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DISTANCES INVOLVING NOTABLE POINTS F+, F−, J+, J−

TEMISTOCLE BÎRSAN

Abstract. In this paper, formulas are obtained for the distances of the points F+, F−,
J+, J− at points O, G, H, N, K as well as between them. The formulae express these
distances by ∆, l+, l− and f (see (1.1), (1.13)), and finally by a, b, c. As an application,
one remark on Evans’ conic and another on the triangle OKM are made.

Consider a reference triangle ABC and assume that a > b > c, without restricting the
generality. Denote the Fermat (or isogonic) points of the triangle ABC by F+ and F−,
and the isodynamic points by J+ and J−. We utilize the standard notations of triangle
geometry. So, we consider known the meanings of the notations O,H,G,K or R and ∆.
We also denote N the nine-point center and M the midpoint of HG. The purpose of
this note is to find a lot of formulas for the distances of points F+, F−, J+, J− to points
O,H,G,K and M , as well as between them, all these formulas expressed by a, b, c. Finally,
we use the formulas found in two applications. We do not use barycentric or trilinear
coordinates; all problems are dealt with in an elementary way.
The properties of the points used in this work are generally well known. There are many
studies on these notable points. We quote a few: [11], [12], [1], [6], [10], [7], [8]. Recently,
in this journal appeared the paper [9] which contains forty-five distances between various
notable points of a triangle.

1. Preliminaries

Let A+ and A− be the vertices of the equilateral triangles built on the BC outside and
inside the triangle ABC, respectively; similar for B+, B− and C+, C−(Fig. 1). It is known
that F+ = AA+∩BB+∩CC+ and F− = AA−∩BB−∩CC− and that AA+ = BB+ = CC+

and AA− = BB− = CC− For the common lengths of these segments, denoted l+ and l−,
we have [6, p. 220]:

l2+ =
1

2

(
a2 + b2 + c2 + 4

√
3∆
)
, l2− =

1

2

(
a2 + b2 + c2 − 4

√
3∆
)
. (1.1)

Let ϕA, ϕB, ϕC be the angles defined by

ϕA = ĥa,ma, ϕB = ĥb,mb, ϕC = ĥc,mc (1.2)
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Figure 1

(ha,ma− lengths of the altitude and median corresponding to BC, etc.). Denote A′, B′, C ′

the midpoints of the sides BC,CA,AB and D,E, F the feet of the perpendicular from
the vertices A,B,C on the oposite sides BC,CA,AB of the triangle ABC. We have:

DA′ =
|b2 − c2|

2a
, EB′ =

|c2 − a2|
2b

, FC ′ =
|a2 − b2|

2c
, (1.3)

By applying the sine and cosine laws to triangle ADA′ we deduce the formulas:

sinϕA =
|b2 − c2|

2ama
, cosϕA =

ha
ma

=
2∆

ama
, (1.4)

and then their analogues for ϕB and ϕC .
In addition to the assumption a > b > c, we will consider two cases:

I. A > B > π
3 > C,

II. A > π
3 > B > C.

Then, it is easy to determine what is the position of the point F− in the plane of the
triangle in each of these cases (Fig. 1). Denote α+ (resp. α−) the measure of the

counterclockwise oriented angle B̂AA+ (resp. B̂AA−); β+, β− and γ+, γ− are similarly
defined. These angles, as well as the angles ϕA, ϕB and ϕC , were introduced in [4]. Their
use allows for an elementary approach to the intended purpose. Due to the assumption
a > b > c, we will only need the angles ϕA, α+, α−.The next two statements appear in
the cited work; for the convenience of the rader, we again state and prove it.

Lemma 1.1. We have:

sinα+ =
4∆ +

√
3
(
c2 + a2 − b2

)
4cl+

, cosα+ =
b2 + 3c2 − a2 + 4

√
3∆

4cl+
; (1.5)

sinα− =
4∆−

√
3
(
c2 + a2 − b2

)
4cl−

, cosα− =
b2 + 3c2 − a2 − 4

√
3∆

4cl−
, (1.6)

and formulas for β+, γ+ and β−, γ− cyclically obtained from them.
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Proof. In both cases mentioned above, it is enough to apply the sine and cosine formulas
to the triangles ABA+ and ABA−. For example,

sinα+ =
a sin

(
B +

π

3

)
l+

=
a
(
sinB +

√
3 cosB

)
2l+

=
4∆ +

√
3
(
c2 + a2 − b2

)
4cl+

,

and

cosα+ =
l2+ + c2 − a2

2cl+
=
b2 + 3c2 − a2 + 4

√
3∆

4cl+

(I used the formulas sinB =
2∆

ca
and cosB =

c2 + a2 − b2

2ca
). �

Lemma 1.2. The distances of F+ and F− to the vertix A are given by the formulas

F+A =
1

2
√

3

4∆ +
√

3
(
b2 + c2 − a2

)
l+

, F−A =
1

2
√

3

4∆−
√

3
(
b2 + c2 − a2

)
l−

. (1.7)

Proof. Consider the triangle F+AB.

