · AM · cos (uBC + uCD)

= AQ2 sin2 (uBC) + AM2 sin2 (uCD) + 2AQ · AM · sin (uBC) sin (uCD)

+AQ2 cos2 (uBC) + AM2 cos2 (uCD)− 2AQ · AM · cos (uBC) cos (uCD)

= [AQ sin (uBC) + AM sin (uCD)]
2 + [AQ cos (uBC)− AM cos (uCD)]

2

≥ [AQ sin (uBC) + AM sin (uCD)]
2 . (2.69)

Taking the square root from both sides of inequality (2.69), we obtain:

QM ≥ AQ sin (uBC) + AM sin (uCD) . (2.70)

The equality in inequality (2.70) (or equivalently in (2.69)) holds if and only if:

AQ cos (uBC)− AM cos (uCD) = 0

which is equivalent to:

AM
AQ

=
cos (uBC)

cos (uCD)

=
sin (90◦ − uBC)

sin (90◦ − uCD)
. (2.71)

That means, if M′N′P′Q′M′ is a closed light-ray path, with M′ ∈ (AB), N′ ∈ (BC),
P′ ∈ (CD), and Q′ ∈ (DA), we have:

AM
AQ

=
AM′

AQ′ (2.72)

=
sin (90◦ − uBC)

sin (90◦ − uCD)
.

Therefore, by the reciprocal of Thales Theorem (or by the similarity of the triangles AMQ
and AM′Q′), we conclude that the lines QM and Q′M′ are parallel. Thus, for the equality
case, we must have:

m (∢AMQ) = m
(
∢AM′Q′)

= 90◦ − uCD (2.73)

and

m (∢AQM) = m
(
∢AQ′M′)

= 90◦ − uBC. (2.74)

Similarly, we have:

MN ≥ BM sin (uCD) + BN sin (uDA) , (2.75)

with equality if and only if

m (∢BMN) = 90◦ − uCD (2.76)
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and

m (∢BNM) = 90◦ − uDA. (2.77)

We also have:

NP ≥ CN sin (uDA) + CP sin (uAB) , (2.78)

with equality if and only if

m (∢CNP) = 90◦ − uDA (2.79)

and

m (∢CPN) = 90◦ − uAB. (2.80)

Finally, we have:

PQ ≥ DP sin (uAB) + DQ sin (uBC) , (2.81)

with equality if and only if

m (∢DPQ) = 90◦ − uAB (2.82)

and

m (∢DQP) = 90◦ − uBC. (2.83)

Summing up inequalities (2.70), (2.75), (2.78), and (2.81), we obtain:

QM + MN + NP + PQ ≥ AQ sin (uBC) + AM sin (uCD)

+BM sin (uCD) + BN sin (uDA)

+CN sin (uDA) + CP sin (uAB)

+DP sin (uAB) + DQ sin (uBC) . (2.84)

We can rearrange the terms in the right side of this inequality as:

QM + MN + NP + PQ ≥ (AM + BM) sin (uCD) + (BN + CN) sin (uDA)

(CP + DP) sin (uAB) + (DQ + AQ) sin (uBC)

= AB sin (uCD) + BC sin (uDA)

+CD sin (uAB) + DA sin (uBC) . (2.85)

Using the Law of Sines in the cyclic quadrilateral ABCD, the last inequality can be rewrit-
ten as:

QM + MN + NP + PQ ≥ AB · CD
2R

+ BC · DA
2R

= CD · AB
2R

+ DA · BC
2R

=
AB · CD + BC · DA

R
. (2.86)

From the previous proposition, we can see that the right side of inequality (2.86) is equal
to the perimeter of any closed light-ray path of the quadrilateral ABCD.
To have equality in (2.86), we must have equality in all inequalities that we used. That
means:

m (∢AQM) = 90◦ − uBC,
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m (∢AMQ) = 90◦ − uCD,

m (∢BMN) = 90◦ − uCD,

m (∢BNM) = 90◦ − uDA,

m (∢CNP) = 90◦ − uDA,

m (∢CPN) = 90◦ − uAB,

m (∢DPQ) = 90◦ − uAB,

and

m (∢DQP) = 90◦ − uBC.

That means, the equality holds if and only if MNPQM is a closed light-ray path. □

2.1. Some geometric properties. In this last subsection of the paper, we present some
geometric properties involving the quadrilateral closed light-ray paths. We introduce
the following terminology:

Definition 2.2. If ABCD is an acute cyclic quadrilateral and MNPQM is a closed light-ray
path, with M ∈ (AB), N ∈ (BC), P ∈ (CD), and Q ∈ (DA), then we say that:

• the diagonal AC is opposite to and the diagonal BD is transverse to the opposite sides
MN and PQ of the closed light-ray path MNPQM.

• the diagonal BD is opposite to and the diagonal AC is transverse to the opposite sides
NP and QM of the closed light-ray path MNPQM.

