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HAMILTONIANS DERIVATIONS OVER JACOBI BRACKET

N. MAHOUNGOU MOUKALA, M M. MILOUNGUIDI, B. G. R. BOSSOTO

ABSTRACT. The Jacobi pair and the Jacobi vector field on a smooth manifold are intro-
duced. We define the operators of cohomology for a Jacobi manifold and for a locally
conformal symplectic manifold. These operators allow us to explore the hamiltonian vec-
tor fields. Finally, we caracterize the notion of globally hamiltonian vector fields and
locally hamiltonian vector fields on a Jacobi manifold and on a locally conformal sym-
plectic manifold in terms of derivations over the Jacobi bracket.

1. INTRODUCTION

All the objects that we consider are assumed to be C∞-smooth and we follow the usual
notation of differential geometric literature [3]. Let M be a smooth manifold, C∞(M) the
commutative algebra of smooth functions on M and E the C∞(M)-module. A first order
differential operator on C∞(M) with coeffcients in E is a R-linear map φ : C∞(M) −→ E
such that

φ ( f · g) = φ ( f ) · g + f · φ (g)− f · g · φ
(

1C∞(M)

)
for any f , g ∈ C∞(M). We denote by Di f fR [C∞(M), E] the C∞(M)-module of first order
differential operators on C∞(M) with coeffcients in E and

DerR [C∞(M), E] = {φ ∈ Di f fR [C∞(M), E] /φ
(

1C∞(M)

)
= 0}.

When E = C∞(M), we denote by Di f fR [C∞(M)] the C∞(M)-module of first order dif-
ferential operators of C∞(M) and DerR [C∞(M)] the C∞(M)-module of derivations on
C∞(M). Let X(M) is a C∞(M)-module and vector fields acts as derivations on smooth
functions, that is the map

D : X(M)× C∞(M) −→ C∞(M), (X, f ) 7−→ DX( f ) := X( f )
satisfies the equation DX( f · g) = DX( f ) · g + f · DX(g), for any f , g ∈ C∞(M).
Jacobi algebras were first introduced by Kirillov [2] under the name local Lie algebras
and independently by Lichnerowicz [5] as the algebraic structure on the ring of C∞ func-
tions on a certain kind of smooth manifolds, called Jacobi manifolds. Jacobi algebras
are a generalisation of Poisson algebras. The Jacobi bracket is a first order differential
operator on the commutative algebra endowed with a Lie bracket.
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The purpose of this paper is to caracterize the notion of globally hamiltonian vector fields
and locally hamiltonian vector fields on a Jacobi manifold and on a locally conformal
symplectic manifold in terms of derivations over the Jacobi bracket. We generalize the
classical notions of hamiltonian vector fields on a symplectic manifold [7].
The paper is organized as follows. In Section 2, we briefly recall the universal property
of first order differential operators and we recover the Jacobi pair on a smooth manifold.
In section 3, we introduce the cohomology associated with the adjoint representation
and we explore the notion of hamiltonian vector fields on a Jacobi manifold. In section 4,
we caracterize the Jacobi vector fields in terms of the derivations over the Jacobi bracket.
Finally, in Section 5, we describe the Jacobi structure associated with a locally conformal
symplectic manifold. We define the operator of cohomology which generalizes the de
Rham cohomology and we caracterize the globally hamiltonian vector fields and the
locally hamiltonian vector fields on a locally conformal symplectic manifold.

2. PRELIMINARIES

Let M be a smooth manifold and denote by ΩR[C∞(M)] the module of Kähler differ-
entials of commutative algebra C∞(M), that is, the quotient space ΩR[C∞(M)] = I/I2,
where I is the C∞(M)-submodule of C∞(M)

⊗
R

C∞(M) generated by the elements of the

form
f ⊗ 1C∞(M) − 1C∞(M) ⊗ f with f ∈ C∞(M) [1] and [8].
The linear map δM : C∞(M) −→ ΩR[C∞(M)] defined by

δM ( f ) = f ⊗ 1C∞(M) − 1C∞(M) ⊗ f

is the canonical derivation which the image of δM generates the C∞(M)-module ΩR[C∞(M)],
that is, for α ∈ ΩR[C∞(M)], α = ∑

i∈I: f inite
fi · δM(gi), with fi, gi ∈ C∞(M).

The map ∆M : C∞(M) −→ C∞(M) ⊕ ΩR[C∞(M)] such that ∆M ( f ) = f + δM( f ), for
any f in C∞(M), is a first order differential operator and the image of ∆M generates the
C∞(M)-module C∞(M) ⊕ ΩR[C∞(M)] i.e., for x ∈ C∞(M) ⊕ ΩR[C∞(M)], x = f + α
where α = ∑

i∈I: f inite
fiδM(gi) with fi, gi ∈ C∞(M).