Note that ÂF+B =
2π

3.
and ÂBF+ = π −

(
α+ +

2π

3

)
. By the sine formula,

F+A = sin

[
π −

(
α+ +

2π

3

)]
c

sin 2π
3

.

Taking into account (1.5), we get the first formula. For the second we can do the same
in the triangle F−AB. �

We will routinely use the following identities:

16∆2 = 2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4 (Heron), (1.8)

l2+ + l2− = a2 + b2 + c2, l2+ − l2− = 4
√

3∆, (1.9)

4l2+l
2
− =

(
a2 + b2 + c2

)2 − 3 · 16∆2

= 2
[(
a2 − b2

)2
+
(
a2 − c2

)2
+
(
b2 − c2

)2]
,

(1.10)

9a2b2c2 − 16∆2
(
a2 + b2 + c2

)
= f (a, b, c) , (1.11)

a8 + b8 + c8 − a6b2 − a2b6 − a6c2 − a2c6 − b6c2 − b2c6

= 5a2b2c2
∑
a2 − 8∆2

∑(
a2 + b2

)2
,

(1.12)

where

f (a, b, c) = a6 + b6 + c6 + 3a2b2c2 − a4b2 − a2b4 − a4c2 − a2c4 − b4c2 − b2c4. (1.13)

The points mentioned above are notable points of the triangle. They are located on three
important axes of the triangle: the Euler line OH, the Brocard axis OK, and the Fermat
axis F+F−. These axes determine the triangle OKM (Fig. 2).
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Figure 2

2. Distances between F+, F− and G,H,O,M,N,K

We will calculate these distances using the cosine law, median theorem or Stewart’s theo-
rem.
Denote X+ the point at which AF+ intersects the side BC. We need the following result:

Lemma 2.1. The points A′, X+, D are placed on the side BC in the order
B −D −X+ −A′ − C.

Proof. Because a > b > c, we have B −D −A′ −C. According to the same assumptions,
it follows that the quadrilateral ADA+A

′ is convex (Fig. 1). The point of intersection of
its diagonals, X+, is inside them, hence D −X+ −A′. �

Proposition 2.1. The distances between Fermat points F+, F− and the centroid G are
given by

F+G =
1

3
l−, (2.1)

and

F−G =
1

3
l+. (2.2)

Proof. By Lemma 2.1, and applying the cosine law to triangle AF+G, we have:

F+G
2 = F+A

2 +AG2 − 2F+A ·AG · cos F̂+AG.

In both of the cases mentioned above, I and II, we have (Fig. 1):

F̂+AG = B̂AG− B̂AA+ =
[(π

2
−B

)
+ ϕA

]
− α+ =

π

2
− (B + α+ − ϕA) .

Hence
cos F̂+AG = sin (B + α+ − ϕA) .

Taking into account (1.4), (1.5), and the formula 4m2
a = 2b2 + 2c2 − a2, we have:

cos F̂+AG = sin (B + α+ − ϕA) = sin (B + α+) cosϕA − cos (B + α+) sinϕA

= [sinB cosα+ + cosB sinα+]
2∆

ama
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− [cosB cosα+ − sinB sinα+]
b2 − c2

2ama

=

[
2∆

ac

2∆

ama
− a2 + c2 − b2

2ac

b2 − c2

2ama

]
cosα+

+

[
a2 + c2 − b2

2ac

2∆

ama
+

2∆

ac

b2 − c2

2ama

]
sinα+

=
1

4cma

[(
b2 + 3c2 − a2

)
cosα+ + 4∆ sinα+

]
=

1

4mal+

(
2b2 + 2c2 − a2 + 4

√
3∆
)

=
1

mal+

(√
3∆ +m2

a

)
.

