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A BI-PARAMETER ELLIPSE AVAILABLE FOR STUDYING INTEGERS

XINGBO WANG, LI MA, AND MIAN JIANG

ABSTRACT. This paper first defines a bi-parameter ellipse and then place it together with
the rectangular hyperbola xy = N to study their intersections. The study reveals several
new properties of the intersections that are merely dependent on the two parameters that
determine the ellipse. It is also shown that the new properties are available for studying
integers and are helpful to develop new method to factorizing integers. Mathematical
reasoning is presented in detail for each conclusion and each conclusion is demonstrated
with Geogebra software.

1. INTRODUCTION AND MOTIVATIONS

Factorization of a composite integer N is geometrically to find integer points on the hy-
perbola xy = N in Cartesian coordinate system. That is why people have kept research-
ing new methods to factorize integers with conic sections (see [1],[2],[3],[4],and [5]). For
a composite integer N = pq with 1 < p < q being integers, it is sure that N can be
easily factorized if the divisor ratio k = q/p were known. Since k is hardly known
before N is factorized, its evaluation becomes a research topic. Wang investigated the
influence of the divisor-ratio to the distribution of a semiprime’s divisor([6]); he also in-
vestigated rectangular hyperbola and ellipse to find a way to evaluate the divisor ratio
of a semiprime by means of constructing certain arcs on the hyperbola and ellipse (see
[7] and [8]). Following the previous study, this paper investigates a family of ellipses
that can derive more properties relevant to k and N. By defining an ellipse whose equa-
tion contains k and N as parameters, and placing the ellipse together with the hyperbola
xy = N, k’s change and N’s change exhibit very interesting traits that can derive new
method to factorize integers.
The paper consists of five sections. Except for this introductory section, section 2 lists
symbols and proves several lemmas necessary for the mathematical deductions in later
sections, section 3 presents main results, section 4 introduces potential applications of
the study, and section 5 gives the conclusion content.
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2. PRELIMINARIES

This section presents necessary symbols, notations, and the fundamental knowledge for
later investigation. Subsection 2.1 introduces the symbols and notations; subsection 2.2
proves several lemmas relevant to the cubic algebraic equation that is utilized in Section
3.

2.1. Symbols and Notations. In this whole paper, symbol A ⇒ B means statement A
can derive out statement B. Symbol P : (x, y) or P = (x, y) means a point P with x
and y being its coordinates. P is an integer point means both its x-coordinate and y-
coordinate are integers. Symbol Γ : f (x, y) = 0 means the curve Γ is defined by the
equation f (x, y) = 0 . The hyperbola H : xy = N is restricted with x > 0, y > 0, and
N > 0 being real numbers unless particularly commented.

2.2. Lemmas. The following lemmas are necessary for analyzing the roots of a cubic
algebraic equation, which frequently occurs in finding the intersections of two conic
sections.

Lemma 2.1. Assume α 6= 0 is a root of the cubic equation ax3 + bx2 + cx + d = 0 with a 6= 0
and d 6= 0; then 1

a is a root of dx3 + cx2 + bx + a = 0.

Proof. Since aα3 + bα2 + cα + d = α3(a + b
α + c

α2 + d
α3 ), it yields

aα3 + bα2 + cα + d = 0 ⇔ α3(a +
b
α

+
c

α2 +
d
α3 ) = 0

which confirms the lemma. �

Lemma 2.2. Assume α 6= 0 is a repeated root of the cubic equation ax3 + 3bx2 + 3cx + d = 0
with a 6= 0 and d 6= 0. Let δ1 = ac − b2, δ2 = ad − bc, and δ3 = bd − c2; then α = − δ2

2δ1

and α2 = δ3
δ1

provided that δ1 6= 0, δ2 6= 0, and δ3 6= 0. Another root of the equation is

β = − 3b
a + δ2

δ1
= a2d−4abc+3b3

a(ac−b2) .

Lemma 2.2*. Assume α 6= 0 is a repeated root of the cubic equation ax3 + bx2 + cx + d = 0
with a 6= 0 and d 6= 0. Let δ1 = 3ac − b2, δ2 = 9ad − bc, and δ3 = 3bd − c2; then α = − δ2

2δ1

and α2 = δ3
δ1

provided that δ1 6= 0, δ2 6= 0, and δ3 6= 0. Another root of the equation is

β = − b
a + δ2

δ1
.