Theorem 2.1. [8] Universal property of the pair (C∞(M) ⊕ ΩR [C∞(M)] , ∆M). For every
C∞(M)-module E and for any first order differential operator φ : C∞(M) −→ E, there exists
a unique C∞(M)-linear map φ̃ : C∞(M) ⊕ ΩR [C∞(M)] −→ E such that φ̃ ◦ ∆M = φ.
Moreover, the linear mapping

HomC∞(M) (C
∞(M)⊕ ΩR [C∞(M)] , E) −→ Di f fR (C∞(M), E) , ψ 7−→ ψ ◦ ∆M

is an isomorphism of C∞(M)-modules.

Let Λ [C∞(M)⊕ ΩR [C∞(M)]] =
⊕

n∈N

Λn [C∞(M)⊕ ΩR[C∞(M)] be the exterior algebra

of the C∞(M)-module C∞(M)⊕ ΩR [C∞(M)].

For any integer p ≥ 1, we recall that a skew-symmetric R-multilinear map

φ : [C∞(M)]p = C∞(M)× C∞(M)× C∞(M)× ... × C∞(M) −→ E
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is a skew-symmetric p-differential operator if the map

φi = φ
(

f1, ..., f̂i, ..., fp

)
: C∞(M) −→ E, fi 7−→ φ

(
f1, f2, ..., fi−1, fi, fi+1, ..., fp

)
is a first order differential operator for any i = 1, 2, ..., p, for any f1, f2, ..., fp ∈ C∞(M) [8].

Theorem 2.2. [8] For any C∞(M)-module E and for any skew-symmetric p-differential operator
φ : [C∞(M)]p −→ E, there exists a unique skew-symmetric C∞(M)-multilinear map

φ̃ : [C∞(M)⊕ ΩR[C∞(M)]]p −→ E

of degree p such that

φ̃
(
∆M ( f1) , ∆M ( f2) , ..., ∆M

(
fp
))

= φ
(

f1, f2, ..., fp
)

(2.1)

for any f1, f2, ..., fp ∈ C∞(M).

A Jacobi bracket on a manifold M is a Lie bracket {., .} on C∞(M) satisfying the Leibniz
identity

{ f , g · h} = { f , g} · h + g · { f , h} − gh{ f , 1C∞(M)} (2.2)

for any f , g, h ∈ C∞(M). A Jacobi manifold is a manifold equipped with a Jacobi bracket.
The Leibniz identity means that, for a given function f ∈ C∞(M) on a Jacobi manifold M,
the inner derivation ad( f ) : C∞(M) −→ C∞(M), g 7−→ { f , g} is a first order differential
operator [2],[5]. If M be a Jacobi manifold, we denote ξ = ad(1C∞(M)) the fundamental
vector field of the Jacobi manifold. For any f and g in C∞(M), we have

ξ{ f , g} = {ξ( f ), g}+ { f , ξ(g)}, ξ( f g) = ξ( f )g + f · ξ(g) (2.3)

and the map ad : C∞(M) −→ Di f fR[C∞(M)], f 7−→ ad( f ) is a first order differential
operator. Thus, by the Theorem 2.1, there exists a unique C∞(M)-linear map

ãd : C∞(M)⊕ ΩR[C∞(M)] −→ Di f fR[C∞(M)]

such that
ãd ◦ ∆M = ad. (2.4)

Theorem 2.3. The following statements are equivalent:
(1) M is a Jacobi manifold.
(2) There exists a skew-symmetric 2-form

ωM : [C∞(M)⊕ ΩR[C∞(M)]]× [C∞(M)⊕ ΩR[C∞(M)]] −→ C∞(M)

such that, for any f and g in C∞(M),

{ f , g} = ωM(∆M( f ), ∆M(g)) (2.5)

defines a R-Lie algebra structure on C∞(M).
(3) There exists a skew symmetric 2-form

π : ΩR[C∞(M)]× ΩR[C∞(M)] −→ C∞(M)

and a vector field ξ on M such that, for any f and g in C∞(M),

{ f , g} = π(δM( f ), δM(g)) + f ξ(g)− gξ( f ) (2.6)

defines a R-Lie algebra structure on C∞(M).
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Proof. (1)⇒(2) If M is a Jacobi manifold, the bracket {, } is a skew-symmetric 2-differential
operator. By the Theorem 2.2, there exists a unique ωM ∈ Λ2 ([C∞(M)⊕ ΩR[C∞(M)])
such that

{ f , g} = ωM(∆M( f ), ∆M(g))

for all f , g ∈ C∞(M).
(2)⇒(3) If { f , g} = ωM(∆M( f ), ∆M(g)) and since ∆M( f ) = f + δM( f ), we get

{ f , g} = f · ωM(1C∞(M), δM(g)) + g · ωM(δM( f ), 1C∞(M))) + ωM(δM( f ), δM(g)).

