DISTANCES INVOLVING NOTABLE POINTS $F_{+}, F_{-}, J_{+}, J_{-}$

TEMISTOCLE BÎRSAN

Abstract

In this paper, formulas are obtained for the distances of the points F_{+}, F_{-}, J_{+}, J_{-}at points O, G, H, N, K as well as between them. The formulae express these distances by Δ, l_{+}, l_{-}and f (see (1.1), (1.13)), and finally by a, b, c. As an application, one remark on Evans' conic and another on the triangle $O K M$ are made.

Consider a reference triangle $A B C$ and assume that $a>b>c$, without restricting the generality. Denote the Fermat (or isogonic) points of the triangle $A B C$ by F_{+}and F_{-}, and the isodynamic points by J_{+}and J_{-}. We utilize the standard notations of triangle geometry. So, we consider known the meanings of the notations O, H, G, K or R and Δ. We also denote N the nine-point center and M the midpoint of $H G$. The purpose of this note is to find a lot of formulas for the distances of points $F_{+}, F_{-}, J_{+}, J_{-}$to points O, H, G, K and M, as well as between them, all these formulas expressed by a, b, c. Finally, we use the formulas found in two applications. We do not use barycentric or trilinear coordinates; all problems are dealt with in an elementary way.
The properties of the points used in this work are generally well known. There are many studies on these notable points. We quote a few: [11], [12], [1], [6], [10], [7], [8]. Recently, in this journal appeared the paper [9] which contains forty-five distances between various notable points of a triangle.

1. Preliminaries

Let A_{+}and A_{-}be the vertices of the equilateral triangles built on the $B C$ outside and inside the triangle $A B C$, respectively; similar for B_{+}, B_{-}and C_{+}, C_{-}(Fig. 1). It is known that $F_{+}=A A_{+} \cap B B_{+} \cap C C_{+}$and $F_{-}=A A_{-} \cap B B_{-} \cap C_{-}$and that $A A_{+}=B B_{+}=C C_{+}$ and $A A_{-}=B B_{-}=C C_{-}$For the common lengths of these segments, denoted l_{+}and l_{-}, we have [6, p. 220]:

$$
\begin{equation*}
l_{+}^{2}=\frac{1}{2}\left(a^{2}+b^{2}+c^{2}+4 \sqrt{3} \Delta\right), \quad l_{-}^{2}=\frac{1}{2}\left(a^{2}+b^{2}+c^{2}-4 \sqrt{3} \Delta\right) \tag{1.1}
\end{equation*}
$$

Let $\varphi_{A}, \varphi_{B}, \varphi_{C}$ be the angles defined by

$$
\begin{equation*}
\varphi_{A}=\widehat{h_{a}, m_{a}}, \quad \varphi_{B}=\widehat{h_{b}, m_{b}}, \quad \varphi_{C}=\widehat{h_{c}, m_{c}} \tag{1.2}
\end{equation*}
$$

2010 Mathematics Subject Classification. 51M25.
Key words and phrases. Euler line; Brocard axis; Fermat axis; Fermat (isogonic) points; isodynamic points; Evans' conic.

Figure 1
(h_{a}, m_{a} - lengths of the altitude and median corresponding to $B C$, etc.). Denote $A^{\prime}, B^{\prime}, C^{\prime}$ the midpoints of the sides $B C, C A, A B$ and D, E, F the feet of the perpendicular from the vertices A, B, C on the oposite sides $B C, C A, A B$ of the triangle $A B C$. We have:

$$
\begin{equation*}
D A^{\prime}=\frac{\left|b^{2}-c^{2}\right|}{2 a}, \quad E B^{\prime}=\frac{\left|c^{2}-a^{2}\right|}{2 b}, \quad F C^{\prime}=\frac{\left|a^{2}-b^{2}\right|}{2 c} \tag{1.3}
\end{equation*}
$$

By applying the sine and cosine laws to triangle $A D A^{\prime}$ we deduce the formulas:

$$
\begin{equation*}
\sin \varphi_{A}=\frac{\left|b^{2}-c^{2}\right|}{2 a m_{a}}, \quad \cos \varphi_{A}=\frac{h_{a}}{m_{a}}=\frac{2 \Delta}{a m_{a}} \tag{1.4}
\end{equation*}
$$

and then their analogues for φ_{B} and φ_{C}.
In addition to the assumption $a>b>c$, we will consider two cases:
I. $A>B>\frac{\pi}{3}>C$,
II. $A>\frac{\pi}{3}>B>C$.

Then, it is easy to determine what is the position of the point F_{-}in the plane of the triangle in each of these cases (Fig. 1). Denote α_{+}(resp. α_{-}) the measure of the counterclockwise oriented angle $\widehat{B A A_{+}}$(resp. $\widehat{B A A_{-}}$); β_{+}, β_{-}and γ_{+}, γ_{-}are similarly defined. These angles, as well as the angles φ_{A}, φ_{B} and φ_{C}, were introduced in [4]. Their use allows for an elementary approach to the intended purpose. Due to the assumption $a>b>c$, we will only need the angles $\varphi_{A}, \alpha_{+}, \alpha_{-}$. The next two statements appear in the cited work; for the convenience of the rader, we again state and prove it.

Lemma 1.1. We have:

$$
\begin{array}{ll}
\sin \alpha_{+}=\frac{4 \Delta+\sqrt{3}\left(c^{2}+a^{2}-b^{2}\right)}{4 c l_{+}}, & \cos \alpha_{+}=\frac{b^{2}+3 c^{2}-a^{2}+4 \sqrt{3} \Delta}{4 c l_{+}} \\
\sin \alpha_{-}=\frac{4 \Delta-\sqrt{3}\left(c^{2}+a^{2}-b^{2}\right)}{4 c l_{-}}, & \cos \alpha_{-}=\frac{b^{2}+3 c^{2}-a^{2}-4 \sqrt{3} \Delta}{4 c l_{-}} \tag{1.6}
\end{array}
$$

and formulas for β_{+}, γ_{+}and β_{-}, γ_{-}cyclically obtained from them.

Proof. In both cases mentioned above, it is enough to apply the sine and cosine formulas to the triangles $A B A_{+}$and $A B A_{-}$. For example,

$$
\sin \alpha_{+}=\frac{a \sin \left(B+\frac{\pi}{3}\right)}{l_{+}}=\frac{a(\sin B+\sqrt{3} \cos B)}{2 l_{+}}=\frac{4 \Delta+\sqrt{3}\left(c^{2}+a^{2}-b^{2}\right)}{4 c l_{+}},
$$

and

$$
\cos \alpha_{+}=\frac{l_{+}^{2}+c^{2}-a^{2}}{2 c l_{+}}=\frac{b^{2}+3 c^{2}-a^{2}+4 \sqrt{3} \Delta}{4 c l_{+}}
$$

(I used the formulas $\sin B=\frac{2 \Delta}{c a}$ and $\cos B=\frac{c^{2}+a^{2}-b^{2}}{2 c a}$).
Lemma 1.2. The distances of F_{+}and F_{-}to the vertix A are given by the formulas

$$
\begin{equation*}
F_{+} A=\frac{1}{2 \sqrt{3}} \frac{4 \Delta+\sqrt{3}\left(b^{2}+c^{2}-a^{2}\right)}{l_{+}}, F_{-} A=\frac{1}{2 \sqrt{3}} \frac{4 \Delta-\sqrt{3}\left(b^{2}+c^{2}-a^{2}\right)}{l_{-}} . \tag{1.7}
\end{equation*}
$$

Proof. Consider the triangle $F_{+} A B$.
Note that $\widehat{A F_{+} B}=\frac{2 \pi}{3 .}$ and $\widehat{A B F_{+}}=\pi-\left(\alpha_{+}+\frac{2 \pi}{3}\right)$. By the sine formula,

$$
F_{+} A=\sin \left[\pi-\left(\alpha_{+}+\frac{2 \pi}{3}\right)\right] \frac{c}{\sin \frac{2 \pi}{3}} .
$$

Taking into account (1.5), we get the first formula. For the second we can do the same in the triangle $F_{-} A B$.