Therefore,

F+G
2 =

(
1

2
√

3

4∆ +
√

3
(
b2 + c2 − a2

)
l+

)2

+
4

9
m2
a −

−2 · 1

2
√

3

4∆ +
√

3
(
b2 + c2 − a2

)
l+

· 2

3
ma ·

1

mal+

(√
3∆ +m2

a

)
,

and, after a routine calculation, we get:

F+G
2 =

1

18l2+

[(
a2 − b2

)2
+
(
a2 − c2

)2
+
(
b2 − c2

)2]
=

1

9
l2−;

hence, the formula (2.1) is proven.
Now, we calculate the distance F−G in the same manner. By the cosine law applied to
the triangle F−AG, we have:

F−G
2 = F−A

2 +AG2 − 2F−A ·AG cos F̂−AG.

It is easy to see that in case I (Fig. 1a) F̂−AG = F̂−AB + B̂AG = (π − α−) +[(π
2
−B

)
+ ϕA

]
=

3π

2
− (B + α− − ϕA) , and in case II (Fig. 1b) F̂−AG = B̂AG −

B̂AF− =
[(π

2
−B

)
+ ϕA

]
− (α− − π) =

3π

2
− (B + α− − ϕA) (Fig. 1). So, in both

cases, we have cos F̂−AG = − sin (B + α− − ϕA) , and as above, we get:

cos F̂−AG =
1

mal−

(√
3∆−m2

a

)
.

It follows that

F−G
2 =

(
1

2
√

3

4∆−
√

3
(
b2 + c2 − a2

)
l−

)2

+
4

9
m2
a −

−2 · 1

2
√

3

4∆−
√

3
(
b2 + c2 − a2

)
l−

· 2

3
ma ·

1

mal−

(√
3∆−m2

a

)
,
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and finally

F−G
2 =

1

18l2−

[(
a2 − b2

)2
+
(
a2 − c2

)2
+
(
b2 − c2

)2]
=

1

9
l2+,

and the proof is complete. �

Remark 2.1. Formulas (2.1) appear in [13, p.110], written with other notations and
demonstrated with Leibniz’s identity.

Proposition 2.2. The distances between Fermat points F+, F− and the orthocenter H
are given by

F+H
2 =

g(a, b, c)

48∆2l2+
=

1

6l2+

[
12R2

(
a2 + b2 + c2

)
−
∑(

a2 + b2
)2]

, (2.3)

and

F−H
2 =

g(a, b, c)

48∆2l2−
=

1

6l2−

[
12R2

(
a2 + b2 + c2

)
−
∑(

a2 + b2
)2]

, (2.4)

where
g(a, b, c) = a8 + b8 + c8 + a2b2c2

(
a2 + b2 + c2

)
−a6b2 − a2b6 − a6c2 − a2c6 − b6c2 − b2c6.

(2.5)

Proof. By the cosine law applied to triangle AF+H (Fig. 1), we have:

F+H
2 = F+A

2 +AH2 − 2F+A ·AH · cos F̂+AH.

But,

AH = 2R cosA = R
b2 + c2 − a2

bc
=
a
(
b2 + c2 − a2

)
4∆

,

and

cos F̂+AH = cos
(
B̂AF+ − B̂AD

)
= cos

[
α+−

(π
2
−B

)]
= sin (B+α+) = ...

=
1

2al+

(
4∆ +

√
3a2
)
.

Substituting the expression of F+A given by (1.7), and the expressions found for AH and

cos F̂+AH in the previous equation and then making routine calculations, we will get:

F+H
2 =

1

48∆2l2+
g(a, b, c).

Now, using the identity (1.12),

g(a, b, c) = 6a2b2c2
∑

a2 − 8∆2
∑(

a2 + b2
)2

= 6 · 16∆2R2 ·
∑

a2 − 8∆2
∑(

a2 + b2
)2

= 8∆2
[
12R2

(
a2 + b2 + c2

)
−
∑(

a2 + b2
)2]

.

Hence,

F+H
2 =

1

6l2+

[
12R2

(
a2 + b2 + c2

)
−
∑(

a2 + b2
)2]

,

and the proof of (2.3) is finished. The formula (2.4) is established in the same way. The
proof is complete. �
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Proposition 2.3. The distances between F+, F− and O are given by the formulas

F+O
2 =

1

144∆2l2+

[
32∆2l2+l

2
− +

(
2l2+ − l2−

)
f
]
, (2.6)

and

F−O
2 =

1

144∆2l2−

[
32∆2l2+l

2
− +

(
2l2− − l2+

)
f
]
. (2.7)

Proof. Applying the cosine law to the triangle AF+O,

F+O
2 = F+A

2 +AO2 − 2F+A ·AO cos F̂+AO.