Since

ωM(1C∞(M), f ) + ωM(1C∞(M), δM( f )) = ωM(1C∞(M), ∆M( f )) = {1C∞(M), f },

then there exists a vector field ξ = ad(1C∞(M)) with

ξ( f ) = ad(1C∞(M))( f ) = {1C∞(M), f } = ωM(1C∞(M), δM( f )), (2.7)

and there exists a skew-symmetric 2-form

ω|ΩR[C∞(M)] = π : ΩR[C∞(M)]× ΩR[C∞(M)] −→ C∞(M),

such that

{ f , g} = π(δM( f ), δM(g)) + f · ωM(1C∞(M), δM(g)) + g · ωM(δM( f ), 1C∞(M)))

= π(δM( f ), δM(g)) + f ξ(g)− gξ( f ).

(3)⇒(1) If the bracket

{ f , g} = π(δM( f ), δM(g)) + f ξ(g)− gξ( f )

defines a R-Lie algebra structure on C∞(M), then

ad( f ) (g · h) = { f , g · h}
= π(δM( f ), δM(g · h)) + f ξ(g · h)− g · hξ( f )

= g · ad( f ) (h) + ad( f ) (g) · h − gh · ad( f )
(

1C∞(M)

)
i.e., ad( f ) is a differential operator. Therefore, M is a Jacobi manifold. □

The skew-symmetric 2-form ωM on C∞(M)⊕ ΩR[C∞(M)] is called Jacobi 2-form of the
Jacobi manifold M and the pair (M, ωM) is called Jacobi manifold.
In this case we say that the pair (π, ξ) defines a Jacobi structure on M and (M, π, ξ) is
a Jacobi manifold. If ξ = 0, the pair (M, π) is called Poisson manifold. A first order
differntial operator φ on a Jacobi manifold (M, ωM) is said of Jacobi if LφωM = 0.

3. HAMILTONIAN VECTOR FIELDS ON JACOBI MANIFOLD

If (M, ωM) is a Jacobi manifold, for f ∈ C∞(M), the map X f : C∞(M) −→ C∞(M), such
that

X f (g) = ωM(∆M ( f ) , δM(g)) = { f , g} − g · { f , 1C∞(M)} (3.1)

is a vector field on M called hamiltonian vector field associated with f . Moreover, the
map

Φ : C∞(M)] −→ DerR[C∞(M)], f 7−→ X f = ad( f )− { f , 1C∞(M)}
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is a morphism of R-Lie algebras, that is, [X f , Xg] = X{ f ,g}, for all f , g ∈ C∞(M). The set,
XHam(M), of the hamiltonians derivations is a Lie subalgebra of DerR[C∞(M)]. It is easy
to see that Φ is a first order differential operator. It is follows that

X f ·g = f · Xg + g · X f − f · g · X1C∞(M)

for all f , g ∈ C∞(M). When (M, ωM) is a Jacobi manifold, then the map

ad : (C∞(M), {, }) −→ (Di f fR [(C∞(M)] , [, ]) , f 7−→ ad( f )

is a adjoint representation of C∞(M) into C∞(M) i.e., ad ({ f , g}) = [ad( f ), ad(g)] for any
f , g ∈ C∞(M).
For p ∈ N, we denote by Λp

J (M) = L
p
sks[C

∞(M), C∞(M)] the C∞(M)-module of skew-
symmetric multilinear forms of degree p from C∞(M) into C∞(M). We have Λ0

J (M) =

C∞(M) and we denote by ΛJ(M) =
n⊕

p=0
Λp

J (M), the algebra of skew-symmetric multi-

linear forms. Let dad : ΛJ(M) −→ ΛJ(M) be the operator of cohomology associated with
the adjoint representation ad and let

dΦ : Lsks[C∞(M), C∞(M)] −→ Lsks[C∞(M), C∞(M)]

be the operator of cohomology associated with the representation Φ. Thus, for any η ∈
Λp

J (M) and for any f1, f2, ..., fp+1 ∈ C∞(M),

(dadη)( f1, f2, ..., fp+1) =
p+1

∑
i=1

(−1)i−1ad( fi)[η( f1, f2, ... f̂i..., fp+1)] (3.2)

+ ∑
1≤i<j≤p+1

(−1)i+j η(
{

fi, f j
}

, f1, ..., f̂i, ... f̂ j, ..., fp+1)

where f̂i means that the term fi is omitted. For any f , g ∈ C∞(M), (dad f )(g) = −{ f , g}.
In particular,

(
dad1C∞(M)

)
( f ) = { f , 1C∞(M)}.

For any η ∈ Lsks[C∞(M), C∞(M)], we have

dadη = dΦ η + [dad(1C∞(M))]Λη.

When M is a Jacobi manifold with bracket {, }, a vector field X ∈ X (M) is locally hamil-
tonian if X is closed for the cohomology associated with the representation ad, that is
dadX = 0.

Proposition 3.1. When M is a Jacobi manifold with bracket {, }, then a locally hamiltonian
vector field X ∈ X (M) is the derivation of the Jacobi algebra C∞(M).

