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THE GEOMETRY OF (Z)-ONE VARIABLE COMPLEX FUNCTIONS IN THE
SPACE FH(¢)(C, tdC)

COJAN STELIAN PAUL

1. Preliminaries and results. Essential elements and notions of the theory of one variable
complex (¢)-functions in the space FH(¢)(C, tdC), definitions (Cojan), definitions and
remarks. (¢)-Cauchy-Riemann conditions, a property of a (¢)-function which is (¢)-
holomorphic on a rectangle, representation (§)-formulas of ({)-functions which are ()-
polygenic in the sense of Calugireanu, a result of < ({)-subordination Miller-Mocanu-
Robertson and a corollary for the Calugareanu-Cojan (§)-operators.

2. Definitions 1 (Cojan). Consider the class of semi-discontinuous functions
Fi(R?,td) = {Q: Q € C°(D; UDy, R?)},
for every
(x,y) € D1UD, C CI(D) UCI(D;) C R%,Q(x,y) € R?,

where the domains D, D; satisfy D1 N D, = @, Fr(Dy) N Fr(D,) # @, and we use the
canonical identifications

(x,y) =x+iy =z
Let F~1(IR?, td) be the class of invertible functions. Assume that
¥Y:R* - R, ¥ € C}(D,R?), forevery (x,y) € D C CI(D) C R*>,¥(x,y) € R.

Consider the following conditions :
1) If zg ::Xo—l—iy() = (Xo,yo) clyxVycCcUxVcCcD,
P(x0,y0) = 0, where Uy, Vo, U, V, D, Uy x Vp, U x V are domains, then
0
¥(x0, ¥0) £0;
oy
2) There exists an open neighborhood (xp, y0) € Uy x Vp and a unique function
y=f:R—TR,fecC(UR), forevery x € Uy C UCR,f(x) €R

for which

vo = f(x0), Vx € Uy, ¥(x, f(x)) = 0.
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That is there exists

af 9% .99 a2 %A cop Ry,

dx  Jx 9y ox’ oy’ dx
The partial derivatives of ¢ and the derivative of f are continuous on D ([3], page 16). If
the function y = f(x) satisfies the above conditions, then it is called invertible. In this
case

@ # F4(R?,td) N F1(R?, td) =: F(&)(C, tdC)

is the class of one complex variable (&)-functions which are (&)-discontinuous, tdC is the
topology on C and td is the topology on RR?, different from the trivial topology and the
topology consisting in all subsets of C = (IR?, +, -).

3. Definitions and remarks 2. We will use the abreviations CI for the closure of a set and
Fr for the boundary of a set.

Let f(¢) : C — C, f({) € F(C)(C,tdC). If for every z1,2zp € Cie. z1 # zp = f(C)(z1) #
f{&)(z2), then < ¢ >-function f(&) is ({)-injective. If for every y(¢) € C there exists at
least one z, z € C, thatis y(¢) = f({)(z), then the < ¢ >-function f({) is (¢)-surjective.
If the < ¢ >-function is ({)-injective and (¢)-surjective, then it is called ({)-bijective.

A complex ()-discontinuous (&)-function f({)(z) € F(&)(C,tdC) is ({)-holomorphic
at point zp € U, where U is a domain, () : C — C, f(¢) € F(&)(zo, tdC). for every
z € D1UD, C U C C, if there exists the limit

f(E)(z) = f(&)(z0) _ d(&)f(Z)(20)

lim =

e 2=20 d(Z)z
_d(@)f(@) _dg .
= i0: — TS0, 2 # -1

The oscillation of f(() at ¢ is defined as
S(f(6).¢) = lim f(&)(z) — lim f{g)(z) #0.

z—¢,
zeCl(Dy) z€Cl(Dy)
The domains D; and D; satisty D1 N D, = @, that is we have
PT(Dl) N FT(Dz) = {C} 75 @, z € V((:) N (D] U Dz) 75 Q,

where V({) is a neighborhood of the (&)-discontinuity point § € U and ¢ € A(U, tdC),
the set of functions which are holomorphic on U. Consider H(¢) (U, tdC) the set of ()-
functions which are (¢)-holomorphic on U and denote

F(&)(C, tdC) U F(¢) (20, tdC) U H(&) (U, t4C) = FH(&)(C, tdC)

the space of (¢) - one variable complex functions or the set of (&)-functions which are
(¢)-holomorphic on C, FH (&) (IR?, td) the set of (&)-functions which are (&)-holomorphic
on R?, and F{¢)(zo, tdC) the set of (Z)-functions (¢)-holomorphic at the point zg € U.