But cos F̂+AO = cos
(
A− B̂AF+ − ÔAC

)
= cos

[
A− α+ −

(π
2
−B

)]
= sin (C + α+) = sinC cosα+ + cosC sinα+. By (1.5), we get in the end

cos F̂+AO =
1

4abcl+

{√
3
[
a2
(
b2 + c2

)
−
(
b2 − c2

)2]
+ 4∆

(
b2 + c2

)}
.

Then, to find F+O, it remains to substitute in the previous equation F+A, AO and

cos F̂+AO by their expressions. To obtain F+O in the form (2.6), during the calculation
we must always take care to enter the lengths l+ and l−.
We do the same to establish formula (2.7). The proof is complete. �

Remarks 2.2. Since we know the distances between Fermat points F+, F− and the
points G and H, the formulas (2.6) and (2.7 ) can also be obtained by applying Stewart’s
theorem to the triangles GF+H and GF−H. More, if the distances between F+, F− and
the points G and H are known, we can calculate the distances between F+, F− at other
points on the Euler line using the median theorem or Stewart’s theorem. Such is the case
with O, M, N, DeLongchamps point, and many other points making a constant distance-
ratios on the Euler line [7, p. 140]. When possible, it is preferable to use these theorems
instead of the cosine law.

Proposition 2.4. The distances between F+, F− and M are given by

F+M =

√
f

12∆
· l−
l+
, (2.8)

and

F−M =

√
f

12∆
· l+
l−
. (2.9)

Proof. It is known that HG =
2

3
OH and that OH2 = 9R2−

(
a2 + b2 + c2

)
. But, we have:

OH2 = 9
a2b2c2

16∆2
−
(
a2 + b2 + c2

)
=

1

16∆2

[
9a2b2c2 − 16∆2

(
a2 + b2 + c2

)]
,

and, by (1.11), OH2 =
f

16∆2
. Hence,

OH =

√
f

4∆
and HG =

√
f

6∆
. (2.10)

Applying the median theorem to the triangle F+HG, we have:

4F+M
2 = 2F+H

2 + 2F+G
2 −HG2.
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By (2.10) and Propositions 2.1 and 2.2, we obtain:

4F+M
2 =

g

24∆2l2+
+

2

9
l2− −

f

36∆2
=

1

72∆2l2+

(
3g + 16∆2l2+l

2
− − 2l2+f

)
=

1

72∆2l2+

[
2
(
a2 + b2 + c2

)
f − 2l2+f

]
=

1

72∆2l2+
· 2l2−f =

l2−f

36∆2l2+
.

Therefore,

F+M
2 =

f

144∆2
·
l2−
l2+
.

So, the formula (2.8) is true. In the same way it is shown (2.9). The proof is complete. �

Proposition 2.5. The distances between F+, F− and the point N are given by

F+N
2 =

1

576∆2l2+

[
32∆2l2+l

2
− +

(
2l2− − l2+

)
f
]
, (2.11)

and

F−N
2 =

1

576∆2l2−

[
32∆2l2+l

2
− +

(
2l2+ − l2−

)
f
]
. (2.12)

Proof. F+N is median in the triangle F+GM (Fig. 3). We have:

4F+N
2 = 2F+G

2 + 2F+M
2 −GM2.

Taking into account the formulas (2.1), (2.8), (2.10), and GM = 1
2HG, by a simple

calculation we obtain the formula (2.11).
F−N is calculated similarly. This concludes the proof. �

Next, we need some elementary properties of symmedian AK and Fermat cevian AF+.
Just as in the case of the A-angle bisector, we obtain:

Lemma 2.2. Let L and X+ be the feet of the symmedian AK and Fermat cevian AF+

on the side BC. Then,

1) BL =
ac2

b2 + c2
, AL =

2bcma

b2 + c2
, AK =

2bcma

a2 + b2 + c2
;

2) BX+ = a
4∆ +

√
3
(
c2 + a2 − b2

)
2
(
4∆ +

√
3a2
) , AX+ =

4∆l+

4∆ +
√

3a2
,

AF+ =
1

2
√

3

4∆ +
√

3
(
b2 + c2 − a2

)
l+

.

