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QUADRILATERAL INSCRIBED IN SEMICIRCLES THAT ARE
CONSTRUCTIBLE WITH RULER AND COMPASS

MIRCEA GOTEA AND AUREL I. STAN

ABSTRACT. We describe the positive numbers a, b, and c, which belong to the field G of
numbers that are constructible with a ruler and compass, such that there exists a cyclic
quadrilateral ABCD, inscribed in a semicircle of radius R, whose lengths are AB = a,
BC = b, CD = c, and DA = 2R (the diameter of the circumscribed circle), such that the
radius R is also a number constructible with a ruler and compass.

1. INTRODUCTION AND MOTIVATIONS

In this section we present the motivation and some well known results related to the
paper.
Pythagoras theorem states that in a right triangle, the sum of the squares of the lengths of
the legs is equal to the square of the length of the hypothenuse. In [3] and [4], the author
extended this classic result to general polygons making the observation that since the
measure of an angle, with the vertex on a circle, is half of the measure of the subtended
arc, of that circle, a right triangle is in fact, a triangle that can be inscribed in a semicircle,
that means, a triangle in which one of the sides (the longest one) is a diameter of the
circumscribed circle. Starting from this observation, the author generalized Pythagoras
theorem to cyclic polygons that are inscribed in a semicircle, that means cyclic polygons
for which one of the sides is a diameter of the circumscribed circle. One interesting thing
is the fact that, for a cyclic quadrilateral inscribed in a semicircle, the equation that relates
the length of the longest side (or equivalently the radius of the circumscribed circle) to
the lengths of the other sides is a cubic equation (no longer a quadratic one). This fact
raises the following questions. Is it possible that if the lengths of the other three sides are
numbers constructible with a ruler and compass, the length of the longest side, which
is equal to the diameter of the circumscribed circle, may not be a number constructible
with a ruler and compass? If so, can we describe the cyclic quadrilaterals inscribed in
a semicircle for which the lengths of all the four sides are numbers constructible with a
ruler and compass? The purpose of this paper is to answer these two questions.
The paper is structured as follows. In subsection 1.1, we present the equation that relates
the radius (or equivalently the diameter) of the circumscribed circle to the length of the
three shorter sides of a cyclic quadrilateral inscribed in a semi-circle. In subsection 1.2,
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we review briefly the field of numbers constructible with a ruler and compass. Finally, in
section 2, we describe all the cyclic quadrilaterals inscribed in a semicircle whose sides
have lengths numbers that are constructible with a ruler and compass.

1.1. A Pythagorean theorem for cyclic quadrilaterals inscribed in a semicircle. This
theorem is taken from [3] and [4].

Theorem 1.1. Let ABCD be a cyclic quadrilateral in which the side AD is a diameter of the
circumscribed circle. Let the lengths of its sides be AB = a, BC = b, CD = c, and DA = 2R,
where R denotes the radius of the circumscribed circle of the cyclic quadrilateral ABCD. Then
we have:

(2R)3 −
(
a2 + b2 + c2) (2R)− 2abc = 0. (1.1)

Proof. Since the angle ∢ABD subtends a semicircle, it is a right angle. Applying first
the Pythagorean theorem in the right triangle ABD and then the Law of Cosines in the
triangle BCD, we have:

AD2 = AB2 + BD2

= AB2 + BC2 + CD2 − 2BC · CD · cos(∢BCD)

Since the quadrilateral ABCD is cyclic, we have m(∢BCD) = 180◦ − m(∢DAB) and
since for all angles α, cos(180◦ − α) = − cos(α), we obtain:

AD2 = AB2 + BC2 + CD2 − 2BC · CD · cos(∢BCD)

= AB2 + BC2 + CD2 + 2BC · CD · cos(∢DAB).

Substituting cos(∢DAB) by the ratio AB/AD (from the right triangle ABD) in the last
relation, we obtain:

AD2 = AB2 + BC2 + CD2 + 2BC · CD · cos(∢DAB)

= AB2 + BC2 + CD2 + 2BC · CD · AB
AD

.

Multiplying both sides of the last equation by AD, we obtain:

AD3 =
(

AB2 + BC2 + CD2) AD + 2AB · BC · CD,

which is equivalent to:

(2R)3 −
(
a2 + b2 + c2) (2R)− 2abc = 0.

□

Let us observe that the formula (1.1) is symmetric in a, b, and c, and it does not matter
that the sides of lengths a and c are adjacent to the diameter side of length 2R, while the
side of length b is opposite to the diameter side DA. This can also be seen geometrically
by drawing the diameter BB′ (that means, B′ is the point that is diametrically opposite to
B in the circumscribed circle of the cyclic quadrilateral ABCD). We can see now, that the
quadrilateral BCDB′ is cyclic and inscribed in a semicircle, in which the sides of lengths
b and a are adjacent to the diametral side BB′ = 2R, while the side of length c is opposite
to the diametral side BB′. This confirms that in the algebraic formula (1.1), the sides of
length a, b, and c are playing a symmetric role, and it does not matter which sides are
adjacent to the diametral (longest) side and which side is opposite to it.