I £(6),£18) € FH(E)(C, 1), then £(8) (2), £(2)-5(6), L, the (¢)-composition
defined by
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and f~1(¢) are (&)-holomorphic (¢)-functions, and we have

d(8)(f{6) £8(6)) _ d(6)f(&) , d(6)g()

d(C)z d(C)z d(g)z

¢) - _ , L d{0)&(S)
age @z SOTTO g
d()(8(8) o f(2)) _ d(&)8(&) d(Z)f(Z)
d(Z)z d(g)f(5)  dg)z
If f(&) is a ({)-bijection and f(¢) : U — V is (¢)-holomorphic at the point zg € U with
d(Z)f (%) (0)
Tz T

then f~1(¢) is (¢)-holomorphic at the point wy = f(¢)(zo), that is

d()f (&) (wo) _ < (&) f(6)(z 0))1
d(Z)z d(g)z

The (¢)-function
FH(&)(R?td) > Ju(&) : R> D N — R?
is ({)-differentiable at the point (xg, o) € N if for every
V(xo,yo) NN 75 @,

we have

0
9() agy WP
Let
B = B1Ax+ B2Ay, B1 — 0, B2 =0
for Ax =+ 0, Ay — 0 and

is called the (¢)-differential of the (¢)-function at (xo, o).

4. Theorem 1. The (&)-function f(Z)(z) = u(¢)(x,y) +iv(¢)(x,y) € FH()(C,tdC) is

4
(¢)-holomorphic at the point zg = (x, yo) if and only if the (&)-functions u(¢) (x,y), v(&) (x,
)-

(g
FH{¢)(IR?,tdC) are (Z)-differentiable at the fixed point (xo, 1) and satisfy the (¢)- Cauchy-

Riemann conditions

Proof. The limit

d(g) Zzg% z—2
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is finite if and only if
(a) Affi(z) = A(G) +iB($) +¢ Az #0,

where ¢ — 0 for Az — 0. If ¢ = &1 +iep, thene; — 0, e, — 0 when Ax — 0, Ay — 0. If
we identify the real and the imaginary part in (a), then

Au(G) = A(C)Ax — B({)Ay + e1Ax — &7y,
Av(E) = B(C)Ax + A(E)Ay + e2Ax + €1Ay,
AF(E) = Bu(E) + iAo
_a@uE) _ o)
SAO="3mx T ol
_9(Qu(g) _ 9(&)v(d)
PO =@ ~ o
FH(Z)(C,tdC)>3f(¢): COU DDy UD; = C,

dOFE) _ 98 (1 4 ) 18(£(@),8), 2 £ —1

d(&)z dz
with
S(f(¢),¢) == Zlgrél (&) (z) — Zlgrg f(&)(z) #0
2eCl(Dy) 2eCI(Ds)

¢(z) € A(U, tdC),
where U is a domain (Definitions and Remarks 2). We have the domains U D D1 N D, =
@, with the property
Fr(Dy) NFr(Dy) = {¢} # @,
ZGV(C)O(DlLJDz)#@. ]

5. Theorem 2. (I{¢)(R)-Cauchy). Let U be a domain and,
FH(Z)(C,tdC)>3f(¢):C DUDR—C.

If the (¢)-integral of every constant (&)-function and of every (¢)-function of the consid-
ered space is zero on R,, n > 1, then

IO®R) = [ F@) @)z =0,
oR

where dR is the boundary of the rectangle R.

Proof. Divide the rectangle into four rectangles R(1), R(2), R(3), R(4), such that the
(&)-integral acts twice on each interior side with opposite orientation, hence the sum of
two such integrals is zero. Then
4
I(¢)(R) = }_ 1) (R()
j=1
and

(G (R()) <47 IE)(R)], 1<j <4,
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4
IO R)| < Y I RG)I < [HE)(R)],
j=1
which is not possible. Therefore, for at least one rectangle R(j) we have

L) (RG))| = 47HI(E) (R)],
and we denote it by R;. Consider Ry C R; with

[1{&)(Ra)| > 47 I{(E)(R1)| > 472|1{g)(R)]|
and inductively forn > 1,
RiD...DOR, D ...
with
[(&) (Ry)| > 47"[I{E) (R)].