Proof. If dadX = 0, then for any f and g ∈ C∞(M),

0 = (dadX)( f , g)
= ad( f )[X(g)]− ad(g)[X( f )]− X({ f , g})
= { f , X(g)} − {g, X( f )} − X({ f , g}),

that is,
X({ f , g}) = {X( f ), g}+ { f , X(g)},

for any f and g ∈ C∞(M), □
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When M is a Jacobi manifold with bracket {, }, a vector field X ∈ X (M) is globally
hamiltonian if X is exact for the cohomology associated with the adjoint representation
ad that is, there exists f ∈ C∞(M) such that X = dad( f ).

Proposition 3.2. When M is a Jacobi manifold with bracket {, }, then a globally hamiltonian
vector field X ∈ X (M) is the derivation interior of the Jacobi algebra C∞(M).

Proof. Let X ∈ X (M) the vector field be a globally hamiltonian, there exists f ∈ C∞(M)
such that X = dad ( f ). For any g ∈ C∞(M), we have

X(g) = (dad f )(g) = −ad( f )(g)

i.e., X = −ad( f ). Thus, X is globally hamiltonian if X = −ad( f ) with f ∈ C∞(M), that
is, X is the derivation interior of the Jacobi algebra C∞(M). □

4. JACOBI VECTOR FIELDS

For any derivation D : C∞(M) −→ C∞(M), the Lie derivative with respect to D is the
map

LD : Λp(ΩR[C∞(M)]) −→ Λp(ΩR[C∞(M)])

such that for η ∈ Λp(ΩR[C∞(M)]) and x1, ..., xp ∈ ΩR[C∞(M)],

(LDη)(x1, ..., xp) = D
[
η(x1, ..., xp)

]
−

p

∑
i=1

η(x1, ...,LDxi, xi+1, ..., xp). (4.1)

For any D ∈ DerR [C∞(M)] and f ∈ C∞(M), we have

LDδM( f ) = δM [D ( f )] . (4.2)
A vector field X on a Jacobi manifold (M, π, ξ) is said to be a Jacobi vector field if LXπ =
0 and LXξ = 0. When X ∈ X(M) is a Jacobi vector field, then X[ξ( f )] = ξ[X( f )] and

X [π (δM( f ), δM(g))] = π (δM[X( f )], δM(g)) + π (δM( f ), δM[X(g)])

for any f , g ∈ C∞(M).

Theorem 4.1. Let X ∈ X(M) be a vector field on a Jacobi manifold, then the following state-
ments are equivalent:
(i) X is a Jacobi vector field;
(ii) X is a derivation over the Jacobi bracket;
(iii) [X, X f ] = XX( f ).

Proof. (i) ⇒ (ii) If X ∈ X (M) is a Jacobi vector field, then LXπ = 0 and LXξ = 0. For all
f , g ∈ C∞(M), we have, from (2.6),

X ({ f , g}) = X [π (δM( f ), δM(g)) + f · ξ(g)− g · ξ( f )]
= X [π (δM( f ), δM(g))] + X( f ) · ξ(g) + f · X [ξ(g)]

−X(g) · ξ( f )− g · X [ξ( f )]

i.e.,

X ({ f , g}) = π (δM[X( f )], δM(g)) + X( f ) · ξ(g)− g · ξ[X( f )]
+π (δM( f ), δM[X(g)]) + f · ξ [X(g)]− X(g) · ξ( f ).
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Therefore,
X{ f , g} = {X( f ), g}+ { f , X(g)}.

(ii)⇒(iii) When X is the derivation over the Jacobi bracket (C∞(M), {, }), we have for all
g ∈ C∞(M),

[X, X f ](g) = X[X f (g)]− X f [X(g)].
From (3.1)

[X, X f ](g) = {X( f ), g}+ g · ξ[X( f )]

= XX( f )(g).

(iii)=⇒(i) When [X, X f ] = XX( f ), we have for all f ∈ C∞(M),

LXξ( f ) = {X(1C∞(M)), f }+ {1C∞(M), X( f )} − {1C∞(M), X( f )}
= 0,

and for all f , g ∈ C∞(M) and π ∈ Λ2(ΩR[C∞(M)]), from (4.1),

LXπ(δM( f ), δM(g))
= X[π(δM( f ), δM(g))]− π (LXδM( f ), δM(g))− π (δM( f ),LXδM(g))

By (2.6), we get

LXπ(δM( f ), δM(g)) = − f · ξ[X(g)] + g · ξ[X( f )]− g · ξ[X( f )] + f · ξ[X(g)]
= 0.

□

Proposition 4.1. Let (M, π, ξ) be a Jacobi manifold. Then, all locally hamiltonian vector fields
are Jacobi vector fields.

Proof. Let X be a locally hamiltonian vector field on a Jacobi manifold M with bracket
{, }. X is the derivation of the Jacobi algebra C∞(M) and from the Theorem 4.1, X is a
Jacobi vector field. □

Proposition 4.2. Let (M, π, ξ) be a Jacobi manifold. Then, all globally hamiltonian vector fields
are Jacobi vector fields.