We will routinely use the following identities:

$$
\begin{gather*}
16 \Delta^{2}=2 a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}-a^{4}-b^{4}-c^{4} \text { (Heron), } \tag{1.8}\\
l_{+}^{2}+l_{-}^{2}=a^{2}+b^{2}+c^{2}, \quad l_{+}^{2}-l_{-}^{2}=4 \sqrt{3} \Delta, \tag{1.9}\\
4 l_{+}^{2} l_{-}^{2}=\left(a^{2}+b^{2}+c^{2}\right)^{2}-3 \cdot 16 \Delta^{2} \\
=2\left[\left(a^{2}-b^{2}\right)^{2}+\left(a^{2}-c^{2}\right)^{2}+\left(b^{2}-c^{2}\right)^{2}\right], \tag{1.10}\\
9 a^{2} b^{2} c^{2}-16 \Delta^{2}\left(a^{2}+b^{2}+c^{2}\right)=f(a, b, c), \tag{1.11}\\
a^{8}+b^{8}+c^{8}-a^{6} b^{2}-a^{2} b^{6}-a^{6} c^{2}-a^{2} c^{6}-b^{6} c^{2}-b^{2} c^{6} \\
\quad=5 a^{2} b^{2} c^{2} \sum a^{2}-8 \Delta^{2} \sum\left(a^{2}+b^{2}\right)^{2}, \tag{1.12}
\end{gather*}
$$

where

$$
\begin{equation*}
f(a, b, c)=a^{6}+b^{6}+c^{6}+3 a^{2} b^{2} c^{2}-a^{4} b^{2}-a^{2} b^{4}-a^{4} c^{2}-a^{2} c^{4}-b^{4} c^{2}-b^{2} c^{4} . \tag{1.13}
\end{equation*}
$$

The points mentioned above are notable points of the triangle. They are located on three important axes of the triangle: the Euler line $O H$, the Brocard axis $O K$, and the Fermat axis $F_{+} F_{-}$. These axes determine the triangle $O K M$ (Fig. 2).

Figure 2
2. Distances between F_{+}, F_{-}and G, H, O, M, N, K

We will calculate these distances using the cosine law, median theorem or Stewart's theorem.
Denote X_{+}the point at which $A F_{+}$intersects the side $B C$. We need the following result:
Lemma 2.1. The points A^{\prime}, X_{+}, D are placed on the side $B C$ in the order $B-D-X_{+}-A^{\prime}-C$.

Proof. Because $a>b>c$, we have $B-D-A^{\prime}-C$. According to the same assumptions, it follows that the quadrilateral $A D A_{+} A^{\prime}$ is convex (Fig. 1). The point of intersection of its diagonals, X_{+}, is inside them, hence $D-X_{+}-A^{\prime}$.
Proposition 2.1. The distances between Fermat points F_{+}, F_{-}and the centroid G are given by

$$
\begin{equation*}
F_{+} G=\frac{1}{3} l_{-} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{-} G=\frac{1}{3} l_{+} \tag{2.2}
\end{equation*}
$$

Proof. By Lemma 2.1, and applying the cosine law to triangle $A F_{+} G$, we have:

$$
F_{+} G^{2}=F_{+} A^{2}+A G^{2}-2 F_{+} A \cdot A G \cdot \cos \widehat{F_{+} A G}
$$

In both of the cases mentioned above, I and II, we have (Fig. 1):

$$
\widehat{F_{+} A G}=\widehat{B A G}-\widehat{B A A_{+}}=\left[\left(\frac{\pi}{2}-B\right)+\varphi_{A}\right]-\alpha_{+}=\frac{\pi}{2}-\left(B+\alpha_{+}-\varphi_{A}\right)
$$

Hence

$$
\cos \widehat{F_{+} A G}=\sin \left(B+\alpha_{+}-\varphi_{A}\right)
$$

Taking into account (1.4), (1.5), and the formula $4 m_{a}^{2}=2 b^{2}+2 c^{2}-a^{2}$, we have:

$$
\begin{aligned}
\cos \widehat{F_{+} A G} & =\sin \left(B+\alpha_{+}-\varphi_{A}\right)=\sin \left(B+\alpha_{+}\right) \cos \varphi_{A}-\cos \left(B+\alpha_{+}\right) \sin \varphi_{A} \\
& =\left[\sin B \cos \alpha_{+}+\cos B \sin \alpha_{+}\right] \frac{2 \Delta}{a m_{a}}
\end{aligned}
$$

$$
\begin{aligned}
& -\left[\cos B \cos \alpha_{+}-\sin B \sin \alpha_{+}\right] \frac{b^{2}-c^{2}}{2 a m_{a}} \\
= & {\left[\frac{2 \Delta}{a c} \frac{2 \Delta}{a m_{a}}-\frac{a^{2}+c^{2}-b^{2}}{2 a c} \frac{b^{2}-c^{2}}{2 a m_{a}}\right] \cos \alpha_{+} } \\
& +\left[\frac{a^{2}+c^{2}-b^{2}}{2 a c} \frac{2 \Delta}{a m_{a}}+\frac{2 \Delta}{a c} \frac{b^{2}-c^{2}}{2 a m_{a}}\right] \sin \alpha_{+} \\
= & \frac{1}{4 c m_{a}}\left[\left(b^{2}+3 c^{2}-a^{2}\right) \cos \alpha_{+}+4 \Delta \sin \alpha_{+}\right] \\
= & \frac{1}{4 m_{a} l_{+}}\left(2 b^{2}+2 c^{2}-a^{2}+4 \sqrt{3} \Delta\right) \\
= & \frac{1}{m_{a} l_{+}}\left(\sqrt{3} \Delta+m_{a}^{2}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
F_{+} G^{2}= & \left(\frac{1}{2 \sqrt{3}} \frac{4 \Delta+\sqrt{3}\left(b^{2}+c^{2}-a^{2}\right)}{l_{+}}\right)^{2}+\frac{4}{9} m_{a}^{2}- \\
& -2 \cdot \frac{1}{2 \sqrt{3}} \frac{4 \Delta+\sqrt{3}\left(b^{2}+c^{2}-a^{2}\right)}{l_{+}} \cdot \frac{2}{3} m_{a} \cdot \frac{1}{m_{a} l_{+}}\left(\sqrt{3} \Delta+m_{a}^{2}\right)
\end{aligned}
$$

and, after a routine calculation, we get:

$$
F_{+} G^{2}=\frac{1}{18 l_{+}^{2}}\left[\left(a^{2}-b^{2}\right)^{2}+\left(a^{2}-c^{2}\right)^{2}+\left(b^{2}-c^{2}\right)^{2}\right]=\frac{1}{9} l_{-}^{2}
$$

hence, the formula (2.1) is proven.
Now, we calculate the distance $F_{-} G$ in the same manner. By the cosine law applied to the triangle $F_{-} A G$, we have:

$$
F_{-} G^{2}=F_{-} A^{2}+A G^{2}-2 F_{-} A \cdot A G \cos \widehat{F_{-} A G}
$$