Proof. Only prove Lemma 2.2 only because Lemma 2.2* is proven in the same way. Let
g(x) = ax3 + 3bx2 + 3cx + d and h(x) = dx3 + 3cx2 + 3bx + a; then g′(α) = 0 and
h′( 1

α ) = 0, which lead to
{

3aα2 + 6bα + 3c = 0
3d
α2 + 6c

α + 3b = 0
⇒
{

3aα2 + 6bα + 3c = 0
3bα2 + 6cα + 3d = 0

⇒

{
2(ac − b2)α + ad − bc = 0 ⇒ α = − ad−bc

2(ac−b2) = − δ2
2δ1

(ac − b2)α2 + c2 − bd = 0 ⇒ α2 = bd−c2

ac−b2 = δ3
δ1

The Vieta’s formula 2α + β = − 3b
a immediately leads to β = − 3b

a + δ2
δ1

. �
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Lemma 2.3. For given real numbers a, b, c and d with a 6= 0 and d 6= 0, assume δ1 = ac− b2 6=
0, δ2 = ad− bc 6= 0, and D = a2d2 − 6abcd + 4ac3 + 4b3d− 3b2c2; then α = − δ2

2δ1
is a repeated

root of the cubic equation ax3 + 3bx2 + 3cx + d = 0 if and only if D = 0.

Lemma 2.3*. For given real numbers a, b, c and d with a 6= 0 and d 6= 0, assume δ1 =
3ac − b2 6= 0, δ2 = 9ad − bc 6= 0, and D = 27a2d2 − 18abcd + 4ac3 + 4b3d − b2c2; then
α = − δ2

2δ1
is a repeated root of the cubic equation ax3 + bx2 + cx + d = 0 if and only if

D = 0.

Proof. Only prove Lemma 2.3 only because Lemma 2.3* can be simply proven by substi-
tuting b with b

3 and c with c
3 in Lemma 3. Let f (x) = ax3 + 3bx2 + 3cx + d. By Lemma 2,

β = − 3b
a + δ2

δ1
is a root of f (x) = 0. Calculations of division with remainder show

f (x) = a(x − β)((x +
δ2

2δ1
)2 +

3D

4δ2
1

) + (aδ2 − 2bδ1)D

and

f (x) = a(x − α)2(x +
3b
a
−

δ2

δ1
) +

3aDx

4(ac − b2)2 +
(a2d − b3)D

4(ac − b2)3

These two formulas immediately approve the Lemma. �

3. MAIN RESULTS

In subsection 3.1, we define an ellipse Γ that is with two parameters k and N, and then
investigate its basic properties. In subsections 3.2 to 3.4, we place the hyperbola H : xy =
N together with Γ and investigate the influence of each parameter to the intersections of
H intersecting Γ.

3.1. An Ellipse with Two Parameters. Let k > 0 and N > 0 be real numbers; define in
the Cartesian coordinate system a planar curve Γ by

Γ : 6
√

2k(24 + k2)x2 + 276
√

2k2xy + 6
√

2k(24k2+1)y2 − (288(k2 + 1)
√

2k + 35k2
√

k2 + 1)
√

Nx

−(288(k2 + 1)
√

2k − 35
√

k2 + 1)k
√

Ny + 144
√

2(k2 + 1)2N = 0
(3.1)

Then the following Theorem 3.1 holds.

Theorem 3.1. Γ is an ellipse having the following properties.

(P1). It is tangent to the line TP : y = kx at point P : (
√

N
k ,
√

kN) and the line TQ : y = k∗x

with

k∗ = k −
20160

√
2
√

k(k2 + 1)(k2 + 1)

20160
√

2k
√

k(k2 + 1) + 6912k2 − 1225k + 6912

(P2). Its center C : (xc, yc) is given by





xc = ( 1√
k
+ 35

√
2

24 ∙ k√
k2+1

)
√

N

yc = (
√

k − 35
√

2
24 ∙ 1√

k2+1
)
√

N
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and two loci, F1 : (x1, y1) and F2 : (x2, y2), are calculated by





x1 = ( 1√
k
+ (35

√
69+210

√
2)

144 ∙ k√
k2+1

)
√

N

y1 = (
√

k − (35
√

69+210
√

2)
144 ∙ 1√

k2+1
)
√

N

and 




x2 = ( 1√
k
− (35

√
69−210

√
2)