Proof. Let X be a globally hamiltonian vector field on a Jacobi manifold M, there exists
f ∈ C∞(M) such that X = dad ( f ). Then

dadX = dad (dad( f )) = 0,

that is X is a locally hamiltonian vector field. By the Theorem 4.1, X is a Jacobi vector
field. □

The first group of cohomology H1
Jac(M) is the quotient of the space of Jacobi vector fields

by the hamiltonians vectors fields.
Let µ be a volume form on an orientable manifold M and let X be a vector fields on M
[3]. The divergence operator of X with respect to µ is the map divµX such that

(divµX)µ = LXµ.
For any X and Y ∈ X(M), for any f in C∞(M), we have
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divµ([X, Y]) = X(divµY)− Y(divµX), (4.3)

divµ( f · X) = X( f ) + f · divµX (4.4)

and for f > 0,
div f ·µ(X) = X(log f ) + divµX. (4.5)

Proposition 4.3. Let (M, π, ξ, µ) be a Jacobi manifold, equipped with a volume form µ, then,
the map

Xµ : C∞(M) → C∞(M), f 7→ divµX f

is a Jacobi vector field. Moreover, this Jacobi vector field Xµ is a 1-cocycle for the cohomology
associated with the adjoint representation.

Proof. For any f and g in C∞(M), from X f ·g = f · Xg + g · X f − f · g · X1C∞(M)
, we have

Xµ( f · g) = divµ( f · Xg + g · X f − f · g · X1C∞(M)
)

By direct computations, using (3.1) and (4.4), we obtain

Xµ( f · g) = f · Xµ(g) + g · Xµ( f ). (4.6)

We also get,
Xµ ({ f , g}) = {Xµ( f ), g}+ { f , Xµ(g)}. (4.7)

By (4.1),

LXµ ξ( f ) = Xµ(ξ( f ))− ξ(LXµ( f ))

= Xµ({1C∞(M), f })− ξ(Xµ( f ))

From (4.7), we get LXµ ξ( f ) = 0, for all f ∈ C∞(M).
Using again (4.1), for any f and g in C∞(M), we find(

LXµ π
)
(δM( f ), δM(g)) = Xµ[π(δM( f ), δM(g))]− π(LXµ δM( f ), δM(g))

−π(δM( f ),LXµ δM(g))

From (4.2), (4.6), (4.7) and by using the formula (2.6), we get,

LXµ π(δM( f ), δM(g)) = 0,

for any f and g in C∞(M). Thus, Xµ is a Jacobi vector field.
From (3.2), for any f , g ∈ C∞(M),

(d1
adXµ)( f , g) = ad( f )[Xµ(g)]− ad(g)[Xµ( f )]− Xµ({ f , g})

= { f , Xµ(g)} − {Xµ( f ), g} − Xµ({ f , g}).

From (4.7), (d1
adXµ)( f , g) = 0, for any f , g ∈ C∞(M). Hence, Xµ is a 1-cocycle for the

cohomology associated with ad. □

The vector field Xµ is called modular Jacobi vector field.

Proposition 4.4. The Jacobi cohomology class of the modular vector field Xµ is independent of
the choice of volume form µ.
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Proof. For any f > 0 and g ∈ C∞(M), we obtain

X f ·µ(g)− Xµ(g) = −Xlog f (g).

This means that, the vector fields X f ·µ and Xµ differ by hamiltonian vector field, that
is, there is h ∈ C∞(M) such that −Xlog f = d0(h). Thus, X f ·µ − Xµ = d0(h) is a Jacobi
1-coboundary, it follows that, [X f ·µ] = [Xµ]. Therefore, the Jacobi cohomology class of
the modular form is therefore independent of the chosen volume form. □

5. HAMILTONIAN VECTOR FIELDS ON A LOCALLY CONFORMAL SYMPLECTIC
MANIFOLD

Locally conformal symplectic structures were introduced by Lee in [4] and then studied
extensively by Libermann [6] and Vaisman [9].
A locally conformal symplectic structure on M is a pair (α, ω) of a differential closed
1-form α and a nondegenerate differential 2-form ω on M such that

dω = −α ∧ ω. (5.1)

The 1-form α is known as the Lee form. When α = 0, then M is a symplectic manifold.
Since the 2-form ω is nondegenerate, then the map ω♭ : X(M) −→ Λ1(M), X 7−→ iXω

such that
(

ω♭ (X)
)
(Y) = ω(X, Y) is an isomorphism of C∞(M)-modules, for all Y ∈

X(M). Thus, for all f ∈ C∞(M), since d f + f α ∈ Λ1(M), there exists a unique vector
field X f ∈ X(M) such that

ω♭(X f ) = iX f ω = d f + f α

thas is

(iX f ω)(Y) = ω(X f , Y) = (d f )(Y) + f · α(Y) (5.2)

= Y( f ) + f · α(Y)

for all Y ∈ X(M).
ω(X, X f ) = −X( f )− f · α(X) (5.3)