It is easy to see that in case I (Fig. 1a) $\widehat{F_{-} A G}=\widehat{F_{-} A B}+\widehat{B A G}=\left(\pi-\alpha_{-}\right)+$ $\left[\left(\frac{\pi}{2}-B\right)+\varphi_{A}\right]=\frac{3 \pi}{2}-\left(B+\alpha_{-}-\varphi_{A}\right)$, and in case II (Fig. 1b) $\widehat{F_{-} A G}=\widehat{B A G}-$ $\widehat{B A F_{-}}=\left[\left(\frac{\pi}{2}-B\right)+\varphi_{A}\right]-\left(\alpha_{-}-\pi\right)=\frac{3 \pi}{2}-\left(B+\alpha_{-}-\varphi_{A}\right)$ (Fig. 1). So, in both cases, we have $\cos \widehat{F_{-} A G}=-\sin \left(B+\alpha_{-}-\varphi_{A}\right)$, and as above, we get:

$$
\cos \widehat{F_{-} A G}=\frac{1}{m_{a} l_{-}}\left(\sqrt{3} \Delta-m_{a}^{2}\right)
$$

It follows that

$$
\begin{aligned}
F_{-} G^{2}= & \left(\frac{1}{2 \sqrt{3}} \frac{4 \Delta-\sqrt{3}\left(b^{2}+c^{2}-a^{2}\right)}{l_{-}}\right)^{2}+\frac{4}{9} m_{a}^{2}- \\
& -2 \cdot \frac{1}{2 \sqrt{3}} \frac{4 \Delta-\sqrt{3}\left(b^{2}+c^{2}-a^{2}\right)}{l_{-}} \cdot \frac{2}{3} m_{a} \cdot \frac{1}{m_{a} l_{-}}\left(\sqrt{3} \Delta-m_{a}^{2}\right)
\end{aligned}
$$

and finally

$$
F_{-} G^{2}=\frac{1}{18 l_{-}^{2}}\left[\left(a^{2}-b^{2}\right)^{2}+\left(a^{2}-c^{2}\right)^{2}+\left(b^{2}-c^{2}\right)^{2}\right]=\frac{1}{9} l_{+}^{2},
$$

and the proof is complete.
Remark 2.1. Formulas (2.1) appear in [13, p.110], written with other notations and demonstrated with Leibniz's identity.

Proposition 2.2. The distances between Fermat points F_{+}, F_{-}and the orthocenter H are given by

$$
\begin{equation*}
F_{+} H^{2}=\frac{g(a, b, c)}{48 \Delta^{2} l_{+}^{2}}=\frac{1}{6 l_{+}^{2}}\left[12 R^{2}\left(a^{2}+b^{2}+c^{2}\right)-\sum\left(a^{2}+b^{2}\right)^{2}\right] \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{-} H^{2}=\frac{g(a, b, c)}{48 \Delta^{2} l_{-}^{2}}=\frac{1}{6 l_{-}^{2}}\left[12 R^{2}\left(a^{2}+b^{2}+c^{2}\right)-\sum\left(a^{2}+b^{2}\right)^{2}\right], \tag{2.4}
\end{equation*}
$$

where

$$
\begin{align*}
g(a, b, c)= & a^{8}+b^{8}+c^{8}+a^{2} b^{2} c^{2}\left(a^{2}+b^{2}+c^{2}\right) \\
& -a^{6} b^{2}-a^{2} b^{6}-a^{6} c^{2}-a^{2} c^{6}-b^{6} c^{2}-b^{2} c^{6} . \tag{2.5}
\end{align*}
$$

Proof. By the cosine law applied to triangle $A F_{+} H$ (Fig. 1), we have:

$$
F_{+} H^{2}=F_{+} A^{2}+A H^{2}-2 F_{+} A \cdot A H \cdot \cos \widehat{F_{+} A H}
$$

But,

$$
A H=2 R \cos A=R \frac{b^{2}+c^{2}-a^{2}}{b c}=\frac{a\left(b^{2}+c^{2}-a^{2}\right)}{4 \Delta}
$$

and

$$
\begin{aligned}
\cos \widehat{F_{+} A H} & =\cos \left(\widehat{B A F_{+}}-\widehat{B A D}\right)=\cos \left[\alpha_{+}-\left(\frac{\pi}{2}-B\right)\right]=\sin \left(B+\alpha_{+}\right)=\ldots \\
& =\frac{1}{2 a l_{+}}\left(4 \Delta+\sqrt{3} a^{2}\right) .
\end{aligned}
$$

Substituting the expression of $F_{+} A$ given by (1.7), and the expressions found for $A H$ and $\cos \widehat{F_{+} A H}$ in the previous equation and then making routine calculations, we will get:

$$
F_{+} H^{2}=\frac{1}{48 \Delta^{2} l_{+}^{2}} g(a, b, c) .
$$

Now, using the identity (1.12),

$$
\begin{aligned}
g(a, b, c) & =6 a^{2} b^{2} c^{2} \sum a^{2}-8 \Delta^{2} \sum\left(a^{2}+b^{2}\right)^{2} \\
& =6 \cdot 16 \Delta^{2} R^{2} \cdot \sum a^{2}-8 \Delta^{2} \sum\left(a^{2}+b^{2}\right)^{2} \\
& =8 \Delta^{2}\left[12 R^{2}\left(a^{2}+b^{2}+c^{2}\right)-\sum\left(a^{2}+b^{2}\right)^{2}\right] .
\end{aligned}
$$

Hence,

$$
F_{+} H^{2}=\frac{1}{6 l_{+}^{2}}\left[12 R^{2}\left(a^{2}+b^{2}+c^{2}\right)-\sum\left(a^{2}+b^{2}\right)^{2}\right],
$$

and the proof of (2.3) is finished. The formula (2.4) is established in the same way. The proof is complete.