144 ∙ k√
k2+1

)
√

N

y2 = (
√

k + (35
√

69−210
√

2)
144 ∙ 1√

k2+1
)
√

N

Proof. First prove (P1). Assume the equation of the tangent line is y = sx. Substituting
this into the equation of Γ yields

(6
√

2k((k2 + 24) + 46ks + (24k2 + 1)s2))x2 − ((288k2 + 288)
√

2
√

kN + 35k2
√

k2 + 1
√

N

+((288k2 + 288)
√

2
√

k3N − 35k
√

k2 + 1
√

N)s)x + 144
√

2(k2 + 1)2N = 0

Denote




a = 6
√

2k((k2 + 24) + 46ks + (24k2 + 1)s2)
b = (288k2 + 288)

√
2
√

kN + 35k2
√

k2 + 1
√

N + ((288k2 + 288)
√

2
√

k3N − 35k
√

k2 + 1
√

N)s
c = 144

√
2(k2 + 1)2N

Solving the quadratic equation b2 − 4ac = 0 with respect to s yields s1 = k and

s2 = k −
20160

√
2
√

k(k2 + 1)(k2 + 1)

20160
√

2k
√

k(k2 + 1) + 6912k2 − 1225k + 6912

Thereby, Γ is tangent to TP : y = kx and TQ : y = k∗x. Direct calculation shows that TP is

tangent to Γ at P : (
√

N
k ,
√

kN).
To prove (P2), let






A = 6
√

2k(24 + k2)
B = 276

√
2k2

C = 6
√

2k(24k2+1)
D = −(288(k2 + 1)

√
2k + 35k2

√
k2 + 1)

√
N

E = −(288(k2 + 1)
√

2k − 35
√

k2 + 1)k
√

N
F = 144

√
2(k2 + 1)2N

(3.2)

then it follows
B2 − 4AC = −6912k2(k2 + 1)2 < 0

Referring to page 63 in Lawrence’s book [9] and Ayoub’s paper [10], Γ is known to be an
ellipse whose center is calculated by

{
xc = BE−2CD

4AC−B2

yc = BD−2AE
4AC−B2

and whose majoraxis α and minoraxis β are respectively given by

α, β = −
2

√

2(AE2 + CD2 − BDE + (B2 − 4AC)F)((A + C) ±
√

(A − C)2 + B2)

B2 − 4AC
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Direct calculations yield





xc = ( 1√
k
+ 35

√
2

24 ∙ k√
k2+1

)
√

N

yc = (
√

k − 35
√

2
24 ∙ 1√

k2+1
)
√

N

α = 35
√

2N
12 and β = 35

√
3N

72

Meanwhile the equation of the line T∗
P that is perpendicular to TP and passes the point P

is given by

y −
√

kN = −
1
k
(x −

√
N
k

)

This shows the center C is on T∗
P and therefore the majoraxis coincides with T∗

P because
T∗

P intersects Γ at P∗ : (x∗, y∗), which is calculated by





x∗ =
√

N
k + 35

√
2N

12 ∙ k√
k2+1

y∗ =
√

kN − 35
√

2N
12 ∙ 1√

k2+1

As a result, the two loci are calculated as the theorem claims. �

Remark 1. The area of Γ is N-dependent because α = 35
√

2N
12 and β = 35

√
3N

72 . The

eccentricity of Γ is e =
√

1 − ( β
α )

2
=
√

69
72 =≈ 0.9789450100, meaning Γ is quite flat, as

shown in Figure 1, in which TP, T∗
P, and TQ are also exhibited. Note that TQ is tangent to

Γ at Q; hence O is the pole of the polar line PQ.

Figure 1. Γ, TP, T∗
P , and TQ

Place the hyperbola H : xy = N together with Γ, TP, and T∗
P, as shown in Figure 2; it

is seen that H, Γ, TP, and T∗
P are concurrent at P because P : (

√
N
k ,
√

kN) is also the
intersection of H and TP.