127



Mircea Gotea and Aurel I. Stan

A D

B

C

2R

a

b

c

Figure 1. M1

A D

B

C

B′

a

2R

a

b

c

Figure 2. M2

It was also shown in [3] and [4], that if a, b, c, and R are positive numbers satisfying
equation (1.1), then there exists a cyclic quadrilateral ABCD inscribed in a semi-circle of
radius R such that: AB = a, BC = b, CD = c, and DA = 2R.

We would like to answer now the following question:
Question 1 Is it true that if a, b, and c are positive numbers constructible with a ruler a com-
pass, then the radius R (or equivalently the diameter 2R) is also constructible with a ruler and
compass?
If the answer for this question is “No”, then we would like to answer the second ques-
tion:
Question 2 Can we describe all the positive numbers a, b, and c, that are constructible with a
ruler a compass, for which the radius R (or equivalently the diameter 2R) is also constructible
with a ruler and compass?
To answer these questions, we are reviewing the field of the numbers constructible with
a ruler and compass in the next subsection.
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1.2. The field of numbers constructible with a ruler and compass. In this subsection,
we review briefly the field of numbers constructible with a ruler and compass.
Every construction with a ruler and compass starts from a given set S0 of at least two
points, {(x0,j, y0,j)}j∈J , in the plane, that are identified with the complex numbers {z0,j =
x0,j + iy0,j}j∈J , and drawing all possible lines joining two of these points and all circles
centered at one of these points of radius equal to the distance between any two of these
points, we create a new set S1 of points that are at the intersection of two lines, or a line
and a circle, or two circles from the lines and circles described above. We can see that
S0 ⊆ S1. Then we repeat the procedure with the new set of points S1 replacing the set of
points S0, obtaining a larger set S2 (that means, S0 ⊆ S1 ⊆ S2), and so on. Continuing
this construction indefinitely, we obtain a sequence of increasing sets:

S0 ⊆ S1 ⊆ S2 ⊆ · · · . (1.2)

The union of all these sets:

S := ∪∞
n=0Sn (1.3)

is called the set of points constructible with a ruler and compass from the set S0.
Now, let us suppose that at the stage n of our construction, when the set Sn has been
constructed, and we are ready to construct the new larger set Sn+1, we know that Sn
(in which each point has been identified with its corresponding complex number) is
contained in a certain subfield F of the field of complex numbers C. Then a point z in the
new set Sn+1 is constructed in one of the following three ways:

• z is the intersection of a line l1, joining the points z1 and z2 from Sn, and another
line l2 joining the points z3 and z4 from Sn. Since z1, z2, z3, and z4 are all in the
field F, and finding the intersection of two lines requires to solve a linear system
of two equations, we can easily see that the point z remains in the field F.

• z is the intersection of a line l, joining the points z1 and z2 from Sn, and a circle C
centered at a point z3 from Sn, and of radius |z4 − z5|, with z4 and z5 in Sn. Since
finding the intersection of a line and a circle, in Analytic Geometry, reduces in
the end to solving a quadratic equation, we can see that z is a root of a quadratic
equation with coefficients in the field F. Thus z is algebraic over the field F and
the degree of the extension of fields F ⊆ F(α), where F(α) denotes the smallest
field containing F ∪ {α}, is:

[F(α) : F] = 2ϵ, (1.4)

with ϵ ∈ {0, 1}.
• z is the intersection of a circle C1, centered at a point z1 from Sn and of radius
|z2 − z3|, for some z2 and z3 in Sn, and another circle C2, centered at a point z4 from
Sn, and of radius |z5 − z6|, for some z5 and z6 in Sn. Since finding the intersection
of two circles means to solve a system of two quadratic equations in x and y,
in which the coefficients of x2 and of y2 in both equations are equal to 1, which
by subtracting the two equations is equivalent to solving a system consisting of a
linear equation (the equation of the radical axis of the two circles) and a quadratic
equation (the equation of anyone of the two circles), this case can be reduced
to the previous case. Thus z is algebraic over the field F and the degree of the
extension of fields F ⊆ F(α) is:

[F(α) : F] = 2ϵ, (1.5)
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with ϵ ∈ {0, 1}.
Because solving a quadratic equation by the quadratic formula involves the compu-
tation of the radical of its discriminant, we can see that somehow the set of numbers
constructible with a ruler and compass, from a given set of points, requires a constant
(continuous) enrichment of the set with the radicals of the existing (already constructed)
numbers.
In the classic field of numbers constructible with a ruler and compass, the starting set
S0 is the set formed by only two points (0, 0), identified with the complex number
0 = 0 + 0i, and the point (1, 0), identified with the complex number 1 = 1 + 1i. One
can easily see that starting with this set S0 = {0, 1} ⊂ C is equivalent to starting with
G0 = Q, where Q denotes the field of the rational numbers, since the rational numbers
can be easily constructed from the points of affixes 0 and 1 by a ruler and compass.
Then we construct the field G1 as the smallest field containing the rational numbers Q

and all the radicals of rational numbers, that means all the complex numbers α for which
α2 ∈ Q. A precise mathematical description of this field is:

G1 =
{

c1 · α1 + c2 · α2 + · · ·+ cn · αn | n ∈ N, ∀1 ≤ i ≤ n, ci ∈ Q, αi ∈ C, α2
i ∈ Q

}
.