We introduce also the following convention:

Definition 2.3. Given three lines d, g, and h in the plane, we say that d, g, and h are concurent
if one of the following two situtions occurs:

• d ∩ g ∩ h ̸= ∅, that means the three lines share a common point in the regular plane.
• d ∥ g ∥ h, that means the three lines are parallel, and so they intersect at a point situated

on the line at infinity of the projective plane.

With this terminology, we have the following proposition:

Proposition 2.3. Every two opposite sides of any closed light-ray path in an acute cyclic quadri-
lateral and their opposite diagonal are concurrent.
More precisely, we have two possibilities:

• If an angle of the acute cyclic quadrilateral is not right (and consequently its opposite
angle is also not right), then the diagonal joining the vertices of these two opposite angles
and the two sides of any closed light-ray path, that are opposite to it, intersect at a point,
in the regular plane.

• If the acute cyclic quadrilateral has a right angle (and consequently its opposite angle
is also right), then the diagonal joining the vertices of these two opposite right angles is
parallel to the two sides of any closed light-ray path that are opposite to it.
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Proof. Let ABCD be an acute cyclic quadrilateral and MNPQM a closed light-ray path,
with M ∈ (AB), N ∈ (BC), P ∈ (CD), and Q ∈ (DA). Let us define the points:

{I1} := MN ∩ AC and {I2} := QP ∩ AC, (2.87)

with the convention that if MN ∥ AC, then I1 := ∞AC, and if QP ∥ AC, then I2 := ∞AC,
where ∞AC denotes the infinity point of the line AC in the projective plane.
We want to show that I1 = I2.

Applying Menelaus Theorem in the triangle ABC cut by the transversal I1NM, we have:

I1C
I1A

· MA
MB

· NB
NC

= +1, (2.88)

where we are working with oriented segments, and the + sign in front of the number
1 was put to remind us about this agreement. In (2.88), if I1 = ∞AC, then we make
the convention that I1C/I1A = ∞ACC/∞AC A := 1, in which case Menelaus Theorem
becomes Thales Theorem.
Applying Menelaus Theorem in the triangle ADC cut by the transversal I2PQ, we have:

I2C
I2A

· QA
QD

· PD
PC

= +1, (2.89)

with similar conventions as before.
It follows from (2.88) and (2.89) that:

I1C
I1A

=
MB
MA

· NC
NB

(2.90)

and
I2C
I2A

=
QD
QA

· PC
PD

. (2.91)
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To show that I1 = I2, since we are working with oriented segments, we must prove that:

I1C
I1A

=
I2C
I2A

. (2.92)

This means, via equations (2.90) and (2.91), that me must prove that:

MB
MA

· NC
NB

=
QD
QA

· PC
PD

, (2.93)

which, after dividing both sides by the right side, is equivalent to:

MB
MA

· NC
NB

· QA
QD

· PD
PC

= 1. (2.94)

The last equation, that we must prove, can be rewritten as:

MB
NB

· NC
PC

· PD
QD

· QA
MA

= 1, (2.95)

and in this moment, we are no longer working with oriented segments.
Indeed, using the Law of Sines in the triangles BMN, CNP, DPQ, and AQM, equation
(2.95) is equivalent to:

sin(β)

sin(α)
· sin(γ)

sin(β)
· sin(δ)

sin(γ)
· sin(α)

sin(δ)
= 1, (2.96)

which is obviously true.
Similarly, we can prove that the opposite sides NP and QM, of the closed light-ray path
MNPQM, and their opposite diagonal BD are concurrent.
It remains to discuss the case when MN and PQ are parallel.
We have MN ∥ PQ if and only if

m(∢MNP) + m(∢NPQ) = 180◦, (2.97)

as interior supplementary angles of the same side of the secant.
Equation (2.97) is equivalent to:

[180◦ − m(∢BNM)− m(∢CNP)] + [180◦ − m(∢CPN)− m(∢DPQ)] = 180◦,

which reduces further to the equation:

2β + 2γ = 180◦. (2.98)

Since β = 90◦ − uDA and γ = 90◦ − uAB, equation (2.98) is equivalent to:

uDA + uAB = 90◦, (2.99)

which means that:

m(∢BCD) = 90◦, (2.100)

and since ABCD is a cyclic quadrilateral, we also have:

m(∢DAB) = 180◦ − m(∢BCD)

= 90◦. (2.101)

That means, the diagonal BD is a diameter of the circumscribed circle of the cyclic
quadrilateral ABCD.
Similarly, the case NP ∥ QM is equivalent to m(∢ABC) = m(∢CDA) = 90◦. □
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We also have the following lemma:

Lemma 2.1. In an acute cyclic quadrilateral, the bisectors of any two consecutive interior angles,
of a closed light-ray path, intersect at a point located on the diagonal, of the quadrilateral, that
is transverse to their common side. That means, if ABCD is an acute cyclic quadrilateral and
MNPQM is a closed light-ray path, with M ∈ (AB), N ∈ (BC), P ∈ (CD), and Q ∈ (DA),
and if bM and bQ denote the bisectors of the angles ∢QMN and ∢MQP, respectively, then we
have:

bM ∩ bQ ∩ AC ̸= ∅. (2.102)