3.2. The Parameter k. By definition and Remark 1, Γ changes its position and direction
with the change of k for a fixed N, as illustrated in Figure 3. In the figure, Γ1, Γ2, and Γ3

are respectively matching to the cases of k = k1, k = k2, and k = k3. In later sections,
symbol Γk is to stand for the configuration of Γ under a specific k for a fixed N.
k’s change affects not only the position and direction of Γ but also the number of inter-
sections between H and Γ, as the following Theorem 3.2 states.
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Figure 2. H,Γ, TP, T∗
P , and TQ are concurrent at P

Figure 3. Γ changes its position and direction with k

Theorem 3.2. If k > 1, H and Γ might have 2, 3, or 4 intersections. There are two values of
k, say ks and kb with ks < kb, such that k = ks or k = kb yields H and Γ have 3 intersections,
ks < k < kb yields H and Γ have 4 intersections and the other cases yield H and Γ have 2
intersections.

Proof. Putting y = N
x into (3.1) obtains the following quartic equation from which the

x-coordinates of the intersections can be solved by

6
√

2k(24 + k2)x4 − (288(k2 + 1)
√

2k + 35k2
√

k2 + 1)
√

Nx3 + 12
√

2(12k4 + 47k2 + 12)Nx2

−(288(k2 + 1)
√

2k − 35
√

k2 + 1)kN
√

Nx + 6
√

2k(24k2+1)N2 = 0
(3.3)

Referring to the proof of Theorem 3.5, it is sure equation (3.3) might have 2, 3, or 4 real
solutions when k > 1. Let G4(x) be the left side of (3.3), namely,

G4(x) = 6
√

2k(24 + k2)x4 − (288(k2 + 1)
√

2k + 35k2
√

k2 + 1)
√

Nx3 + 12
√

2(12k4 + 47k2 + 12)Nx2

−(288(k2 + 1)
√

2k − 35
√

k2 + 1)kN
√

Nx + 6
√

2k(24k2+1)N2
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then (3.3) is equivalent to G4(x) = 0. Direct calculations show

G4(x) = (x −

√
N
k

)G3(x) (3.4)

where G3(x) is
G3(x) = g3x3 + 3g2x2 + 3g1x + g0 (3.5)

with 




g3 = 6
√

2k(k2 + 24)

g2 = − (282k2
√

2k+35k2
√

k2+1+144
√

2k)
√

N
3

g1 =
(144

√
2k4−35k

√
k(k2+1)+282

√
2k2)N

3
g0 = −6

√
2
(
24k2 + 1

)
kN

√
kN

(3.6)

Obviously, k > 1 yields 




g3 > 0
g2 < 0
g1 > 0
g0 < 0

(3.7)

Note that

G3(x) = (x −

√
K
k

)G2(x) + R2(x)

where

G2(x) = g3x2 − (35
√

k2 + 1 + 276
√

2k)k2
√

Nx − (70k
√

k(k2 + 1) − 6
√

2k2(24k2 + 1))N

and
R2(x) = −70k

√
k2 + 1 ∙ N

√
N

It is known that x0 =
√

N
k is a root of G4(x) = 0 but not a root of G3(x) = 0 ; thus G3(x)

might be one of the following four forms

G3(x) = g3(x − x1)3, x1 ∈ R (3.8)

G3(x) = g3(x − x1)2(x − x2), x1, x2 ∈ R (3.9)

G3(x) = g3(x − x1)(x − x2)(x − x3) = 0, x1, x2, x3 ∈ R (3.10)

or
G3(x) = g3(x − x1)(x − z0)(x − z̄0) = 0, z0 ∈ C, x1 ∈ R (3.11)

where z0 and z̄0 are conjugated complex numbers, x1 6=
√

N
k in (3.8) and (3.11), x1 6=

x2 6=
√

N
k in (3.9), x1 6= x2 6= x3 6=

√
N
k in (3.10).

It can be proven that G3(x) cannot be of the form (3.8). In fact, assume G3(x) = g3(x − x1)3 =
g3x3 − 3g3x2x1 + 3g3xx2

1 − g3x3
1; then compared with (3.5) and by (3.6), x1 must simulta-

neously satisfies the following 3 equalities





x1 = − g2
g3

= (282k2
√

2k+35k2
√

k2+1+144
√

2k)
√

N
18
√

2k(k2+24)

x2
1 = g1

g3
=

(144
√

2k4−35k
√

k(k2+1)+282
√

2k2)N

18
√

2k(k2+24)

x3
1 = − g0

g3
= (24k2+1)N

√
kN

(k2+24)
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These immediately lead to contradictions because the 3 equalities can hardly simultane-
ously hold. Consequently, G3(x) might be of the form (3.9), (3.10) or (3.11).
Now let 