It is easy to check that G1 satisfies all the properties of a field, but the property that every
non-zero element of G1 has an inverse, that is also an element of G1, is not so obvious.
We are checking this property below.
Indeed, let

x = c1 · α1 + c2 · α2 + · · ·+ cn · αn ∈ G1, (1.6)

such that x ̸= 0, where we have chosen n to be the smallest possible natural number for
which the decomposition (1.6) of x holds. Due to the minimality of n, the numbers α1,
α2, . . . , αn are linearly independent over Q. Let us define now the following set:

Conx = {ϵ1c1 · α1 + ϵ2c2 · α2 + · · ·+ ϵncn · αn | ∀1 ≤ i ≤ n, ϵi ∈ {−1, 1}}. (1.7)

Intuitively, Conx is the set of all conjugates of x and −x.
Then Conx has 2n elements, all of them being elements of G1 different from zero (due to
the fact that α1, α2, . . . , αn are linearly independent), one of them being the number x.
Let us multiply all the Q-conjugates of x and −x, and define the non-zero number:

u := ∏
y∈Conx

y. (1.8)

It is clear that u = f (α1, α2, . . . , αn), where f is a polynomial of n-variables with rational
coefficients. Moreover, for all i ∈ {1, 2, . . . , n}, we have:

f (α1, . . . , αi−1,−αi, αi+1, . . . , αn) = f (α1, . . . , αi−1, αi, αi+1, . . . , αn), (1.9)

which shows that f (α1, α2, . . . , αn) is made up of terms that are products of even powers
of α1, α2, . . . , αn. Since α2

1 ∈ Q, α2
2 ∈ Q, . . . , α2

n ∈ Q, we conclude that u = f (α1, α2, . . . ,
αn) ∈ Q \ {0}. Thus, we have:

x · 1
u ∏

y∈Conx ,y ̸=x
y =

1
u
· ∏

y∈Conx

y

=
1
u
· u

= 1, (1.10)
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and so, we can see that x has the inverse (1/u)∏y∈Conx ,y ̸=x y ∈ G1.
Next we construct the field G2 as the smallest field containing the numbers from G1 and
all the complex numbers α for which α2 ∈ G1, and so on. In general having constructed
the field Gn, the field Gn+1 is the smallest field containing Gn and all complex numbers
α such that α2 ∈ Gn. The set of numbers constructible with a ruler and compass form a
field and is equal to the set:

G := ∪∞
n=0Gn. (1.11)

Another characterization of the field of the numbers constructible with a ruler and com-
pass is the following:

Theorem 1.2. The set of numbers constructible with a ruler and compass is the smallest normal
extension of the field of rational numbers Q that is closed with respect to taking radicals (square
roots).

From the above construction it follows easily the following corollary:

Corollary 1.1. If α is a complex number constructible with a ruler and compass, then α is an
algebraic number, and the degree of its minimal polynomial over the field of rational numbers, Q,
is a perfect power of 2.

2. MAIN RESULTS

In this section we present the main results related to the paper. More precisely, we give a
description of all positive numbers a, b, and c, that are constructible with a ruler and com-
pass, such that the positive solution 2R of equation (1.1) is also a number constructible
with a ruler and compass. Before doing this, we establish first the following result:

Proposition 2.1. For all positive numbers a, b, and c, the cubic equation:

x3 −
(
a2 + b2 + c2) x − 2abc = 0 (2.1)

has three real solutions out of which one is positive and two are negative (with the possibility of
the negative roots being equal). Moreover, the positive root is located in the interval
(max{a, b, c}, a + b + c).