We consider the bracket {, } : C∞(M)× C∞(M) −→ C∞(M) such that

{ f , g} = −Xg( f )− f · α(Xg) (5.4)
for all f , g ∈ C∞(M). For any X, X f and Xg in ∈ X(M) with f and g in C∞(M), the
relation

dω(X, X f , Xg) = −α ∧ ω(X, X f , Xg)

becomes

{ f · α(X), g}+ { f , g · α(X)} = 2[X({ f , g}) + { f , g} · α(X)− {X( f ), g} − { f , X(g)}].
(5.5)

Lemma 5.1. If (M, α, ω) is a locally conformal symplectic manifold. Then for any f ∈ C∞(M),
the map φ f : C∞(M) −→ C∞(M) such that

φ f (g) = { f , g} = −ω(X f , Xg) = −Xg( f )− f · α(Xg) (5.6)

is a first order differential operator for all g ∈ C∞(M).
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Proof. For any f , g, h ∈ C∞(M), we have

{1C∞(M), f } = −α(X f ). (5.7)

and
{ f , g · h} = −{g · h, f } = X f (g · h) + g · h · α(X f ).

Since X f is a derivation, by using (5.6) and (5.7), we get

{ f , g · h} = { f , g} · h + g · { f , h} − gh ·
{

f , 1C∞(M)

}
. (5.8)

Hence, φ f is a first order differential operator.
□

For any X f , Xg and Xh in X(M), with f , g and h ∈ C∞(M), we have

α
[
X f , Xg

]
= X f α(Xg)− Xgα(X f ).

Since α is closed est, using the Cartan formula, we have

LXα(X f ) = iXdα(X f ) + diXα(X f ) = dα(X, X f ) = 0.

Lemma 5.2. If (M, α, ω) is a locally conformal symplectic manifold. Then for all f , g, h ∈
C∞(M), we have

{ f , {g, h}}+ {g, {h, f }}+ {h, { f , g}} = 0. (5.9)

Proof. A direct calculation gives

dω
(
X f , Xg, Xh

)
= ({ f , {g, h}}+ {g, {h, f }}+ {h, { f , g}}) + {g, h} α(X f )

− { f , g} α(Xh) + { f , g} α(Xh),

and
− (α ∧ ω)

(
X f , Xg, Xh

)
= α(X f ) {g, h} − α(Xg) { f , h}+ α(Xh) { f , g} .

By (5.1), we get

{ f , {g, h}}+ {g, {h, f }}+ {h, { f , g}}+ {g, h} · α(X f )− { f , h} · α(Xg)

+ { f , g} · α(Xh) = α(X f ) · {g, h} − α(Xg) · { f , h}+ α(Xh) · { f , g} ,

that is
{ f , {g, h}}+ {g, {h, f }}+ {h, { f , g}} = 0.

□

Theorem 5.1. All locally conformal symplectic manifold is a Jacobi manifold.

Proof. From the Lemma 5.2, we deduce that the pair (C∞(M), {, }) is a Lie algebra and
from, the Lemma 5.1, the map ad( f ) is a first order differential operator for any f ∈
C∞(M). Therefore, M is a Jacobi manifold. □

Proposition 5.1. For all f , g ∈ C∞(M), we have

α(X{ f ,g}) = { f , α(Xg)} − {g, α(X f )}. (5.10)

Proof. From (5.7) and (5.9), we have

α(X{ f ,g}) = −{1C∞(M), { f , g}}
= { f , α(Xg)} − {g, α(X f )}.

□
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Proposition 5.2. The map C∞(M) −→ DerR [(C∞(M)] , f 7−→ X f is a first order differential
operator. Moreover, for all f , g ∈ C∞(M), we have

[X f , Xg] = X{ f ,g}.

Proof. For all f , g, h ∈ C∞(M), we have

X f ·g(h) = −{h, f · g} − h · α(X f ·g).

Since α(X f ·g) = f · α(Xg) + g · α(X f ) and by using (5.8), we get

X f ·g(h) = ( f · Xg + g · X f − f g · X1C∞(M)
)(h)

for all h ∈ C∞(M). Thus, we have

X f ·g = f · Xg + g · X f − f · g · X1C∞(M)
. (5.11)

For all f , g, h ∈ C∞(M), we have

([X f , Xg]− X{ f ,g})(h) = [X f , Xg](h)− X{ f ,g}(h)

= (X f ◦ Xg − Xg ◦ X f )(h) + {h, { f , g}}+ h · α(X{ f ,g})

From (5.10),

([X f , Xg]− X{ f ,g})(h) = X f [Xg(h)]− Xg[X f (h)] + {h, { f , g}}
+h · [{ f , α(Xg)} − {g, α(X f )}]

i.e.,

([X f , Xg]− X{ f ,g})(h) = X f [−{h, g} − h · α(Xg)]− Xg[−{h, f } − h · α(X f )]

+{h, { f , g}}+ h · { f , α(Xg)} − h · {g, α(X f )}

By a direct computations and using (5.4), we find ([X f , Xg] − X{ f ,g})(h) = 0, for all
f , g, h ∈ C∞(M). Thus, [X f , Xg] = X{ f ,g}. □

When M is a smooth manifold, α a diffential 1-form on M, for any X ∈ X(M), the map

ρα(X) : C∞(M) −→ C∞(M)

such that
[ρα(X)]( f ) = X( f ) + f · α(X) (5.12)

is a first order differential operator for all f ∈ C∞(M) and the map

ρα : X(M) −→ Di f fR(C∞(M)), X 7−→ ρα(X)

is a morphism of C∞(M)-modules. Moreover,

[ρα(X)]( f )− f [ρα(X)](1C∞(M)) = X( f ).