Proposition 2.3. The distances between F_{+}, F_{-}and O are given by the formulas

$$
\begin{equation*}
F_{+} O^{2}=\frac{1}{144 \Delta^{2} l_{+}^{2}}\left[32 \Delta^{2} l_{+}^{2} l_{-}^{2}+\left(2 l_{+}^{2}-l_{-}^{2}\right) f\right], \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{-} O^{2}=\frac{1}{144 \Delta^{2} l_{-}^{2}}\left[32 \Delta^{2} l_{+}^{2} l_{-}^{2}+\left(2 l_{-}^{2}-l_{+}^{2}\right) f\right] . \tag{2.7}
\end{equation*}
$$

Proof. Applying the cosine law to the triangle $A F_{+} O$,

$$
F_{+} O^{2}=F_{+} A^{2}+A O^{2}-2 F_{+} A \cdot A O \cos \widehat{F_{+} A O} .
$$

But $\cos \widehat{F_{+} A O}=\cos \left(A-\widehat{B A F_{+}}-\widehat{O A C}\right)=\cos \left[A-\alpha_{+}-\left(\frac{\pi}{2}-B\right)\right]$
$=\sin \left(C+\alpha_{+}\right)=\sin C \cos \alpha_{+}+\cos C \sin \alpha_{+}$. By (1.5), we get in the end

$$
\cos \widehat{F_{+} A O}=\frac{1}{4 a b c l_{+}}\left\{\sqrt{3}\left[a^{2}\left(b^{2}+c^{2}\right)-\left(b^{2}-c^{2}\right)^{2}\right]+4 \Delta\left(b^{2}+c^{2}\right)\right\} .
$$

Then, to find $F_{+} O$, it remains to substitute in the previous equation $F_{+} A, A O$ and $\cos \widehat{F_{+} A O}$ by their expressions. To obtain $F_{+} O$ in the form (2.6), during the calculation we must always take care to enter the lengths l_{+}and l_{-}.
We do the same to establish formula (2.7). The proof is complete.
Remarks 2.2. Since we know the distances between Fermat points F_{+}, F_{-}and the points G and H, the formulas (2.6) and (2.7) can also be obtained by applying Stewart's theorem to the triangles $G F_{+} H$ and $G F_{-} H$. More, if the distances between F_{+}, F_{-}and the points G and H are known, we can calculate the distances between F_{+}, F_{-}at other points on the Euler line using the median theorem or Stewart's theorem. Such is the case with O, M, N, DeLongchamps point, and many other points making a constant distanceratios on the Euler line [7, p. 140]. When possible, it is preferable to use these theorems instead of the cosine law.

Proposition 2.4. The distances between F_{+}, F_{-}and M are given by

$$
\begin{equation*}
F_{+} M=\frac{\sqrt{f}}{12 \Delta} \cdot \frac{l_{-}}{l_{+}} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{-} M=\frac{\sqrt{f}}{12 \Delta} \cdot \frac{l_{+}}{l_{-}} . \tag{2.9}
\end{equation*}
$$

Proof. It is known that $H G=\frac{2}{3} O H$ and that $O H^{2}=9 R^{2}-\left(a^{2}+b^{2}+c^{2}\right)$. But, we have:

$$
O H^{2}=9 \frac{a^{2} b^{2} c^{2}}{16 \Delta^{2}}-\left(a^{2}+b^{2}+c^{2}\right)=\frac{1}{16 \Delta^{2}}\left[9 a^{2} b^{2} c^{2}-16 \Delta^{2}\left(a^{2}+b^{2}+c^{2}\right)\right]
$$

and, by (1.11), $O H^{2}=\frac{f}{16 \Delta^{2}}$. Hence,

$$
\begin{equation*}
O H=\frac{\sqrt{f}}{4 \Delta} \quad \text { and } \quad H G=\frac{\sqrt{f}}{6 \Delta} . \tag{2.10}
\end{equation*}
$$

Applying the median theorem to the triangle $F_{+} H G$, we have:

$$
4 F_{+} M^{2}=2 F_{+} H^{2}+2 F_{+} G^{2}-H G^{2}
$$

By (2.10) and Propositions 2.1 and 2.2, we obtain:

$$
\begin{aligned}
4 F_{+} M^{2} & =\frac{g}{24 \Delta^{2} l_{+}^{2}}+\frac{2}{9} l_{-}^{2}-\frac{f}{36 \Delta^{2}}=\frac{1}{72 \Delta^{2} l_{+}^{2}}\left(3 g+16 \Delta^{2} l_{+}^{2} l_{-}^{2}-2 l_{+}^{2} f\right) \\
& =\frac{1}{72 \Delta^{2} l_{+}^{2}}\left[2\left(a^{2}+b^{2}+c^{2}\right) f-2 l_{+}^{2} f\right]=\frac{1}{72 \Delta^{2} l_{+}^{2}} \cdot 2 l_{-}^{2} f=\frac{l_{-}^{2} f}{36 \Delta^{2} l_{+}^{2}}
\end{aligned}
$$

Therefore,

$$
F_{+} M^{2}=\frac{f}{144 \Delta^{2}} \cdot \frac{l_{-}^{2}}{l_{+}^{2}}
$$

So, the formula (2.8) is true. In the same way it is shown (2.9). The proof is complete.
Proposition 2.5. The distances between F_{+}, F_{-}and the point N are given by

$$
\begin{equation*}
F_{+} N^{2}=\frac{1}{576 \Delta^{2} l_{+}^{2}}\left[32 \Delta^{2} l_{+}^{2} l_{-}^{2}+\left(2 l_{-}^{2}-l_{+}^{2}\right) f\right] \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{-} N^{2}=\frac{1}{576 \Delta^{2} l_{-}^{2}}\left[32 \Delta^{2} l_{+}^{2} l_{-}^{2}+\left(2 l_{+}^{2}-l_{-}^{2}\right) f\right] \tag{2.12}
\end{equation*}
$$

Proof. $F_{+} N$ is median in the triangle $F_{+} G M$ (Fig. 3). We have:

$$
4 F_{+} N^{2}=2 F_{+} G^{2}+2 F_{+} M^{2}-G M^{2}
$$

Taking into account the formulas (2.1), (2.8), (2.10), and GM $=\frac{1}{2} H G$, by a simple calculation we obtain the formula (2.11).
$F_{-} N$ is calculated similarly. This concludes the proof.
Next, we need some elementary properties of symmedian $A K$ and Fermat cevian $A F_{+}$. Just as in the case of the A-angle bisector, we obtain:

Lemma 2.2. Let L and X_{+}be the feet of the symmedian $A K$ and Fermat cevian $A F_{+}$ on the side $B C$. Then,

1) $B L=\frac{a c^{2}}{b^{2}+c^{2}}, A L=\frac{2 b c m_{a}}{b^{2}+c^{2}}, A K=\frac{2 b c m_{a}}{a^{2}+b^{2}+c^{2}}$;
2) $B X_{+}=a \frac{4 \Delta+\sqrt{3}\left(c^{2}+a^{2}-b^{2}\right)}{2\left(4 \Delta+\sqrt{3} a^{2}\right)}, A X_{+}=\frac{4 \Delta l_{+}}{4 \Delta+\sqrt{3} a^{2}}$,
$A F_{+}=\frac{1}{2 \sqrt{3}} \frac{4 \Delta+\sqrt{3}\left(b^{2}+c^{2}-a^{2}\right)}{l_{+}}$.
Proof. 1) These equations are well-known (see, for example, [12]).
3) Applying twice the sine law to triangle $A B X_{+}$, we have:

$$
A X_{+}=\frac{c \sin B}{\sin \left(B+\alpha_{+}\right)} \quad \text { and } \quad B X_{+}=\frac{c \sin \alpha_{+}}{\sin \left(B+\alpha_{+}\right)}
$$

and, taking into account (1.5), we find the first and second formula. The third formula was demonstrated in Lemma 1.2.

Lemma 2.3. If $a>b>c$, then the order of the feet of the symmedian AK and Fermat cevian $A F_{+}$on the side $B C$ is $B-L-X_{+}-C$.