Proof. 1) These equations are well-known (see, for example, [12]).
2) Applying twice the sine law to triangle ABX+, we have:

AX+ =
c sinB

sin (B + α+)
and BX+ =

c sinα+

sin (B + α+)
,

and, taking into account (1.5), we find the first and second formula. The third formula
was demonstrated in Lemma 1.2. �

Lemma 2.3. If a > b > c, then the order of the feet of the symmedian AK and Fermat
cevian AF+ on the side BC is B − L−X+ − C.
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Proof. We have to prove that BL < BX+ or, equivalently,

ac2

b2 + c2
< a

4∆ +
√

3
(
c2 + a2 − b2

)
2
(
4∆ +

√
3a2
) .

We rewrite this inequality in the form of

4∆ >
√

3
(
b2 + c2 − a2

)
.

Then, bc sinA >
√

3bc cosA. Hence, tanA >
√

3, what is true in condition a > b > c. �

Proposition 2.6. The distances between F+, F− and the symmedian point K are given by

F+K =

√
f√

3
(
l2+ + l2−

) l−
l+
, (2.13)

and

F−K =

√
f√

3
(
l2+ + l2−

) l+
l−
. (2.14)

Proof. Consider the triangle AKF+. The lengths of the sides AK and AF+ are known
(Lemma 2.2). Taking into account Lemma 2.3, we have

cos F̂+AK = cos
(
B̂AF+ − B̂AK

)
= cos

(
B̂AF+ − ĈAA′

)
= cos

[
α+ −

((π
2
− ϕA

)
− C

)]
,

hence cos F̂+AK = sin (α+ + C + ϕA) . Using (1.5), finally we get:

cos F̂+AK =
1

8bcmal+

[
b4 + c4 + 6b2c2 − a2b2 − a2c2 + 4

√
3∆
(
b2 + c2

)]
.

Now, we are ready to apply the cosine law to considered triangle. We have:

F+K
2 = F+A

2 +AK2 − 2F+A ·AK · cos F̂+AK,

Substituting the terms on the right by their expressions found above and performing the
calculations, we are led to the formula (2.13).
The formula (2.14) is demonstrated the same. The proof is complete. �

Remark 2.3. Above, I used tacitly the fact that points G, H, O, M, N are collinear and
some equalities in the sequence 2OH = 3HG = 6OG = 4ON = 12GN .

Below, we need the well known property that points F+, F−, K, Mare collinear and lie
on the Fermat axis in the order F−−K−F+−M . Let’s give a simple justification for this
statement. We use the formula (4.1), Section 4. Then, taking into account (2.13), (2.14),
(2.8), (2.9 ), it is easy to verify that F−F+ = F−K + KF+ and F−M = F−F+ + F+M.
The desired claims follow.

3. Distances between J+, J− and G,H,O,K,M,N

We start the section with the mention that the angles ϕA, α+, α− do not have an obvious
utility for calculating the distances of the isodynamic points J+, J− to the points G, H,
O, K, M, N. Below, some results related to the orthocentroidal triangle will be useful.
The orthocentroidal circle of triangle ABC is the circle on HG as diameter. Obviously,
this circle contains the orthogonal projections A1, B1, C1 of G on the altitudes AD,BE,
and respectively CF . The triangle A1B1C1 is called the orthocetroidal triangle (Fig. 3).
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Figure 3

Lemma 3.1. Triangles ABC and A1B1C1 have the properties:

(i) they are (inversely) similar;
(ii) K is the symmedian point for both triangles;
(iii) the Fermat points of the triangle ABC are the isodynamic points of the ortho-

centroidal triangle A1B1C1, i.e. J+
1 = F+ and J−1 = F− (J+

1 , J
−
1 denote the

isodynamic points of the triangle A1B1C1.

See [4, Prop.5 and Th.10] for an elementary proof.

Remark 3.1. We need the following result: the points J+, J−, O, K are collinear and lie
on the Brocard axis in the order O−J+−K−J−. Indeed, according to the previous remark,
we have the order F− −K − F+ −M on the line F+F−. Also, according to the previous
lemma, the correspondence: O ←→M, K ←→ K, J+ ←→ F+, J− ←→ F− preserves the
order between homologous points. So, on the line OK we have J− −K − J+ −O.

As in the case of OH and HG (see (2.10)), we will give formulas for OK and KM that
are convenient in the calculations below.