Proposition 5.3. If (M, α, ω) is a locally conformal symplectic manifold, then the map

ρα : X(M) −→ Di f fR[C∞(M)], X 7−→ ρα(X)

is a Lie algebras homomorphism.
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Proof. By a direct computations and using (5.12), we find,

(ρα ([X, Y])− [ρα(X), ρα(Y)])( f ) = f · [X(α(Y))− Y(α(X))− α([X, Y])]
= f · (dα)(X, Y),

for any X, Y ∈ X(M) and for any f ∈ C∞(M). Since α is d-closed i.e., dα = 0, then

ρα ([X, Y]) = [ρα(X), ρα(Y)] .

□

Let dρα : L
p
sks(X(M), C∞(M)) −→ L

p+1
sks (X(M), C∞(M)) be the cohomology operator

associated with the representation ρα defined for η ∈ L
p
sks(X(M), C∞(M)) and X1, ..., Xp+1 ∈

X(M) by

(dρα η)(X1, ..., Xp+1) =
p+1

∑
i=1

(−1)i−1ρα(Xi)[η(X1, ..., X̂i, ..., Xp+1)]

+ ∑
1≤i<j≤p+1

(−1)i+jη([Xi, Xj], X1, ..., X̂i, ..., X̂j, ..., Xp+1).

For all differential form η on M, we have

dρα η = dη + α ∧ η and dρα(1C∞(M)) = α.

Definition 5.1. Let (M, α, ω) be a locally conformal symplectic manifold. We said that a vector
field X on M is locally hamiltonian if the form iXω is closed for the cohomology associated with
the representation ρα i.e., dρα(iXω) = 0.

Proposition 5.4. Il X ∈ X(M) is locally hamiltonian, then ρα(X) is a derivation of Jacobi
algebra (C∞(M), {, }) i.e., for all f , g ∈ C∞(M),

ρα(X) ({ f , g}) = {ρα(X)( f ), g}+ { f , ρα(X)(g)}. (5.13)

Proof. If dρα(iXω) = 0, then for any Y, Z ∈ X(M), dρα iXω (Y, Z) = 0. In particular for
any X f , Xg ∈ X(M) with f , g ∈ C∞(M), we have

0 = dρα iXω
(
X f , Xg

)
= ρα(X f )[iXω(Xg)]− ρα(Xg)[iXω(X f )]− iXω

(
[X f , Xg]

)
From (5.3) and (5.12), we get

0 = −{X( f ), g} − { f · α(X), g} − { f , X(g)}
−{ f , g · α(X)}+ X ({ f , g}) + { f , g} · α(X)

that is

X ({ f , g}) + { f , g} · α(X) = {X( f ) + f · α(X), g}+ { f , X(g) + g · α(X)}.

Therefore,
ρα(X) ({ f , g}) = {ρα(X)( f ), g}+ { f , ρα(X)(g)}.

□

Proposition 5.5. If X ∈ X(M) is locally hamiltonian vector field on a locally conformal sym-
plectic manifold (M, α, ω), then

X({ f , g}) = {X( f ), g}+ { f , X(g)} − { f , g} · α(X). (5.14)
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Proof. From (5.13), we have

X({ f , g}) + { f , g} · α(X) = {X( f ) + f · α(X), g}+ { f , X(g) + g · α(X)}.

This means that

{ f · α(X), g}+ { f , g · α(X)} = X({ f , g})− {X( f ), g} − { f , X(g)}+ { f , g} · α(X)

By (5.5), we obtain

X({ f , g}) = {X( f ), g}+ { f , X(g)} − { f , g} · α(X).

□

When α = 0, then ρα = idX(M) and (M, ω) is a symplectic manifold. In this case, a
vector field X on M is locally hamiltonian if the form iXω is closed for the de Rham
cohomology i.e., X is a derivation of the Lie algebra C∞(M) induced by the structure of
Poisson defined by the symplectic manifold.

Proposition 5.6. For any f ∈ C∞(M), X ∈ X(M), we have
i)

{α(X), f } = 0. (5.15)
ii)

α(X) · α(X f ) = 0. (5.16)

Proof. i) Since α is closed, we have

0 = dα(X, X f ) = X[α(X f )]− X f [α(X)]− α([X, X f ]).