Proof. We have to prove that $B L<B X_{+}$or, equivalently,

$$
\frac{a c^{2}}{b^{2}+c^{2}}<a \frac{4 \Delta+\sqrt{3}\left(c^{2}+a^{2}-b^{2}\right)}{2\left(4 \Delta+\sqrt{3} a^{2}\right)} .
$$

We rewrite this inequality in the form of

$$
4 \Delta>\sqrt{3}\left(b^{2}+c^{2}-a^{2}\right) .
$$

Then, $b c \sin A>\sqrt{3} b c \cos A$. Hence, $\tan A>\sqrt{3}$, what is true in condition $a>b>c$.
Proposition 2.6. The distances between F_{+}, F_{-}and the symmedian point K are given by

$$
\begin{equation*}
F_{+} K=\frac{\sqrt{f}}{\sqrt{3}\left(l_{+}^{2}+l_{-}^{2}\right)} \frac{l_{-}}{l_{+}}, \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{-} K=\frac{\sqrt{f}}{\sqrt{3}\left(l_{+}^{2}+l_{-}^{2}\right)} \frac{l_{+}}{l_{-}} . \tag{2.14}
\end{equation*}
$$

Proof. Consider the triangle $A K F_{+}$. The lengths of the sides $A K$ and $A F_{+}$are known (Lemma 2.2). Taking into account Lemma 2.3, we have

$$
\begin{aligned}
\cos \widehat{F_{+} A K} & =\cos \left(\widehat{B A F_{+}}-\widehat{B A K}\right)=\cos \left(\widehat{B A F_{+}}-\widehat{C A A^{\prime}}\right) \\
& =\cos \left[\alpha_{+}-\left(\left(\frac{\pi}{2}-\varphi_{A}\right)-C\right)\right],
\end{aligned}
$$

hence $\cos \widehat{F_{+} A K}=\sin \left(\alpha_{+}+C+\varphi_{A}\right)$. Using (1.5), finally we get:

$$
\cos \widehat{F_{+} A K}=\frac{1}{8 b c m_{a} l_{+}}\left[b^{4}+c^{4}+6 b^{2} c^{2}-a^{2} b^{2}-a^{2} c^{2}+4 \sqrt{3} \Delta\left(b^{2}+c^{2}\right)\right] .
$$

Now, we are ready to apply the cosine law to considered triangle. We have:

$$
F_{+} K^{2}=F_{+} A^{2}+A K^{2}-2 F_{+} A \cdot A K \cdot \cos \widehat{F_{+} A K}
$$

Substituting the terms on the right by their expressions found above and performing the calculations, we are led to the formula (2.13).
The formula (2.14) is demonstrated the same. The proof is complete.
Remark 2.3. Above, I used tacitly the fact that points G, H, O, M, N are collinear and some equalities in the sequence $2 O H=3 H G=6 O G=4 O N=12 G N$.
Below, we need the well known property that points F_{+}, F_{-}, K, Mare collinear and lie on the Fermat axis in the order $F_{-}-K-F_{+}-M$. Let's give a simple justification for this statement. We use the formula (4.1), Section 4. Then, taking into account (2.13), (2.14), (2.8), (2.9), it is easy to verify that $F_{-} F_{+}=F_{-} K+K F_{+}$and $F_{-} M=F_{-} F_{+}+F_{+} M$. The desired claims follow.

3. Distances between J_{+}, J_{-}and G, H, O, K, M, N

We start the section with the mention that the angles $\varphi_{A}, \alpha_{+}, \alpha_{-}$do not have an obvious utility for calculating the distances of the isodynamic points J_{+}, J_{-}to the points G, H, O, K, M, N. Below, some results related to the orthocentroidal triangle will be useful. The orthocentroidal circle of triangle $A B C$ is the circle on $H G$ as diameter. Obviously, this circle contains the orthogonal projections A_{1}, B_{1}, C_{1} of G on the altitudes $A D, B E$, and respectively $C F$. The triangle $A_{1} B_{1} C_{1}$ is called the orthocetroidal triangle (Fig. 3).

Figure 3

Lemma 3.1. Triangles $A B C$ and $A_{1} B_{1} C_{1}$ have the properties:
(i) they are (inversely) similar;
(ii) K is the symmedian point for both triangles;
(iii) the Fermat points of the triangle $A B C$ are the isodynamic points of the orthocentroidal triangle $A_{1} B_{1} C_{1}$, i.e. $J_{1}^{+}=F_{+}$and $J_{1}^{-}=F_{-}\left(J_{1}^{+}, J_{1}^{-}\right.$denote the isodynamic points of the triangle $A_{1} B_{1} C_{1}$.

See [4, Prop. 5 and Th.10] for an elementary proof.
Remark 3.1. We need the following result: the points J_{+}, J_{-}, O, K are collinear and lie on the Brocard axis in the order $O-J_{+}-K-J_{-}$. Indeed, according to the previous remark, we have the order $F_{-}-K-F_{+}-M$ on the line $F_{+} F_{-}$. Also, according to the previous lemma, the correspondence: $O \longleftrightarrow M, K \longleftrightarrow K, J_{+} \longleftrightarrow F_{+}, J_{-} \longleftrightarrow F_{-}$preserves the order between homologous points. So, on the line $O K$ we have $J_{-}-K-J_{+}-O$.

As in the case of $O H$ and $H G$ (see (2.10)), we will give formulas for $O K$ and $K M$ that are convenient in the calculations below.

Lemma 3.2. We have:

$$
\begin{equation*}
O K=\frac{a b c l_{+} l_{-}}{2 \Delta\left(a^{2}+b^{2}+c^{2}\right)}, \quad K M=\frac{l_{+} l_{-} \sqrt{f}}{6 \Delta\left(a^{2}+b^{2}+c^{2}\right)} . \tag{3.1}
\end{equation*}
$$

Proof. Indeed,

$$
\begin{aligned}
O K^{2} & =R^{2}-\frac{3 a^{2} b^{2} c^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}=\frac{a^{2} b^{2} c^{2}}{16 \Delta^{2}}-\frac{3 a^{2} b^{2} c^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}} \\
& =\frac{a^{2} b^{2} c^{2}\left[\left(a^{2}+b^{2}+c^{2}\right)^{2}-3 \cdot 16 \Delta^{2}\right]}{16 \Delta^{2}\left(a^{2}+b^{2}+c^{2}\right)^{2}}=\frac{a^{2} b^{2} c^{2} \cdot 2 l_{+}^{2} \cdot 2 l_{-}^{2}}{16 \Delta^{2}\left(a^{2}+b^{2}+c^{2}\right)^{2}}
\end{aligned}
$$

hence the first formula in (3.1).
On the other hand, the ratio of the similitude of the triangles $A B C$ and $A_{1} B_{1} C_{1}$ is given by the ratio of the diameters of their circumcircles. So it is equal to

$$
\frac{2 R}{H G}=\frac{a b c}{2 \Delta} \cdot \frac{6 \Delta}{\sqrt{f}}=\frac{3 a b c}{\sqrt{f}}
$$

i.e.

$$
\begin{equation*}
\frac{2 R}{H G}=\frac{3 a b c}{\sqrt{f}} . \tag{3.2}
\end{equation*}
$$