Lemma 3.2. We have:

OK =
abcl+l−

2∆ (a2 + b2 + c2)
, KM =

l+l−
√
f

6∆ (a2 + b2 + c2)
. (3.1)

Proof. Indeed,

OK2 = R2 − 3a2b2c2

(a2 + b2 + c2)2
=
a2b2c2

16∆2
− 3a2b2c2

(a2 + b2 + c2)2

=
a2b2c2

[(
a2 + b2 + c2

)2 − 3 · 16∆2
]

16∆2 (a2 + b2 + c2)2
=

a2b2c2 · 2l2+ · 2l2−
16∆2 (a2 + b2 + c2)2

,

hence the first formula in (3.1).
On the other hand, the ratio of the similitude of the triangles ABC and A1B1C1 is given
by the ratio of the diameters of their circumcircles. So it is equal to

2R

HG
=
abc

2∆
· 6∆√

f
=

3abc√
f
,
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i.e.
2R

HG
=

3abc√
f
. (3.2)

According to Lemma 3.1, (i) and (ii), we have the following correspondence of points:
K ←→ K, O ←→M. Then,

KO

KM
=

2R

HG
, hence KM =

HG

2R
·OK =

√
f

3abc
· abcl+l−

2∆ (a2 + b2 + c2)
,

end the second formula of the cross reference (3.1) follows. �

Proposition 3.1. The distances between J+, J− and O are given by

J+O = R
l−
l+

=
abc

4∆
· l−
l+
, (3.3)

and

J−O = R
l+
l−

=
abc

4∆
· l+
l−
. (3.4)

Proof. Since triangles ABC and A1B1C1 are similar, we have the correspondences:

J+ ←→ J+
1 , O ←→M.

Hence,
J+O

J+
1 M

=
2R

HG
. By Lemma 3.1, (iii), J+

1 = F+. Therefore,

J+O = F+M ·
2R

HG
,

and taking into account (2.8), (3.2), we obtain the formula (3.3). Analogously, the formula
(3.4) is obtained. The proof is complete. �

Proposition 3.2. The distances between J+, J− and K are given by

J+K =

√
3abc

a2 + b2 + c2
· l−
l+
, (3.5)

and

J−K =

√
3abc

a2 + b2 + c2
· l+
l−
. (3.6)

Proof. Due to the similarity of the triangles ABC and A1B1C1, and Lemma 3.1, (ii) and
(iii), we have the correspondences: J+ ←→ F+, J− ←→ F−, K ←→ K. Therefore,

J+K = F+K ·
2R

HG
, and J−K = F−K ·

2R

HG
.

By (2.13), (2.14) and (3.2), we obtain the required formulas. The proof is complete. �

To find the distances from J+, J− to G, H, M, N we will use Stewart’s theorem (in
particular, the median theorem).

Proposition 3.3. The distances between J+, J− and M are given by

J+M
2 =

1

144∆2l2+

(
32∆2l4− + 2l2+f − 9a2b2c2l2−

)
, (3.7)

and

J−M
2 =

1

144∆2l2−

(
32∆2l4+ + 2l2−f − 9a2b2c2l2+

)
. (3.8)
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Proof. Consider the triangle MKO and apply Stewart’s theorem to this triangle and the
cevians MJ+ and MJ− (Fig. 3). We have:

J+M
2 ·OK = MK2 · J+O +OM2 · J+K −OK · J+O · J+K,

J−M
2 ·OK = MK2 · J−O −OM2 · J−K +OK · J−O · J−K.

Substituting OK, MK, OM = HG, J+O, J−O, J+K, J−K by the expressions given by
(3.1), (2.10), (3.3), (3.4), (3.5), (3.6), we will finally obtain the formulas (3.7) and (3.8).
Thus achieves the proof. �

Proposition 3.4. The distances between J+, J− and G are given by

J+G =
1

3

l2−
l+
, (3.9)

and

J−G =
1

3

l2+
l−
. (3.10)

Proof. The centroid G is the midpoint of OM . Then, J+G, J−G are medians in the
triangles J+OM and J−OM, respectively. By the median theorem applied to the triangle
J+OM (Fig. 3), we have:

4J+G
2 = 2J+O

2 + 2J+M
2 −OM2.

Using the formulas (3.3), (3.7), (2.10), and performing the calculations, we obtain (3.9).
The formula (3.10) is shown in the same way. This completes the proof. �

Proposition 3.5. The distances between J+, J− and H are given by

J+H
2 =

1

24∆2l2+

(
8∆2l4− + l2+f − 3a2b2c2l2−

)
, (3.11)

and

J−H
2 =

1

24∆2l2−

(
8∆2l4+ + l2−f − 3a2b2c2l2+

)
. (3.12)

Proof. M is the midpoint of HG. Then, we have: 4J+M
2 = 2J+H

2 + 2J+G
2 − HG2.