Using (5.6) and (5.7), we get

X(−{1C∞(M), f }) + {α(X), f }+ α(X) · α(X f )− α(XX( f )) = 0

i.e., by (5.14), we have

−{X(1C∞(M)), f } − {1C∞(M), X( f )}+ {1C∞(M)), f } · α(X)

+{α(X), f } − {1C∞(M), f } · α(X) + {1C∞(M), X( f )} = 0.

Hence, {α(X), f } = 0.
ii)

0 = LXα(X f ) = X[α(X f )]− α(LX(X f )).
By (5.6) and by a direct computations, we obtain α(X) · α(X f ) = 0. □

Proposition 5.7. For any f ∈ C∞(M), we have [ρα(X), X f ] = Xρα(X)( f ).

Proof. For any g ∈ C∞(M), we have

[ρα(X), X f ](g) = ρα(X)[X f (g)]− X f [ρα(X)(g)]

= ρα(X)[−{g, f } − g · α(X f )] + {ρα(X)(g), f }+ ρα(X)(g) · α(X f )

= ρα(X)({ f , g})− ρα(X)[g · α(X f )]

−{ f , ρα(X)(g)}+ ρα(X)(g) · α(X f )

Using (5.6), (5.7) and (5.13), we get

[ρα(X), X f ](g) = {ρα(X)( f ), g}+ g · {ρα(X)(1C∞(M)), f })
+g · {1C∞(M), ρα(X)( f )}+ g · α(X f )α(X),
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that is

[ρα(X), X f ](g) = −{g, ρα(X)( f )} − g · α(Xρα(X)( f ))

+g · {α(X), f }+ g · α(X f )α(X).

From (5.15) and (5.16), we get

[ρα(X), X f ](g) = −{g, ρα(X)( f )} − g · α(Xρα(X)( f ))

= Xρα(X)( f )(g)

for any g ∈ C∞(M). □

Proposition 5.8. Lρα(X)ω = 0 if and only if ρα(X) is a derivation of Jacobi algebra (C∞(M), {, }).

Proof. Lρα(X)ω = 0 if and only if, for f , g ∈ C∞(M),

0 = Lρα(X)ω(X f , Xg)

= ρα(X)[ω(X f , Xg)]− ω(Lρα(X)X f , Xg)− ω(X f ,Lρα(X)Xg)

= ρα(X)({ f , g})− ω([ρα(X), X f ], Xg)− ω(X f , [ρα(X), Xg]).

Since [ρα(X), X f ] = Xρα(X)( f ), we have

ρα(X)({ f , g}) = ω(Xρα(X)( f ), Xg) + ω(X f , Xρα(X)(g))

= {ρα(X)( f ), g}+ { f , ρα(X)(g)}.

□

Definition 5.2. A vector field X on a locally conformal symplectic manifold (M, α, ω) is globally
hamiltonian if the 1-form iXω is dρα -exact i.e., if there exists f ∈ C∞(M) such that iXω = dρα f .

Proposition 5.9. If X is a globally hamiltonian vector field on (M, α, ω), then ρα(X) is a deriva-
tion interior of Jacobi algebra (C∞(M)), {, }).

Proof. If iXω = dρα f , then for any Y ∈ X(M), iXω(Y) = dρα f (Y). In particular for any
Xg ∈ X(M) with g ∈ C∞(M), iXω(Xg) = dρα f (Xg) i.e.,

ω(X, Xg) = [ρα(Xg)]( f ) = Xg( f ) + f · α(Xg)

i.e.,

−X(g)− g · α(X) = Xg( f ) + f · α(Xg)

= −{ f , g}

X(g) + g · α(X) = { f , g},

that is,
ρα(X)(g) = { f , g} = ad( f )(g)

for any g ∈ C∞(M). Thus, ρα(X) = ad( f ). □

If α = 0, then ρα(X) = X and we recover the notion of a globally hamiltonian vector
field on a symplectic manifold (M, ω).

Proposition 5.10. If X is a globally hamiltonian vector field on a locally conformal symplectic
manifold, then Lρα(X)ωM = 0.
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Proof. Let X be a globally hamiltonian vector field on M, then there exists f ∈ C∞(M)
such that ρα(X) = ad( f ). For any g, h ∈ C∞(M),(

Lρα(X)ωM

)
(∆M(g), ∆M(h)) = (Lad( f )ωM)(∆M(g), ∆M(h))

= ad( f )(ωM (∆M(g), ∆M(h)))

−(ωM

(
Lad( f )∆M(g), ∆M(h)

)
)

−(ωM

(
∆M(g),Lad( f )∆M(h)

)
).

By (2.5), we have(
Lρα(X)ωM

)
(∆M(g), ∆M(h)) = ad( f )({g, h})− ωM (∆M ({ f , g}) , ∆M(h))

−ωM (∆M(g), ∆M ({ f , h}))
= { f , {g, h}}+ {h, { f , g}}+ {g, {h, f }}
= 0.

Therefore, ρα(X) is a first order differntial operator of Jacobi. □
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