According to Lemma 3.1, (i) and (ii), we have the following correspondence of points: $K \longleftrightarrow K, O \longleftrightarrow M$. Then,

$$
\frac{K O}{K M}=\frac{2 R}{H G}, \quad \text { hence } \quad K M=\frac{H G}{2 R} \cdot O K=\frac{\sqrt{f}}{3 a b c} \cdot \frac{a b c l_{+} l_{-}}{2 \Delta\left(a^{2}+b^{2}+c^{2}\right)},
$$

end the second formula of the cross reference (3.1) follows.
Proposition 3.1. The distances between J_{+}, J_{-}and O are given by

$$
\begin{equation*}
J_{+} O=R \frac{l_{-}}{l_{+}}=\frac{a b c}{4 \Delta} \cdot \frac{l_{-}}{l_{+}}, \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{-} O=R \frac{l_{+}}{l_{-}}=\frac{a b c}{4 \Delta} \cdot \frac{l_{+}}{l_{-}} . \tag{3.4}
\end{equation*}
$$

Proof. Since triangles $A B C$ and $A_{1} B_{1} C_{1}$ are similar, we have the correspondences:

$$
J_{+} \longleftrightarrow J_{1}^{+}, \quad O \longleftrightarrow M
$$

Hence, $\frac{J_{+} O}{J_{1}^{+} M}=\frac{2 R}{H G}$. By Lemma 3.1, (iii), $J_{1}^{+}=F_{+}$. Therefore,

$$
J_{+} O=F_{+} M \cdot \frac{2 R}{H G}
$$

and taking into account (2.8), (3.2), we obtain the formula (3.3). Analogously, the formula (3.4) is obtained. The proof is complete.

Proposition 3.2. The distances between J_{+}, J_{-}and K are given by

$$
\begin{equation*}
J_{+} K=\frac{\sqrt{3} a b c}{a^{2}+b^{2}+c^{2}} \cdot \frac{l_{-}}{l_{+}}, \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{-} K=\frac{\sqrt{3} a b c}{a^{2}+b^{2}+c^{2}} \cdot \frac{l_{+}}{l_{-}} . \tag{3.6}
\end{equation*}
$$

Proof. Due to the similarity of the triangles $A B C$ and $A_{1} B_{1} C_{1}$, and Lemma 3.1, (ii) and (iii), we have the correspondences: $J_{+} \longleftrightarrow F_{+}, J_{-} \longleftrightarrow F_{-}, K \longleftrightarrow K$. Therefore,

$$
J_{+} K=F_{+} K \cdot \frac{2 R}{H G}, \quad \text { and } \quad J_{-} K=F_{-} K \cdot \frac{2 R}{H G} .
$$

By (2.13), (2.14) and (3.2), we obtain the required formulas. The proof is complete.
To find the distances from J_{+}, J_{-}to G, H, M, N we will use Stewart's theorem (in particular, the median theorem).
Proposition 3.3. The distances between J_{+}, J_{-}and M are given by

$$
\begin{equation*}
J_{+} M^{2}=\frac{1}{144 \Delta^{2} l_{+}^{2}}\left(32 \Delta^{2} l_{-}^{4}+2 l_{+}^{2} f-9 a^{2} b^{2} c^{2} l_{-}^{2}\right) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{-} M^{2}=\frac{1}{144 \Delta^{2} l_{-}^{2}}\left(32 \Delta^{2} l_{+}^{4}+2 l_{-}^{2} f-9 a^{2} b^{2} c^{2} l_{+}^{2}\right) \tag{3.8}
\end{equation*}
$$

Proof. Consider the triangle $M K O$ and apply Stewart's theorem to this triangle and the cevians $M J_{+}$and $M J_{-}$(Fig. 3). We have:

$$
\begin{aligned}
& J_{+} M^{2} \cdot O K=M K^{2} \cdot J_{+} O+O M^{2} \cdot J_{+} K-O K \cdot J_{+} O \cdot J_{+} K \\
& J_{-} M^{2} \cdot O K=M K^{2} \cdot J_{-} O-O M^{2} \cdot J_{-} K+O K \cdot J_{-} O \cdot J_{-} K
\end{aligned}
$$

Substituting $O K, M K, O M=H G, J_{+} O, J_{-} O, J_{+} K, J_{-} K$ by the expressions given by (3.1), (2.10), (3.3), (3.4), (3.5), (3.6), we will finally obtain the formulas (3.7) and (3.8). Thus achieves the proof.

Proposition 3.4. The distances between J_{+}, J_{-}and G are given by

$$
\begin{equation*}
J_{+} G=\frac{1}{3} \frac{l_{-}^{2}}{l_{+}} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{-} G=\frac{1}{3} \frac{l_{+}^{2}}{l_{-}} \tag{3.10}
\end{equation*}
$$

Proof. The centroid G is the midpoint of $O M$. Then, $J_{+} G, J_{-} G$ are medians in the triangles $J_{+} O M$ and $J_{-} O M$, respectively. By the median theorem applied to the triangle $J_{+} O M$ (Fig. 3), we have:

$$
4 J_{+} G^{2}=2 J_{+} O^{2}+2 J_{+} M^{2}-O M^{2}
$$

Using the formulas (3.3), (3.7), (2.10), and performing the calculations, we obtain (3.9). The formula (3.10) is shown in the same way. This completes the proof.

Proposition 3.5. The distances between J_{+}, J_{-}and H are given by

$$
\begin{equation*}
J_{+} H^{2}=\frac{1}{24 \Delta^{2} l_{+}^{2}}\left(8 \Delta^{2} l_{-}^{4}+l_{+}^{2} f-3 a^{2} b^{2} c^{2} l_{-}^{2}\right) \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{-} H^{2}=\frac{1}{24 \Delta^{2} l_{-}^{2}}\left(8 \Delta^{2} l_{+}^{4}+l_{-}^{2} f-3 a^{2} b^{2} c^{2} l_{+}^{2}\right) \tag{3.12}
\end{equation*}
$$

Proof. M is the midpoint of $H G$. Then, we have: $4 J_{+} M^{2}=2 J_{+} H^{2}+2 J_{+} G^{2}-H G^{2}$. Hence, we have

$$
2 J_{+} H^{2}=4 J_{+} M^{2}+H G^{2}-2 J_{+} G^{2}
$$

and, similarly,

$$
2 J_{-} H^{2}=4 J_{-} M^{2}+H G^{2}-2 J_{-} G^{2}
$$

It remains to perform routine calculations to obtain the required formulas. The proof is complete.

Proposition 3.6. The distances between J_{+}, J_{-}and N are given by

$$
\begin{equation*}
J_{+} N^{2}=\frac{1}{192 \Delta^{2} l_{+}^{2}}\left(32 \Delta^{2} l_{-}^{4}+l_{+}^{2} f-6 a^{2} b^{2} c^{2} l_{-}^{2}\right) \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{-} N^{2}=\frac{1}{192 \Delta^{2} l_{-}^{2}}\left(32 \Delta^{2} l_{+}^{4}+l_{-}^{2} f-6 a^{2} b^{2} c^{2} l_{+}^{2}\right) \tag{3.14}
\end{equation*}
$$

Proof. Applying the median theorem to the triangle $J_{+} H O$, we have:

$$
4 J_{+} N^{2}=2 J_{+} H^{2}+2 J_{+} O^{2}-O H^{2}
$$

Taking into account (3.11), (3.3), (2.10), by a simple calculation we get the formula (3.13). The formula (3.14) is similarly obtained, which concludes the proof.

4. Distances between $F_{+}, F_{-}, J_{+}, J_{-}$

In this section, we consider the following six distances: $F_{+} F_{-}, J_{+} J_{-}, F_{+} J_{+}, F_{-} J_{-}, F_{+} J_{-}$, $F_{-} J_{+}$.