Hence, we have

2J+H
2 = 4J+M

2 +HG2 − 2J+G
2,

and, similarly,

2J−H
2 = 4J−M

2 +HG2 − 2J−G
2.

It remains to perform routine calculations to obtain the required formulas. The proof is
complete. �

Proposition 3.6. The distances between J+, J− and N are given by

J+N
2 =

1

192∆2l2+

(
32∆2l4− + l2+f − 6a2b2c2l2−

)
, (3.13)

and

J−N
2 =

1

192∆2l2−

(
32∆2l4+ + l2−f − 6a2b2c2l2+

)
. (3.14)
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Proof. Applying the median theorem to the triangle J+HO, we have:

4J+N
2 = 2J+H

2 + 2J+O
2 −OH2.

Taking into account (3.11), (3.3), (2.10), by a simple calculation we get the formula (3.13).
The formula (3.14) is similarly obtained, which concludes the proof. �

4. Distances between F+, F−, J+, J−

In this section, we consider the following six distances: F+F−, J+J−, F+J+, F−J−, F+J−,
F−J+.

Proposition 4.1. For the distances F+F− and J+J− we have the formulas:

F+F− =
1√
3

√
f

l+l−
, (4.1)

and

J+J− =
√

3
abc

l+l−
. (4.2)

Proof. Applying the cosine law to triangle AF+F−, we get (Fig. 1):

F+F
2
− = F+A

2 + F−A
2 − 2F+A · F−A · cos F̂+AF−.

In the case of B >
π

3
,

cos F̂+AF− = cos
(
B̂AF+ + B̂AF−

)
= cos (α+ + π − α−) = − cos (α+ − α−) .

If B <
π

3
, then

cos F̂+AF− = cos
(
B̂AF+ − B̂AF−

)
= cos [α+ − (α− − π)] = − cos (α+ − α−) .

In both cases, we have:

cos F̂+AF− = − cos (α+ − α−) = − (cosα+ cosα− + sinα+ sinα−) .

Taking into account (1.5), (1.6), by a simple calculation we get

cos F̂+AF− = −−2a2 + b2 + c2

l+l−
.

Using this and the formulas (1.7), the preceding equation leads after calculations to (4.1).
On the other hand, from ABC ∼ A1B1C1 (Lemma 3.1) we have:

J+J−

J+
1 J
−
1

=
2R

HG
and J+J− = F+F− ·

2R

HG
.

By (4.1) and (3.2), it follows that

J+J− =
1√
3

√
f

l+l−
· 3abc√

f
=
√

3
abc

l+l−
,

that is (4.2) is true. The proof is complete. �

199



Temistocle B̂ırsan

Remark 4.1. The formulae (4.1) and (4.2) for the distances F+F− and J+J− can also
be written as follows:

F+F
2
− =

2

3

a6 + b6 + c6 + 3a2b2c2 − a4b2 − a2b4 − a4c2 − a2c4 − b4c2 − b2c4

(a2 − b2)2 + (a2 − c2)2 + (b2 − c2)2
,

J+J
2
− =

3

2

a2b2c2

(a2 − b2)2 + (a2 − c2)2 + (b2 − c2)2
,

or, using Conway triangle notations,

F+F
2
− =

2

3

a2S2
A + b2S2

B + c2S2
C − 6SASBSC

(SB − SC)2 + (SC − SA)2 + (SA − SB)2
,

J+J
2
− =

3

2

(SB + SC) (SC + SA) (SA + SB)

(SB − SC)2 + (SC − SA)2 + (SA − SB)2
.

In the next step we will use the following result:

Lemma 4.1. The lines F+J+, F−J− are parallel to each other and to Euler line.

Proof. We only detail that F+J+ ‖ OH. For this, we consider the triangles KF+J+ and

KMO (Fig. 2). We have: K̂ = K̂, and
KF+

KM
=
KJ+
KO

(by calculation and using (2.13),

(3.1), (3.5)). These triangles are similar, and it follows that F+J+ is parallel toMO (orOH).
For F−J− ‖ OH, the triangles KF−J− and KMO are considered. �

Proposition 4.2. For the distances F+J+ and F−J− we have the formulae:

F+J+ =
1√
3

√
f

l2+
, (4.3)

and

F−J− =
1√
3

√
f

l2−
. (4.4)

Proof. From F+J+ ‖ OH, it follows that
F+J+
MO

=
KJ+
KO

. Then, we have:

F+J+ = MO · KJ+
KO

=

√
f

6∆
·
√

3abc

a2 + b2 + c2
l−
l+
·

2∆
(
a2 + b2 + c2

)
abcl+l−

=
1√
3

√
f

l2+
.