δ1 = g3g1 − g2
2

δ2 = g3g0 − g2g1

δ3 = g2g0 − g2
1

Δ = 4δ1δ3 − δ2
2

(3.12)

then according to Blinn’s method [11], the case δ1 = δ2 = δ3 = 0 is impossible because
G3(x) is impossible to be of the form (3.8). Thereby, there are 3 cases left to investigate:
Case 1. Δ = 0. It means G3(x) is of the form (3.9) and G4(x) = 0 have 3 distinct real
solutions; and thus Γ and H have 3 intersections.
Case 2. Δ > 0. It means G3(x) is of the form (3.10) and G4(x) = 0 has 4 distinct real
solutions ; and thus Γ and H have 4 intersections.
Case 3. Δ < 0. It means G3(x) is of the form (3.11) and G4(x) = 0 has 2 real solutions;
and thus Γ and H have 2 intersections.
Direct calculations yield

Δ = g(k)N3 (3.13)
where

g(k) = −10616832(k10 −
1225
6912

k9 −
8
3

k8 +
52675
10368

k7 +
484219439
286654464

k6 +
9818375
995328

k5

+
484219439
286654464

k4 +
52675
10368

k3 −
8
3

k2 −
1225
6912

k + 1)k3(k2 + 1) + 39997440
√

2(k8 −
1225k7

35712

−
157k6

186
−

1225k5

35712
+

1225k3

35712
+

157k2

186
+

1225k
35712

− 1)k4
√

k(k2 + 1)

(3.14)

With Mathematica software, g(k) is drawn for 1 < k ≤ 1.8, 1.8 < k ≤ 2.9, and k > 2.9,
as demonstrated respectively in Figures 4(a), 4(b), and 4(c). It is seen from Figure 4(b)
that g(k) = 0 has merely two zero-points in 2 < k < 2.9. In fact, directly calculations
show g(2.0) ≈ −1.69016 × 1010, g(2.05) ≈ 1.72031 × 108, g(2.89) ≈ −6.78311 × 1010,
and g(2.9) ≈ 1.93021 × 1011. It is known that 2 < ks < kb < 2.9. Seen in (13), the roots
of Δ = 0 is N-independent. That is to say, ks and kb are fixed values no matter how N
changes. Roughly calculated, they are around 2.04959862 + 1

300000000 and 2.8927390012,
respectively. �

(a) g(k) for 1 < k ≤ 1.8 (b) g(k) for 1.8 < k ≤ 2.9 (c) g(k) for k > 2.9

Figure 4. Graph of g(k) in different intervals

Remark 2. Theorem 3.2 can easily be demonstrated with dynamic geometry software
GeoGebra. For example, taking N = 1333 and letting k change from 1.05 to 3 demon-
strate with Geogebra that there are true cases of 2,3 and 4 intersections from Γ intersect-
ing H, as shown in Figure 5.
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(a) Two intersections (b) Three intersections (c) Four intersections

Figure 5. Different number of intersections from Γ intersecting H

Geogebra also shows that, there are two values of k, say ks and kb with ks < kb, at each
of which Γ and H have 3 intersections, as demonstrated with Figure 6. In the figure, the
intersections are marked by small dots. Geometrically seen, the case that Γ and H have
3 intersections occurs when Γ is tangent to H.
It is also seen that k < ks or k > kb brings 2 intersections while ks < k < kb brings 4
intersections, as shown in Figure 7. In the figure, lb is the line y = kbx, ls is the line
y = ksx, and lk is the line y = kx; the small dots are intersections among which Is and Ib
are respectively intersections of ls and lb intersecting H : xy = N.

(a) Three intersections at k = ks (b) Three intersections at k = kb

Figure 6. Two cases of three intersections from Γ intersecting H

(a) Case k < ks
(b) Case ks < k < kb (c) Case k > kb

Figure 7. Different number of intersections from Γk intersecting H
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Theorem 3.2 establishes the relationship between k’s distribution and the number of in-
tersections from H intersecting Γ. The next Theorem 3.3 describes more traits of the
intersections.