Proof. Indeed, let us define the cubic function:

f (x) = x3 −
(
a2 + b2 + c2) x − 2abc. (2.2)

Its derivative:

f ′(x) = 3x2 −
(
a2 + b2 + c2) (2.3)

has two distinct real solutions x1 < 0 < x2, where:

x1 = −
√

a2 + b2 + c2

3
(2.4)

and

x2 =

√
a2 + b2 + c2

3
. (2.5)
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We have:

f (−∞) = lim
x→−∞

[
x3 −

(
a2 + b2 + c2) x − 2abc

]
= −∞. (2.6)

On the other hand, using the arithmetic-geometric mean inequality

f (x1) = − 1
3
√

3

(
a2 + b2 + c2)3/2

+
1√
3

(
a2 + b2 + c2)3/2 − 2abc

= 2

[(
a2 + b2 + c2

3

)3/2

− abc

]
(2.7)

≥ 0. (2.8)

If a, b, and c are not all three equal, then the inequality between the arithmetic and
geometric means of a2, b2, and c2 is strict, and so f (x1) > 0.
If a = b = c, then x1 = −a = −b = −c, and so, we have f (x1) = f ′(x1) = 0, which
means that x1 is a double negative root.
We also have:

f (0) = −2abc (2.9)
< 0, (2.10)

and

f (∞) = lim
x→∞

[
x3 −

(
a2 + b2 + c2) x − 2abc

]
= ∞. (2.11)

Thus, we can see that:
• If a and b and c are not all three equal, then f changes its sign from one end to the

other on each of the three intervals: (−∞, x1), (x1, 0), and (0, ∞), and since f is
a continuous function (being polynomial), f has three distinct roots: one in (−∞,
x1), one in (x1, 0), and one in (0, ∞), by the Darboux property.

• If a = b = c, then f has a repeated (double) negative root x = x1 and a root in (0,
∞).

Let us show now that the positive root of f is located in the interval (max{a, b, c},
a + b + c).
Indeed, assuming that max{a, b, c} = a, we have:

f (a) = a3 −
(
a2 + b2 + c2) a − 2abc

= −a(b + c)2

< 0 (2.12)

and

f (a + b + c) = (a + b + c)
[
(a + b + c)2 −

(
a2 + b2 + c2)]− 2abc

= (a + b + c) (2ab + 2bc + 2ca)− 2abc
> a(2bc)− 2abc
= 0. (2.13)

Thus, by the Darboux property, f has a root in the interval (a, a + b + c). □
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Now, we show that the answer to Question 1 is negative, that means, there exist a, b,
and c positive numbers constructible with a ruler and compass, such that the roots of the
cubic equation (2.1) are not constructible with a ruler and compass.

Example 2.1. Let a = 1, b = 2, and c = 5. These are rational numbers, and so they are numbers
constructible with a ruler and compass. The cubic equation (2.1) becomes:

x3 −
(
12 + 22 + 52) x − 2(1)(2)(5) = 0, (2.14)

that means:

x3 − 30x − 20 = 0. (2.15)

Observe that the cubic polynomial f (x) = x3 − 30x − 20 is irreducible since the prime number
p := 5 satisfies:

5 ∤ 1, 5 | 0, 5 | −30, 5 | −20, and 52 ∤ −20. (2.16)

Thus, by Eisenstein irreducibility criterion, f (x) is an irreducible polynomial over Q. Hence,
it is the minimal polynomial of the diameter 2R of the circumscribed semicircle. Therefore, 2R
(and also R) is not constructible with a ruler and compass since the degree of the extension
[Q(R) : Q] = 3 which is not a perfect power of 2.

We are now going to describe all positive numbers a, b, and c, that are constructible
with a ruler and compass, for which the diameter 2R of the circumscribed semicircle is
constructible with a ruler and compass. Since 2R is the positive solution of the cubic
polynomial f (X) = X3 − (a2 + b2 + c2)X − 2abc, which has coefficients in the field G of
the numbers constructible with a ruler and compass, 2R is constructible with a ruler and
compass if and only if this polynomial is not irreducible in the ring of polynomials G[X].
Indeed, if f (X) is not irreducible in G[X], then since it has degree 3, it factorizes as
product of one polynomial g(X), of degree 1, in G[X], and another polynomial h(X) of
degree 2, in G[X]. That means:

f (X) = (X − α)
(
X2 − βX + γ

)
, (2.17)

with α, β, and γ in G. Then either 2R = α ∈ G, or 2R is a root of the polynomial
h(X) = X2 − βX + γ, which means:

2R =
β ±

√
β2 − 4γ

2
(2.18)

∈ G, (2.19)

since the field G of numbers constructible with a ruler and compass is closed with respect
to taking radicals. In this case, we can see that 2R is constructible with a ruler and
compass.
On the other hand, if f (X) is irreducible in G[X], then since f (X) ∈ Q(a, b, c)[X] ⊂ G[X],
f (X) is also irreducible over Q(a, b, c)[X], and because 2R is a root of this polynomial,
f (X) is the minimal polynomial of 2R over Q(a, b, c). Thus, we have [Q(a, b, c, 2R) : Q(a,
b, c)] = 3. That means,

[Q(a, b, c, 2R) : Q] = [Q(a, b, c, 2R) : Q(a, b, c)] · [Q(a, b, c) : Q]

= 3 · [Q(a, b, c) : Q]. (2.20)