Proof. Let us denote:

bQ ∩ bM = {JQM} . (2.103)

Since bM is the interior bisector of ∢QMN, and AB is the exterior bisector of ∢QMN
(because m(∢AMQ) = m(∢BMN) = α), we have bM⊥AB.
Similarly, we have bQ⊥DA.
Thus, we obtain:

m(∢AMJQM) + m(∢AQJQM) = 90◦ + 90◦

= 180◦. (2.104)

Therefore, the quadrilateral AMJQMQ is cyclic. This implies:

m (∢MAJQM) = m (∢MQJQM)

= m (∢AQJQM)− m (∢AQM)

= 90◦ − δ

= 90◦ − (90◦ − uBC)

= uBC

= m(∢BAC). (2.105)

Since m(∢MAJQM) = m(∢BAC), we conclude that the points A, JQM, and C are collinear.
□

Corollary 2.1. In an acute cyclic quadrilateral, every two opposite sides of a closed light-ray path
are symmetric about their opposite diagonal.
Moreover, the circum-light-ray path, formed by the feet of the perpendicualars dropped from the
point of intersection of the diagonals to the sides of the acute cyclic quadrileteral is the only
closed light-ray path whose sides form a tangential (circumscriptible) quadrilateral, that means a
quadrilateral for which there exists a circle that is tangent to all of its four sides.

Proof. Indeed, with the notations from before, we know from the previous lemma that
the point JQM belongs to the diagonal AC of the acute cyclic quadrilateral ABCD.
We distinguish between two cases:
Case 1. If MN and PQ are not parallel, then let MN ∩ PQ := {I1}.
Since bM and bQ are the bisectors of the angles of the quadrilateral MNPQ, we have two
possibilities:

• If N is located in between M and I1, and P is located in between Q and I1, then
JQM is the center of the incircle of the triangle I1QM. Thus the point JQM is located
on the bisector of the angle ∢MI1Q. Therefore, the line I1 JQM is the bisector of
the angle ∢MI1Q. Since the line I1 JQM coincides with the line AC, we conclude

222



Quadrilaterals that allow closed light-ray paths

D

C

B

A

M

P

N

Q

α

α β

β

γ

γ
δ

δ

JQM

bM

bQ

Figure 8. M8

that the line AC is the bisector of the angle ∢MI1Q. Therefore, the lines MN and
QP are symmetric about the line AC.

• If M is located in between N and I1, and Q is located in between P and I1, then
JQM is the center of the excircle of the triangle I1QM that touches the side QM
in its interior. Thus again the point JQM is located on the bisector of the angle
∢MI1Q, and as before we conclude that the lines MN and QP are symmetric
about the line AC.

Case 2. If MN ∥ QP, then we know that AC is also parallel to MN and QP, and the point
of intersection of the bisectors bM and bQ, JQM, is located on the diagonal AC. Therefore,
the line AC is the parallel drawn from the point JQM to the lines MN and QP.
Let K, L, and R be the feet of the perpendiculars dropped from JQM to the lines MN, QP,
and MQ. See Fig. 10. Since MN ∥ QP, the points K, JQM, and L are collinear.
Since JQM is on the bisector bM of the angle ∢QMN, JQM is equally far away from the
sides MN and MQ of this angle. Thus, we have:

JQMK = JQMR. (2.106)

Since JQM is on the bisector bQ of the angle ∢PQM, JQM is equally far away from the
sides QP and QM of this angle. Thus, we have:

JQML = JQMR. (2.107)

It follows from equations (2.106) and (2.107), by trasitivity, that:

JQMK = JQML. (2.108)

Since KL is perpendicular to both MN and QP, it follows from equation (2.108) that JQM
is equally far away from the lines MN and QP, and thus since AC is the parallel drawn
from the point JQM to the lines MN and QP, the line QP is the symmetric of the line MN
with respect to the line (mirror) AC. □
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Finally, we can see that the quadrilateral MNPQ is tangential if and only if the bisectors
bM, bN , bP, and bQ of its angles are all concurrent at a point I, that is the center of the
inscribed circle in the quadrilateral MNPQ. Since bM and bN intersect at a point JMN
that belongs to the diagonal BD of ABCD, while bN and bP intersect at a point JNP that
belongs to the diagonal AC of ABCD, in order for the points JMN and JNP to coincide,
we must have that I := JMN = JNP is the point of the intersection of the diagonals BD
and AC of the acute cyclic quadrilateral ABCD. Thus, M, N, P, and Q must be the
feet of the perpendiculars dropped from the point I of intersection of the diagonals AC
and BD to the sides AB, BC, CD, and DA of ABCD. Therefore, MNPQM must be the
circum-light-ray path.
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