Theorem 3.3. Let G3(x) be defined by (3.5), gi (i = 0, 1, 2, 3) be defined by (3.6), Δ and δj

(j = 1, 2, 3 ) be defined by (3.12); denote x1, x2, and x3 to be the roots of G3(x) = 0 ; assume ks

and kb are those stated in Theorem 3.2. Then
(C31). Δ = 0 results in a repeated real root x1 = − δ2

2δ1
= ξ(k)

√
N plus another real root x2 =

ζ(k)
√

N such that x1|k=ks >
√

N, x2|k=ks > 3
√

N, x1|k=kb
> 4

√
N, and x2|k=kb

< 2
3

√
N,

where ξ(k) and ζ(k) are k-related real numbers.
(C32). Δ > 0 results in 3 distinct real roots x1 = φ(k)

√
N > 0, x2 = ϕ(k)

√
N > 0, and

x3 = γ(k)
√

N > 0, where φ(k), ϕ(k), and γ(k) are k-related real numbers.
(C33). Δ < 0 results in one real root x1 = ω(k)

√
N > 0, where ω(k) is a k-related real number.

Proof. First prove (C31). Δ = 0 means G3(x) is of the form (3.9). By Lemma 2, x1 is
calculated by

x1|Δ=0 = −
δ2

2δ1
=

g1g2 − g0g3

2(g2
2 − g1g3)

Direct calculations obtain

x1 =
(65664k4 − 1225k3 − 173376k2 − 1225k + 65664)k

√
k + 5040

√
2k
√

k2 + 1(k4 − 1)

420
√

2 (97k2 + 120) k
√

k
√

k2 + 1 − 10368k6 + 2450k5 + 48960k4 + 2450k3 − 162432k2 + 82944

√
N

(3.15)

which indicates x1|k=ks ≈ 1.15848
√

N, x1|k=kb
≈ 4.027

√
N, and thus

x1|Δ=0,k=ks >
√

N (3.16)

and
x1|Δ=0,k=kb

> 4
√

N (3.17)

Meanwhile, by Vieta’s formula,

x2
1x2 = −

g0

g3
=

(
24k2 + 1

)
N
√

kN

(k2 + 24)
⇒ x2 =

(
24k2 + 1

)
N
√

kN

(k2 + 24)x2
1

(3.18)

This yields

x2|k=ks =

(
24k2 + 1

)
N
√

kN

(k2 + 24)x2
1

|k=ks ≈ 3.851503713
√

N > 3
√

N (3.19)

and

x2|k=kb
=

(
24k2 + 1

)
N
√

kN

(k2 + 24)x2
1

|k=kb
≈ 0.6628365784

√
N <

2
3

√
N (3.20)

These results match to Fig. 6 very well, showing x2 is relatively small when Δ = 0 and
k = kb. Now seen in (3.15) and (3.18), x1 and x2 are surely of the form

{
x1 = ξ(k)

√
N

x2 = ζ(k)
√

N

which validates (C31).
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To prove (C32) and (C33), let U = 2g3
2−3g1g2g3+g0g2

3
2g3

3
, V = g2

2−g1g3

g2
3

, D = U2 − V3, S = 3
√
−U +

√
D,

and T = 3
√
−U −

√
D according to Adewumi’s technique [12]. Direct calculations shows

U = u(k)N and V = v(k)N, where u(k) and v(k) are k-related real numbers. Thus S and
T are of the form S = s(k)

√
N and T = t(k)

√
N with s(k) and t(k) being k-related real

numbers.
For the case Δ > 0, it holds U2 < V3. Letting θ = arccos( U√

V3
) leads to the three real

roots by





x1 = −2
√

V cos( θ
3 ) − g2

g3

x2 = −2
√

V cos( θ+2π
3 ) − g2

g3

x3 = −2
√

V cos( θ−2π
3 ) − g2

g3

(3.21)

Since
g2

g3
= −

(282k2
√

2k + 35k2
√

k2 + 1 + 144
√

2k)
√

N

18
√

2k(k2 + 24)

and

V =
g2

2 − g1g3

g2
3

=
N

648k(k2 + 24)2 (
√

2(25200 + 20370k2)k
√

k(k2 + 1)

−5184k6 + 1225k5 + 24480k4 + 1225k3 − 81216k2 + 41472)

x1, x2, and x3 are surely of the forms x1 = φ(k)
√

N, x2 = ϕ(k)
√

N, and x3 = γ(k)
√

N.
Let f (k) = 1√

N
(−2

√
V − g2

g3
). Using Mathematica to plot f (k) obtains Figure 8(a) ; Using

Maple to plot it obtains Figure 8(b). Either one shows f (k) > 0. Seen in (3.21), xi ≥ f (k).
As a result, (C32) is established.