133



Mircea Gotea and Aurel I. Stan

That means, [Q(a, b, c, 2R) : Q] is not a perfect power of 2. Therefore, one of the four
numbers a, b, c, and 2R is not constructible with a ruler and compass, and since a, b, and
c are assumed to be constructible with a ruler and compass, we conclude that 2R is not
constructible with a ruler and compass. Before proving the main result of this paper, we
make one more remark:

Remark 2.1. If a, b, and c are numbers in a field F, where Q ⊆ F ⊆ C, such that the polynomial
fa,b,c(X) := X3 −

(
a2 + b2 + c2) X − 2abc is not irreducible in the ring of polynomials F[X],

then for all ϵ1, ϵ2, and ϵ3 in {−1, 1}, the polynomial fa′,b′,c′(X) := X3 −
(
a′2 + b′2 + c′2

)
X −

2a′b′c′ is also not irreducible in F[X], where a′ := ϵ1a, b′ := ϵ2b, and c′ := ϵ3c.

Proof. Indeed, since a′ = ±a, b′ = ±b, c′ = ±c, we have:

a′2 + b′2 + c′2 = a2 + b2 + c2 (2.21)

and

2a′b′c′ = ±2abc. (2.22)

We have two cases:
Case 1: If a′b′c′ = abc, then fa′,b′,c′(X) = fa,b,c(X) and we are done.
Case 2: If a′b′c′ = −abc, then:

fa′,b′,c′(X) = X3 −
(
a′2 + b′2 + c′2

)
X − 2a′b′c′

= X3 −
(
a2 + b2 + c2) X + 2abc

= −
[
(−X)3 −

(
a2 + b2 + c2) (−X)− 2abc

]
= − fa,b,c(−X). (2.23)

From here, it follows clearly that if fa,b,c(X) is not irreducible in F[X], then fa′,b′,c′(X) is
not irreducible in F[X], too. □

Theorem 2.1. A cyclic quadrilateral ABCD inscribed in a semicircle of radius R has all four
sides AB = a, BC = b, CD = c, and DA = 2R numbers that are constructible with a ruler
and compass if and only if there exist three real numbers λ, m, and p, that are constructible with
a ruler and compass, such that:

a =
∣∣(m2 − λ

) (
p2 + λ

)∣∣ , (2.24)

b =
∣∣(m2 − λ

) (
p2 − λ

)
± 4λmp

∣∣ , (2.25)

and

c =
∣∣(m2 + λ

) (
p2 − λ

)∣∣ , (2.26)

with the assumption that none of the three numbers inside the absolute value in the above expres-
sions is equal to 0.

Proof. (⇒) Let us assume that there exist three real numbers λ, m, and p, constructible
with a ruler and compass, such that formulas (2.24), (2.25), and (2.26) hold. Since the set
of numbers constructible with a ruler and compass form a field, it follows that a, b, and
c are constructible with a ruler and compass. It remains to show that the diameter 2R
of the circumscribed semicircle is also constructible with a ruler and compass. For this,
we have to show that the cubic polynomial fa,b,c(X) = X3 − (a2 + b2 + c2)X − 2abc is
not irreducible in the ring of polynomials G[X], where G denotes the field of numbers
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constructible with a ruler and compass. According to Remark 2.1, fa,b,c is not irreducible
in G[X] if and only if f±a,±b,±c is not irreducible in G[X]. So, we can ignore the absolute
values from the definitions of a, b, c, and show that fa′,b′,c′ is not irreducible in G[X],
where:

a′ :=
(
m2 − λ

) (
p2 + λ

)
, (2.27)

b′ := −
(
m2 − λ

) (
p2 − λ

)
± 4λmp, (2.28)

and

c′ :=
(
m2 + λ

) (
p2 − λ

)
. (2.29)

Claim: fa′,b′,c′(x0) = 0, where:

x0 :=
(
m2 + λ

) (
p2 + λ

)
. (2.30)

Indeed, we have:

fa′,b′,c′ (x0)

= x0
(

x2
0 − a′2 − b′2 − c′2

)
− 2a′c′b′

=
(
m2 + λ

) (
p2 + λ

) (
x2

0 − a′2 − b′2 − c′2
)
− 2

(
m2 − λ

) (
p2 + λ

) (
m2 + λ

) (
p2 − λ

)
b′

=
(
m2 + λ

) (
p2 + λ

) [
x2

0 − a′2 − c′2 − b′2 − 2
(

p2 − λ
) (

m2 − λ
)

b′
]

.

To show that fa′,b′,c′(x0) = 0, we will prove that:

x2
0 − a′2 − c′2 − b′2 − 2

(
p2 − λ

) (
m2 − λ

)
b′ = 0. (2.31)

Indeed, we have:

x2
0 − a′2 − c′2 − b′2 − 2

(
p2 − λ

) (
m2 − λ

)
b′

= x2
0 − a′2 − c′2 − b′

[
b′ + 2

(
p2 − λ

) (
m2 − λ

)]
= x2

0 − a′2 − c′2 − b′
[
±4λmp −

(
p2 − λ

) (
m2 − λ

)
+ 2

(
p2 − λ

) (
m2 − λ

)]
= x2

0 − a′2 − c′2

−
[
±4λmp −

(
p2 − λ

) (
m2 − λ

)] [
±4λmp +

(
p2 − λ

) (
m2 − λ

)]
.