F−J− is calculated similarly. This concludes the proof. �

Proposition 4.3. For the distances F+J− and F−J+ we have the formulas:

F+J− =
4
√

3∆

3l−
=
l2+ − l2−

3l−
, (4.5)

and

F−J+ =
4
√

3∆

3l+
=
l2− − l2+

3l−
. (4.6)

Proof. Consider the triangle F+J+J− and the cevian F+K. Using Stewart’s theorem, we
get:

(F+J−)2 ·KJ+ = F+K
2 · J+J− + J+J− ·KJ+ ·KJ− − (F+J+)2 ·KJ−.

Substituting KJ+, KJ−, F+K, J+J−, F+J+ by their expressions given by (3.5), (3.6),
(2.13), (4.2), respectively (4.3) and by performing the calculations, we get the formula
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(4.5). Then, considering the triangle F−J+J− and the cevian F−K, by applying the same
theorem we obtain the formula (4.6). The proof is complete. �

5. Two applications

I. Remarks on Evans conic. In the paper [5], L.S. Evans demonstrates that there is a
conic which passes through the following notable points: F+, F−, J+, J−, N+, and N−
(N+, N− are inner and outer Napoleon points of the triangle ABC). More, he informs the
reader that Peter Yff has calculated the equation of this conic, and Paul Yiu has found
criteria for it to be an ellipse, parrabola, or a hyperbola. Next, this conic will be called
Evans conic and will be denoted E .

Using Lemma 4.1 and Proposition 4.3 we will easily show the following result:

Proposition 5.1. The statements

(i) E can not be circle, and
(ii) if E is ellipse or hyperbole, then its center lies on the line GK

are true.

Proof. (i) If E were a circle, then the points F+, F−, J+, J− would be concyclic (Fig. 4).
By Lemma 4.1, the cyclic quadrilateral F+J+F−J− would be isosceles trapezium, that is
F+J− = F−J+. So, according to (4.5) and (4.6 ), we would have:

4
√

3∆

3l−
=

4
√

3∆

3l+
,

i.e. l+ = l−. Absurd.
(ii) According to Lemma 4.1, the cords F+J+ and F−J− of the ellipse E are parallel to
the Euler line (Fig. 4). Since the triangles KMO, KF+J+ and KF−J− are similar, we
deduce that the midpoints of the cords F+J+ and F−J− lie on the line KG. Therefore,
KG passes through the center of E . The proof is complete. �

Figure 4
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II. Triangle OMK. This triangle is determined by the Brocard and Fermat axes and Euler
line. Like the triangle OHI, it plays an important role in the geometry of the triangle. We
will highlight some properties of the triangle OMK, using the results from the previous
sections.

Proposition 5.2. Triangle OMK is isosceles, with OK = OM , if and only if

R2 =

(
a2 + b2 + c2

)3
27 (a2b2 + a2c2 + b2c2)

. (5.1)

Proof. We have:

OK = OM ⇐⇒ abcl+l−
2∆ (a2 + b2 + c2)

=

√
f

6∆
⇐⇒ 3abcl+l− =

√
f
(
a2 + b2 + c2

)
⇐⇒ 9a2b2c2l2+l

2
− =

[
9a2b2c2 − 16∆2

(
a2 + b2 + c2

)] (
a2 + b2 + c2

)2
⇐⇒ 9a2b2c2

[
l2+l

2
− −

(
a2 + b2 + c2

)2]
= −16∆2

(
a2 + b2 + c2

)3
⇐⇒ 9R2

[
l2+l

2
− −

(
a2 + b2 + c2

)2]
= −

(
a2 + b2 + c2

)3
⇐⇒ R2 =

(
a2 + b2 + c2

)3
27 (a2b2 + a2c2 + b2c2)

,

and the statement is proved. �

Remark 5.1. Two other sides of the triangle OMK cannot be equal. Indeed, according
to the formulas (2.10) and (3.1) for the lenghts of OM , OK, and KM , we have: OM =
KM ⇐⇒ l+l− = a2 + b2 + c2, absurd, and, on the other hand, OK = KM ⇐⇒ abc =√
f ⇐⇒ a2b2c2 − f = 0⇐⇒ 16∆2

(
a2 + b2 + c2

)
= 0, absurd.
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