(a) Mathematica plot (b) Maple plot

Figure 8. Graphs of f (k) plotted by Mathematica and Maple

For the case Δ < 0, it holds U2 > V3. The unique real root x1 is calculated by

x1 = S + T −
g2

g3

which is sure to be of the form

x1 = ω(k)
√

N

where ω(k) is a k-related real number.
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(a) Mathematica plot (b) Maple plot

Figure 9. Graphs of ω(k) plotted by Mathematica and Maple

ω(k) has a very complicated mathematical expression that is hardly analyzed manually;
its graph is plotted with Mathematica or Maple, as seen in Figure 9, showing it is a
positive function in its domain. Accordingly,(C33) is established.

�

3.3. The Parameter N. By Theorem 3.1 and Remark 1, for a fixed k, N’s change makes
Γ become larger or smaller. Except for this trait, there are other interesting properties
described by the following Theorem 3.4.

Theorem 3.4. Let k > 1, N1, N2, and N3 be positive real numbers; denote E1, E2, and E3

respectively to be the ellipses defined by (3.1) when fixing k and taking N by N1, N2, and N3. Let
H1, H2, and H3 be respectively the hyperbolas xy = N1, xy = N2, and xy = N3. Assume O is
the coordinate origin. Then
(C41). The line y = kx is a common tangent line of E1, E2, and E3; it tangents Ei at point

(xi
0, yi

0) = (
√

Ni
k ,

√
kNi), where i = 1, 2, 3. The line y = k∗x stated in Theorem 3.1 is also a

common tangent line of E1, E2, and E3.
(C42). When Ei and Hi (i = 1, 2, 3) have two intersections Ii

0 : (xi
0, yi

0) and Ii
1 : (xi

1, yi
1), the 4

points I1
0 : (x1

0, y1
0), I2

0 : (x2
0, y2

0), I3
0 : (x3

0, y3
0) and O are collinear and so it is with I1

1 : (x1
1, y1

1),
I2
1 : (x2

1, y2
1), I3

1 : (x3
1, y3

1), and O. When Ei and Hi have 3 intersections, Ii
0 : (xi

0, yi
0) plus O

are collinear, Ii
1 : (xi

1, yi
1) plus O are collinear, and Ii

2 : (xi
2, yi

2) plus O are collinear. When Ei

and Hi have 4 intersections, Ii
0 : (xi

0, yi
0) plus O are collinear , Ii

1 : (xi
1, yi

1) plus O are collinear ,
Ii
2 : (xi

2, yi
2) plus O are collinear, and Ii

3 : (xi
3, yi

3) plus O are collinear.

Proof. By Theorem 3.1, the lines y = kx and y = k∗x tangent the ellipse (3.1) no matter

how N changes. It is also know that (xi
0, yi

0) = (
√

Ni
k ,

√
kNi) is the tangent point of the

line y = kx tangent to Ei. Hence (C41) holds.
Now is to prove that I1

1 : (x1
1, y1

1), I2
1 : (x2

1, y2
1), I3

1 : (x3
1, y3

1), and O are collinear if they
exist. By Theorem 3.3, for a fixed k, it holds

xi
1 = X1(k)

√
Ni ⇒ yi

1 =
Ni

X1(k)
√

Ni
=

√
Ni

X1(k)
⇒

yi
1

xi
1

=
1

(X1(k))2

saying that y = x
(X1(k))2 passes through I1

1 , I2
1 and I3

1 . The other cases are proved in the

same way. �
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With Geogebra, Figure 10 shows what Theorem 3.4 states. The figure demonstrates the
case Ei and Hi have 4 intersections.

Figure 10. Collinear intersections and tangent points(Drawn with Geogebra)

3.4. The Part of H Inside Γ. H’s intersecting Γ results in a part of H is inside Γ, as the
following Theorem 3.5 describes.