Proposition 4.1. For the distances $F_{+} F_{-}$and $J_{+} J_{-}$we have the formulas:

$$
\begin{equation*}
F_{+} F_{-}=\frac{1}{\sqrt{3}} \frac{\sqrt{f}}{l_{+} l_{-}} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{+} J_{-}=\sqrt{3} \frac{a b c}{l_{+} l_{-}} \tag{4.2}
\end{equation*}
$$

Proof. Applying the cosine law to triangle $A F_{+} F_{-}$, we get (Fig. 1):

$$
F_{+} F_{-}^{2}=F_{+} A^{2}+F_{-} A^{2}-2 F_{+} A \cdot F_{-} A \cdot \cos \widehat{F_{+} A F_{-}}
$$

In the case of $B>\frac{\pi}{3}$,

$$
\cos \widehat{F_{+} A F_{-}}=\cos \left(\widehat{B A F_{+}}+\widehat{B A F_{-}}\right)=\cos \left(\alpha_{+}+\pi-\alpha_{-}\right)=-\cos \left(\alpha_{+}-\alpha_{-}\right)
$$

If $B<\frac{\pi}{3}$, then

$$
\cos \widehat{F_{+} A F_{-}}=\cos \left(\widehat{B A F_{+}}-\widehat{B A F_{-}}\right)=\cos \left[\alpha_{+}-\left(\alpha_{-}-\pi\right)\right]=-\cos \left(\alpha_{+}-\alpha_{-}\right)
$$

In both cases, we have:

$$
\widehat{\cos \widehat{F_{+} A F_{-}}}=-\cos \left(\alpha_{+}-\alpha_{-}\right)=-\left(\cos \alpha_{+} \cos \alpha_{-}+\sin \alpha_{+} \sin \alpha_{-}\right)
$$

Taking into account (1.5), (1.6), by a simple calculation we get

$$
\cos \widehat{F_{+} A F_{-}}=-\frac{-2 a^{2}+b^{2}+c^{2}}{l_{+} l_{-}}
$$

Using this and the formulas (1.7), the preceding equation leads after calculations to (4.1).
On the other hand, from $A B C \sim A_{1} B_{1} C_{1}$ (Lemma 3.1) we have:

$$
\frac{J_{+} J_{-}}{J_{1}^{+} J_{1}^{-}}=\frac{2 R}{H G} \quad \text { and } \quad J_{+} J_{-}=F_{+} F_{-} \cdot \frac{2 R}{H G}
$$

By (4.1) and (3.2), it follows that

$$
J_{+} J_{-}=\frac{1}{\sqrt{3}} \frac{\sqrt{f}}{l_{+} l_{-}} \cdot \frac{3 a b c}{\sqrt{f}}=\sqrt{3} \frac{a b c}{l_{+} l_{-}}
$$

that is (4.2) is true. The proof is complete.

Remark 4.1. The formulae (4.1) and (4.2) for the distances $F_{+} F_{-}$and $J_{+} J_{-}$can also be written as follows:

$$
\begin{gathered}
F_{+} F_{-}^{2}=\frac{2}{3} \frac{a^{6}+b^{6}+c^{6}+3 a^{2} b^{2} c^{2}-a^{4} b^{2}-a^{2} b^{4}-a^{4} c^{2}-a^{2} c^{4}-b^{4} c^{2}-b^{2} c^{4}}{\left(a^{2}-b^{2}\right)^{2}+\left(a^{2}-c^{2}\right)^{2}+\left(b^{2}-c^{2}\right)^{2}} \\
J_{+} J_{-}^{2}=\frac{3}{2} \frac{a^{2} b^{2} c^{2}}{\left(a^{2}-b^{2}\right)^{2}+\left(a^{2}-c^{2}\right)^{2}+\left(b^{2}-c^{2}\right)^{2}}
\end{gathered}
$$

or, using Conway triangle notations,

$$
\begin{aligned}
F_{+} F_{-}^{2} & =\frac{2}{3} \frac{a^{2} S_{A}^{2}+b^{2} S_{B}^{2}+c^{2} S_{C}^{2}-6 S_{A} S_{B} S_{C}}{\left(S_{B}-S_{C}\right)^{2}+\left(S_{C}-S_{A}\right)^{2}+\left(S_{A}-S_{B}\right)^{2}} \\
J_{+} J_{-}^{2} & =\frac{3}{2} \frac{\left(S_{B}+S_{C}\right)\left(S_{C}+S_{A}\right)\left(S_{A}+S_{B}\right)}{\left(S_{B}-S_{C}\right)^{2}+\left(S_{C}-S_{A}\right)^{2}+\left(S_{A}-S_{B}\right)^{2}}
\end{aligned}
$$

In the next step we will use the following result:
Lemma 4.1. The lines $F_{+} J_{+}, F_{-} J_{-}$are parallel to each other and to Euler line.
Proof. We only detail that $F_{+} J_{+} \| O H$. For this, we consider the triangles $K F_{+} J_{+}$and $K M O$ (Fig. 2). We have: $\widehat{K}=\widehat{K}$, and $\frac{K F_{+}}{K M}=\frac{K J_{+}}{K O}$ (by calculation and using (2.13), $(3.1),(3.5))$. These triangles are similar, and it follows that $F_{+} J_{+}$is parallel to $M O$ (or $O H$). For $F_{-} J_{-} \| O H$, the triangles $K F_{-} J_{-}$and $K M O$ are considered.

Proposition 4.2. For the distances $F_{+} J_{+}$and $F_{-} J_{-}$we have the formulae:

$$
\begin{equation*}
F_{+} J_{+}=\frac{1}{\sqrt{3}} \frac{\sqrt{f}}{l_{+}^{2}} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{-} J_{-}=\frac{1}{\sqrt{3}} \frac{\sqrt{f}}{l_{-}^{2}} \tag{4.4}
\end{equation*}
$$

Proof. From $F_{+} J_{+} \| O H$, it follows that $\frac{F_{+} J_{+}}{M O}=\frac{K J_{+}}{K O}$. Then, we have:

$$
F_{+} J_{+}=M O \cdot \frac{K J_{+}}{K O}=\frac{\sqrt{f}}{6 \Delta} \cdot \frac{\sqrt{3} a b c}{a^{2}+b^{2}+c^{2}} \frac{l_{-}}{l_{+}} \cdot \frac{2 \Delta\left(a^{2}+b^{2}+c^{2}\right)}{a b c l_{+} l_{-}}=\frac{1}{\sqrt{3}} \frac{\sqrt{f}}{l_{+}^{2}} .
$$

$F_{-} J_{-}$is calculated similarly. This concludes the proof.
Proposition 4.3. For the distances $F_{+} J_{-}$and $F_{-} J_{+}$we have the formulas:

$$
\begin{equation*}
F_{+} J_{-}=\frac{4 \sqrt{3} \Delta}{3 l_{-}}=\frac{l_{+}^{2}-l_{-}^{2}}{3 l_{-}} \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{-} J_{+}=\frac{4 \sqrt{3} \Delta}{3 l_{+}}=\frac{l_{-}^{2}-l_{+}^{2}}{3 l_{-}} \tag{4.6}
\end{equation*}
$$

Proof. Consider the triangle $F_{+} J_{+} J_{-}$and the cevian $F_{+} K$. Using Stewart's theorem, we get:

$$
\left(F_{+} J_{-}\right)^{2} \cdot K J_{+}=F_{+} K^{2} \cdot J_{+} J_{-}+J_{+} J_{-} \cdot K J_{+} \cdot K J_{-}-\left(F_{+} J_{+}\right)^{2} \cdot K J_{-}
$$

Substituting $K J_{+}, K J_{-}, F_{+} K, J_{+} J_{-}, F_{+} J_{+}$by their expressions given by (3.5), (3.6), (2.13), (4.2), respectively (4.3) and by performing the calculations, we get the formula
(4.5). Then, considering the triangle $F_{-} J_{+} J_{-}$and the cevian $F_{-} K$, by applying the same theorem we obtain the formula (4.6). The proof is complete.