Using now the difference of two squares formula, we obtain:

x2
0 − a′2 − c′2 − b′2 − 2

(
p2 − λ

) (
m2 − λ

)
b′

=
(
m2 + λ

)2 (
p2 + λ

)2 −
(
m2 − λ

)2 (
p2 + λ

)2 −
(
m2 + λ

)2 (
p2 − λ

)2

−
[
16λ2m2 p2 −

(
m2 − λ

)2 (
p2 − λ

)2
]

=
(
m2 + λ

)2 (
p2 + λ

)2 −
(
m2 − λ

)2 (
p2 + λ

)2 −
(
m2 + λ

)2 (
p2 − λ

)2

+
(
m2 − λ

)2 (
p2 − λ

)2 − 16λ2m2 p2

=
[(

m2 + λ
)2 −

(
m2 − λ

)2
] [(

p2 + λ
)2 −

(
p2 − λ

)2
]
− 16λ2m2 p2

=
(
4m2λ

)
·
(
4p2λ

)
− 16λ2m2 p2

= 0.

Thus, fa′,b′,c′ has a root x0 ∈ G. Therefore, fa′,b′,c′ is not irreducible over the field G of
numbers constructible with a ruler and compass.
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(⇐). Let us assume now that a, b, and c are positive numbers constructible with a ruler
and compass, such that the radius R of the circumscribed semicircle is also constructible
with a ruler and compass.
Since a, b, and c are constructible with a ruler and compass, and the field G of the num-
bers constructible with a ruler and compass is the union of the increasing sequence
of fields Gn, n ≥ 0, described in the previous section, there exists a non-negative in-
teger n0, such that a ∈ Gn0 , b ∈ Gn0 , and c ∈ Gn0 . Then the polynomial f (X) =
X3 −

(
a2 + b2 + c2) X − 2abc belongs to the ring of polynomials Gn0 [X], and since 2R

is a root of this polynomial, we have seen that 2R is a number constructible with a ruler
and compass if and only if this polynomial is reducible in Gn0 [X]. Because f has degree
3, in order to be reducible, it must be factored as a product of a one degree polynomial
and a second degree polynomial with coefficients in Gn0 . Due to the one degree factor, f
must have a root x0 in Gn0 . Thus, there exists x0 ∈ Gn0 , such that f (x0) = 0. This means,

x3
0 −

(
a2 + b2 + c2) x0 − 2abc = 0. (2.32)

Multiplying both sides of this equation by (−1) and re-arranging it as an equation in b,
we have:

x0b2 + (2ac)b + x0
(
a2 + c2 − x2

0
)

= 0. (2.33)

This is a quadratic equation in b, with coefficients in Gn0 . Applying the quadratic for-
mula, we can solve it for b, as:

b =
−ac ±

√
a2c2 − a2x2

0 − c2x2
0 + x4

0

x0
, (2.34)

which is equivalent to:

b =
−ac ±

√(
x2

0 − a2
) (

x2
0 − c2

)
x0

. (2.35)

We would like to make a comment, and observe that formula (2.35), in the case when
x0 = 2R is nothing but the Ptolemy theorem, which says that in a cyclic quadrilateral,
the sum of the products of the opposite sides is equal to the product of the diagonals.
Anyway, in equation (2.35), x0 is not necessarily equal to 2R, but it represents a root
of the cubic polynomial f (X) that must be in Gn0 , in order for this polynomial to not
be irreducible in Gn0 [X]. Since b ∈ Gn0 , the discriminant (x2

0 − a2)(x2
0 − c2) that appears

under the radical in formula (2.35) must be the square of a number from Gn0 . That means,
there exists k ∈ Gn0 such that: (

x2
0 − a2) (x2

0 − c2) = k2. (2.36)

This equation implies that there exist λ, u, and v in Gn0 , such that λ ̸= 0 and: x2
0 − a2 = λu2

x2
0 − c2 = λv2

k = λuv
. (2.37)

Indeed, if k ̸= 0, then one may take λ := x2
0 − a2 ̸= 0, u := 1, and v := k/(x2

0 − a2).
If k = 0, then either x2

0 − a2 = 0 and x2
0 − c2 ̸= 0, in which case, one may take u := 0,

v := 1, and λ := x2
0 − c2 ̸= 0, or x2

0 − c2 = 0 and x2
0 − a2 ̸= 0, in which case, one may take

v := 0, u := 1, and λ := x2
0 − a2 ̸= 0, or x2

0 − a2 = x2
0 − c2 = 0, in which case we may
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take u = v := 0 and an arbitrary λ ̸= 0.
We are now going to solve the system (2.37).
We have three cases:
Case 1: If u = 0, then the first equation of the system (2.37) implies x0 = ±a. Since x0 is
a root of f (X), we have:

0 = f (±a)

= ±a3 ∓
(
a2 + b2 + c2) a − 2abc

= ∓a(b ± c)2. (2.38)

Since a > 0 and b + c > 0, the last equation implies x0 = −a and b − c = 0, which means
b = c.
Indeed, for b = c, the cubic equation f (x) = 0 becomes:

x3 −
(
a2 + 2b2) x − 2ab2 = 0 (2.39)

which is equivalent to:

x(x + a)(x − a)− 2b2(x + a) = 0, (2.40)

that means:

(x + a)
(
x2 − ax − 2b2) = 0. (2.41)

The diameter of the circumscribed semicircle is equal to the only positive root of this
equation, which means:

2R =
a +

√
a2 + 8b2

2
, (2.42)

which is clearly constructible with a ruler and compass since both a and b are con-
structible with a ruler and compass, and the field of numbers constructible with a ruler
and compass is closed with respect to taking radicals (where by radicals, we understand
square roots).
Case 2: If v = 0, then similarly to the previous case, we can see that x0 = −c and b = a.
In this case,

2R =
c +

√
c2 + 8b2

2
(2.43)

is constructible with a ruler and compass.
Case 3: If u ̸= 0 and v ̸= 0, then dividing the first equation of the system (2.37) by u2,
and the second equation by v2, and factoring by the difference of two squares formula,
we obtain: 

( x0

u
+

a
u

) ( x0

u
− a

u

)
= λ

( x0

v
+

c
u

) ( x0

v
− c

v

)
= λ

k = λuv

. (2.44)
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We can introduce new variables:

x0

u
+

a
u

=: m ∈ Gn0

x0

u
− a

u
=: n ∈ Gn0

x0

v
+

c
v

=: p ∈ Gn0

x0

v
− c

v
=: q ∈ Gn0

mn = pq = λ

k = λuv

. (2.45)

From the first two equations of the system (2.45), we obtain:

x0 =
u(m + n)

2
, (2.46)

a =
u(m − n)

2
, (2.47)

and from the third and fourth equations, we get:

x0 =
v(p + q)

2
, (2.48)

c =
v(p − q)

2
. (2.49)

From equations (2.46) and (2.48), it follows that:

u(m + n) = v(p + q). (2.50)

Since f (0) = −2abc ̸= 0 and f (x0) = 0, we must have x0 ̸= 0 and so m + n ̸= 0 and
p + q ̸= 0. Also, since a ̸= 0 and c ̸= 0, we must have m − n ̸= 0 and p − q ̸= 0.
Equation (2.50) can be re-written as:

u
p + q

=
v

m + n
. (2.51)

Let us define the number:

t :=
u

p + q
=

v
m + n

∈ Gn0 \ {0}. (2.52)

Then, we obtain:

u = t(p + q), (2.53)

v = t(m + n), (2.54)

and from equations (2.47) and (2.49), we conclude that:

a =
t
2
(p + q)(m − n) (2.55)
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and

c =
t
2
(m + n)(p − q). (2.56)

Since x0 = (v/2)(p + q), we also obtain:

x0 =
t
2
(m + n)(p + q). (2.57)

Since 0 ̸= λ = mn = pq, we have n = λ/m and q = λ/p, and substituting into formulas
(2.55), (2.56), and (2.57), we obtain:

a = s
(

p2 + λ
) (

m2 − λ
)

, (2.58)

c = s
(
m2 + λ

) (
p2 − λ

)
, (2.59)

and

x0 = s
(
m2 + λ

) (
p2 + λ

)
, (2.60)

where

s :=
t

2mp
∈ Gn0 \ {0}. (2.61)

Observe that, we have:

ac = s2
(

p4 − λ2
) (

m4 − λ2
)

. (2.62)

Let us find b now. Using equations (2.35) and (2.36), we have:

b =
−ac ±

√(
x2

0 − a2
) (

x2
0 − c2

)
x0

=
−ac ± k

x0

= − ac
x0

± k
x0

= −
s2 (p4 − λ2) (m4 − λ2)

s (m2 + λ) (p2 + λ)
± λuv

s (m2 + λ) (p2 + λ)

= −s
(
m2 − λ

) (
p2 − λ

)
± λt(p + q)t(m + n)

(t/2)(m + n)(p + q)

= −s
(
m2 − λ

) (
p2 − λ

)
± 2tλ

= −s
(
m2 − λ

) (
p2 − λ

)
± 4smpλ

= −s
[(

m2 − λ
) (

p2 − λ
)
∓ 4λmp

]
. (2.63)