Theorem 3.5. Let Δ be that defined by (3.12); denote the intersections of Γ intersecting H by
I0(x0, y0), I1(x1, y1),I2(x2, y2) and I3(x3, y3) ordered by x0 < x1 < x2 < x3. Then
(C51). If Δ < 0, Γ and H have 2 intersections, I0 and I1; the part of H between I0 and I1 lies
inside Γ.
(C52). If Δ = 0, Γ and H have 3 intersections, I0, I1 and I2; the part of H between I0 and I1 lies
inside Γ.
(C53). If Δ > 0, Γ and H have 4 intersections, I0, I1, I2 and I3; the part of H between I0 and I1
lies inside Γ.

Proof. The first part of each statement is established in the proof of Theorem 3.2. Here
merely show the second part. By statement (1) of Theorem 3.1, Γ is tangent to the line

y = kx at I0 = (
√

N
k ,
√

kN). The slope of the tangent line to H at I0 is kH = − N
x2

0
= −k,

meaning H crosses into Γ at I0 and the part between I0 and I1 lies inside Γ . �

4. APPLICATION TO STUDY OF INTEGERS

Theorems 3.4 and 3.5 can have their applications in studying integers, as the following
Theorems 4.1 and 4.2 state.

4.1. Application To Integer Factorization. By Theorem 3.4 one can see that factorization
of integer N = pq can be alternatively done by factoring another number N1 = p1q1, as
the following Theorem 4.1 says.

Theorem 4.1. Let N = pq be a semiprime with 1 < p < q being odd primes. Assume k = q
p ;

then factorization of N can be done by the following steps.
Step 1. Find a real number N1 such that N1 = p1q1 with 0 < p1 < q1 being real numbers and
k = q1

p1
.
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Step 2. Calculate N
N1

= α.

Step 3. If p1
√

α and q1
√

α are integers, then p = p1
√

α and q = q1
√

α are the divisors of N;
otherwise repeat Step 1 and Step 2 to select and calculate until the factorization is accomplished.

Proof. Direct calculations know p =
√

N
k , q =

√
kN, p1 =

√
N1
k , and q1 =

√
kN1. Con-

sider (p, q) is a point on the hyperbola xy = N and (p1, q1) is a point on the hyperbola
xy = N1. Then by Theorem 3.4, the two points,(p, q) and (p1, q1), are on the line y = kx.
Therefore the integers p = p1

√
α and q = q1

√
α surely satisfy pq = αp1q1 = αN1 =

N. �

Remark 3. To enable Theorem 6 practicable, N1 is selected to be a terminating decimal
satisfying N

N1
= β2 so that p = p1β and q = q1β can be integers. Readers can refer section

4 of Wang’s paper [13] for more details.

4.2. Application To Evaluation of Divisor Ratio. With H and Γ, the divisor ratio can be
evaluated as Theorem 4.2 states.

Theorem 4.2. Let HΓ be the part of H inside Γ, k > 1 be a rational number, and N = pq be a
composite integer with 1 < p < q being integers. If there is not an integer point on HΓ restricted
with 1 < x ≤

√
N ≤ y; then q

p > k.

Proof. Consider (p, q) is an integer point on H; then it is an integer solution of the fol-
lowing inequalities






xy = N
1 < x ≤

√
N ≤ y

6
√

2k(24 + k2)x2 + 276
√

2k2xy + 6
√

2k(24k2+1)y2 − (288(k2 + 1)
√

2k + 35k2
√

k2 + 1)
√

Nx
−(288(k2 + 1)

√
2k − 35

√
k2 + 1)k

√
Ny + 144

√
2(k2 + 1)2N ≤ 0

By Theorems 3.4 and 3.5, Theorem 4.2 holds. �

5. CONCLUSION AND FUTURE WORK

My initial motivation to define and research the ellipse (3.1) was to find a way to describe
how the divisor ratio k of a semiprime N changes because my research interest has been
on integer factorization. After nearly one year’s study, I finished this paper. As readers
can see, this paper does not achieve my initial goal because I could not obtain a good
result to set up a relationship between k and N although I proved a related Theorem 4.2,
which looks like something to evaluate k but is hardly applied for a big semiprime N.
Fortunately, I gained Theorems 3.4 and 4.1. These two theorems enable us to convert
the factorization of a big semiprime into that of a small or another big number which
is easily factorized. This happened to coincident with what I had mentioned in one of
my previously published paper [13]. Therefore, my future work is to develop the new
method.
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