5. Two applications

I. Remarks on Evans conic. In the paper [5], L.S. Evans demonstrates that there is a conic which passes through the following notable points: $F_{+}, F_{-}, J_{+}, J_{-}, N_{+}$, and N_{-} (N_{+}, N_{-}are inner and outer Napoleon points of the triangle $A B C$). More, he informs the reader that Peter Yff has calculated the equation of this conic, and Paul Yiu has found criteria for it to be an ellipse, parrabola, or a hyperbola. Next, this conic will be called Evans conic and will be denoted \mathcal{E}.

Using Lemma 4.1 and Proposition 4.3 we will easily show the following result:
Proposition 5.1. The statements
(i) \mathcal{E} can not be circle, and
(ii) if \mathcal{E} is ellipse or hyperbole, then its center lies on the line GK
are true.
Proof. (i) If \mathcal{E} were a circle, then the points $F_{+}, F_{-}, J_{+}, J_{-}$would be concyclic (Fig. 4). By Lemma 4.1, the cyclic quadrilateral $F_{+} J_{+} F_{-} J_{-}$would be isosceles trapezium, that is $F_{+} J_{-}=F_{-} J_{+}$. So, according to (4.5) and (4.6), we would have:

$$
\frac{4 \sqrt{3} \Delta}{3 l_{-}}=\frac{4 \sqrt{3} \Delta}{3 l_{+}}
$$

i.e. $l_{+}=l_{-}$. Absurd.
(ii) According to Lemma 4.1, the cords $F_{+} J_{+}$and $F_{-} J_{-}$of the ellipse \mathcal{E} are parallel to the Euler line (Fig. 4). Since the triangles $K M O, K F_{+} J_{+}$and $K F_{-} J_{-}$are similar, we deduce that the midpoints of the cords $F_{+} J_{+}$and $F_{-} J_{-}$lie on the line $K G$. Therefore, $K G$ passes through the center of \mathcal{E}. The proof is complete.

Figure 4
II. Triangle $O M K$. This triangle is determined by the Brocard and Fermat axes and Euler line. Like the triangle $O H I$, it plays an important role in the geometry of the triangle. We will highlight some properties of the triangle $O M K$, using the results from the previous sections.

Proposition 5.2. Triangle $O M K$ is isosceles, with $O K=O M$, if and only if

$$
\begin{equation*}
R^{2}=\frac{\left(a^{2}+b^{2}+c^{2}\right)^{3}}{27\left(a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}\right)} . \tag{5.1}
\end{equation*}
$$

Proof. We have:

$$
\begin{aligned}
O K=O M & \Longleftrightarrow \frac{a b c l_{+} l_{-}}{2 \Delta\left(a^{2}+b^{2}+c^{2}\right)}=\frac{\sqrt{f}}{6 \Delta} \Longleftrightarrow 3 a b c l_{+} l_{-}=\sqrt{f}\left(a^{2}+b^{2}+c^{2}\right) \\
& \Longleftrightarrow 9 a^{2} b^{2} c^{2} l_{+}^{2} l_{-}^{2}=\left[9 a^{2} b^{2} c^{2}-16 \Delta^{2}\left(a^{2}+b^{2}+c^{2}\right)\right]\left(a^{2}+b^{2}+c^{2}\right)^{2} \\
& \Longleftrightarrow 9 a^{2} b^{2} c^{2}\left[l_{+}^{2} l_{-}^{2}-\left(a^{2}+b^{2}+c^{2}\right)^{2}\right]=-16 \Delta^{2}\left(a^{2}+b^{2}+c^{2}\right)^{3} \\
& \Longleftrightarrow 9 R^{2}\left[l_{+}^{2} l_{-}^{2}-\left(a^{2}+b^{2}+c^{2}\right)^{2}\right]=-\left(a^{2}+b^{2}+c^{2}\right)^{3} \\
& \Longleftrightarrow R^{2}=\frac{\left(a^{2}+b^{2}+c^{2}\right)^{3}}{27\left(a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}\right)},
\end{aligned}
$$

and the statement is proved.
Remark 5.1. Two other sides of the triangle $O M K$ cannot be equal. Indeed, according to the formulas (2.10) and (3.1) for the lenghts of $O M, O K$, and $K M$, we have: $O M=$ $K M \Longleftrightarrow l_{+} l_{-}=a^{2}+b^{2}+c^{2}$, absurd, and, on the other hand, $O K=K M \Longleftrightarrow a b c=$ $\sqrt{f} \Longleftrightarrow a^{2} b^{2} c^{2}-f=0 \Longleftrightarrow 16 \Delta^{2}\left(a^{2}+b^{2}+c^{2}\right)=0$, absurd.

References

[1] Altshiller-Court, N. College Geometry, 2nd ed., Barnes \& Noble, New York, 1952.
[2] Beluhov, N.I. An elementary proof of Lester's theorem. Journal of Classical Geometry 1 (2012): 53-56.
[3] Beluhov, N.I. Erratum to "An elementary proof of Lester's theorem". J. of Classical Geometry 4 (2015).
[4] Bîrsan, T. Properties of orthocentroidal circles in relation to the cosymmedians triangles. GJARCMG 12 (2023): 1-19.
[5] Evans, L.S. A Conic Through Six Triangle Centers. Forum Geometricorum 2 (2002): 89-92.
[6] Johnson, R.A. Advanced Euclidean Geometry. Dover, New York, 1960.
[7] Kimberling, C. Triangle centers and central triangles. Congressus Numerantium 129 (1998): 1-285.
[8] Kimberling, C. Encyclopedia of Triangle Centers, available at http://faculty. evansville.edu/ck6/encyclopedia/ETC.html
[9] Kiss, S.N. Three analogies between the triangle centers and its applications. GJARCMG 9 (2) (2020): 111-126.
[10] Lalesco, T. La géométrie du triangle. Jacques Gabay, 1987.
[11] Mackay, J. Simmedians of a triangles and their concomitant circles. Proc. Edinburgh Math. Soc. 14 (1895): 37-103.
[12] Mackay J. Isogonic Centres of a Triangle. Proc. Edinburgh Math. Soc. 15 (1896): 100-118.
[13] Scott, J.A. Two more proofs of Lester's theorem. The Mathematical Gazette 87 (2003): 510, 553-556.
[14] Yiu, P. The Circles of Lester, Evans, Parry, and Their Generalizations. Forum Geometricorum 10 (2010): 175-209.

Gh. Asachi Technical University of Iaşi
Carol I Bd., NR. 11A, 700506 Iaşi, Romania.
Email address: tbirsan111@gmail.com