Some of the numbers a, b, and c may be negative, but according to Remark 2.1, we may
replace a by ±a, b by ±b, and c by ±c, and we are guaranteed that the cubic polynomial
f (X), having 2R as one of its roots, is reducible over Gn0 [X]. Thus, it is safe to put
absolute values in the formulas for a, b, and c to make them positive.
Finally let us observe that we may absorb |s| into the parameters λ, m, and p as follows.
Since |s| ∈ Gn0 , we have

√
|s| ∈ Gn0+1 and 4

√
|s| ∈ Gn0+2. Thus, because

|a| =
∣∣s (p2 + λ

)
(m2 − λ)

∣∣ , (2.64)
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|c| =
∣∣s (p2 − λ

)
(m2 + λ)

∣∣ , (2.65)

and

|b| =
∣∣s [(m2 − λ

) (
p2 − λ

)
± 4λmp

]∣∣ , (2.66)

we may write simply:

|a| =
∣∣(p2 + λ

)
(m2 − λ)

∣∣ , (2.67)

|c| =
∣∣(p2 − λ

)
(m2 + λ)

∣∣ , (2.68)

and

|b| =
∣∣[(m2 − λ

) (
p2 − λ

)
± 4λmp

]∣∣ , (2.69)

by replacing p by p 4
√
|s|, q by q 4

√
|s|, and λ by λ

√
|s|.

By allowing either m = 0 or n = 0, we obtain |c| = |b| or |a| = |b|, that means we
can include Case 1 and Case 2 also in this general formula found in Case 3. We can also
replace the ± sign, in the formula for b, by the + sign, by eventually absorbing the minus
sign, −, into m or into p.
Now, the proof is complete. □

Example 2.2. Let m :=
√√

17 +
√

13 ∈ G2, p :=
√√

17 −
√

13 ∈ G2, and λ := 1 ∈ G0.
Then, we have:

a =
∣∣(m2 − λ

) (
p2 + λ

)∣∣
=

(√
17 +

√
13 − 1

) (√
17 −

√
13 + 1

)
= 17 −

(√
13 − 1

)2

= 3 + 2
√

13 (2.70)

and

c =
∣∣(m2 + λ

) (
p2 − λ

)∣∣
=

∣∣∣(√17 +
√

13 + 1
) (√

17 −
√

13 − 1
)∣∣∣

=

∣∣∣∣17 −
(√

13 + 1
)2

∣∣∣∣
=

∣∣∣3 − 2
√

13
∣∣∣

= 2
√

13 − 3. (2.71)

For b in the ± formula, let us choose the sign +. Thus, we have:

b =
∣∣(m2 − λ

) (
p2 − λ

)
+ 4λmp

∣∣
=

∣∣∣∣(√17 +
√

13 − 1
) (√

17 −
√

13 − 1
)
+ 4(1) ·

√√
17 +

√
13 ·

√√
17 −

√
13

∣∣∣∣
=

(√
17 − 1

)2
− 13 + 8

= 13 − 2
√

17. (2.72)
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Then, the cubic equation satisfied by 2R is:

x3 −
(
a2 + b2 + c2) x − 2abc = 0 (2.73)

which means:

x3 −
[(

2
√

13 + 3
)2

+
(

2
√

13 − 3
)2

+
(

13 − 2
√

17
)2

]
x

−2
(

3 + 2
√

13
) (

2
√

13 − 3
) (

13 − 2
√

17
)

= 0. (2.74)

This equation is equivalent to:

x3 −
(

359 − 52
√

17
)

x − 1118 + 172
√

17 = 0. (2.75)

One can check the above equation by hand or use an algebra calculator.
We know for sure that x0 or −x0 is a solution of this equation, where:

x0 =
(
m2 + λ

) (
p2 + λ

)
=

(√
17 +

√
13 + 1

) (√
17 −

√
13 + 1

)
=

(√
17 + 1

)2
− 13

= 5 + 2
√

17. (2.76)

Let us try first to see whether x = x0 = 5 + 2
√

17 is a solution of our cubic equation. We have:

x3
0 −

(
359 − 52

√
17

)
x0 − 1118 + 172

√
17

=
(

5 + 2
√

17
)3

−
(

359 − 52
√

17
) (

5 + 2
√

17
)
− 1118 + 172

√
17

= 0. (2.77)

Since x0 = 5 + 2
√

17 is a root of our cubic polynomial and x0 > 0, due to the uniqueness of the
positive root of our cubic polynomial, we must have 2R = 5 + 2

√
17 ∈ G1.

If x0 were not a solution of our cubic equation, then x = −x0 would have been a solution, but
because −x0 < 0, to find 2R, we should have first divided our cubic polynomial by x + x0 =

x + 5 + 2
√

17, and then find the positive root of the quadratic quotient using the quadratic
formula. That positive root would have been the diameter 2R of the circumscribed circle, and 2R
would have been for sure in the field G2.
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