Because the sequence of diameters of R, is convergent to 0, the intersection ﬂ R, con-
n=1
sists in a point w € R. Because the ({)-function is (¢)-holomorphic at w, there exists

W, that is for every & > 0 there exists  such that

d(Z)f(Z)

2wl < = | (F0)() — F@) () — (= w) e

‘ < |z —wle.

We obtain

MR =| [ 7€) - £(0) ) — - ) S ez

<e [ 12wl ld@)z.
JR,

Considering d,, and P, the length of the diagonal and the perimeter of R, and similarly
d and P for R, then it follows that for every & > 0,

[(&) (Ry)| < 47 "ePyd),
= |I{(§)(R)| < Ped
= I(¢)(R) = 0.
a{g)f(&) _ dg

i@z~ do TATDTISUO0 2 £ L

where ¢(z) € A(U, tdC) and the domains U D U; U U, = @, that is
Fr(th) N Fr(Uy) = {¢} # 2,
ze V(@) NRN (U1 Ull) # @,

We have

with
S(f(¢),¢) = Zlg% (&) (z) — Zlg% f(&)(z) #0. O
zeCl(Uy) 2eCl(Uy)

6. Definition 3. If
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(0): /1(6)(0) = f3(8)(f2(6)(0)),

@: MBI < £@)0),

the domains Dy N Uy # @, Ex N U # @, co-domains
fi(&)(DyNUk) # O,
filS)(ExNUy) # D,
f3(8) (f2(5) (D2N ) # O,
[0 (f2(0)(E2NU2)) # @

and if the co-domain of f>(¢) is equal to the definition domain of f3(¢),
FH(E)(C, tdC) > 3 fi{€) : C > DyN Uy — C,
FH(E)(C,tdC) > 3 fil€): COENUy —»C, 1<k<2,
FH(Z)(C,tdC) 5 3 f3(5) : C D fo(E)(D2N ) 5 () (z) = C,
FH(C)(C,tdC) 33 f3(8) : €D f(8)(E2NU2) 3 f2(8)(2) = C,

f(0)(2) = f3(8) (f2(8)(2)),
we say that f1 (&) is Miller-Mocanu-Robertson (¢)-subordonated to the (&)-function f3(¢),
and we denote by f1(¢&) < (&) f3(Z).

and if

7. Proposition 1. Suppose that the (¢)-functions

f1(8)(z) = f3(2) (f2(8)(2))

satisfy the ({)-conditions in Definition 3 and

() (2) = 182 - 12

if
ZEDlﬂul,f1< (Z) 2z —1,
z € E;NU, f2< (

)
)(2)
z € DyNUp, f2<§)(z) Z—1
(€)(z
(D

z € ExN Uy, f3 > )—62

£2(6)(z) € f2(D2NUa),
f3(6)(z) =2z +1,

f2(6)(2) € f2(8) (E2 N Ua).

dg1(0) _ dgz(O) —0

dz dz ’
g1(z) € M(Dy N Uy, tdC),
§2(z) € A(Ey N Uy, tdC)

If

and

S1(A(E),6) = -2
SR @) = 5,2 # 1,

then

() (2) < (§)f3(8)(2).
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Proof. f1(¢)(0) = —12,
f3(8)(2(6)(0)) = 12,
f1(0)(0) = f3(5)(£2(8)(0)),
A0)(0) = -1,
f3(8)(2(6)(0)) = ~1,
fLE)0) = f3(8)(f2(2)(0)).

Therefore, the relation (1) in Definition 3 is verified.

LD s s
ADARO) _
d(Z)z '
£3(6)(0) =0,
d(Z)f1(£)(0)

G < f3(¢)(0),

S1(f1(¢),¢1) = Zlgg f1(€)(z) — Zlgg f1{6)(z) = —2.

2eCI(DyNU;y) 2eCI(E;NUL)
Consider the domains (D; NU;) N (E; NUp) = @, that is
PT’(D1 N ul) N FT’(E1 N U1) = {(;‘1} 7é @,
zeV(E)N(DiNU)U(EgNlh) #Q,

d<§z§§€> _ 0;82 +(142)1S2(f1(2), A1) (&),

d(¢)f1(2)(0)

1
gz 2
f(8)(0) =1,
MR < foo), ze B,
f1(¢)(D1NUy) = Us,
fi{S)(E1nUy) = Uy.
Consider the domains Uz N Uy = @, that is
Fr(Us) N Fr(Us) = (A1) (@)} £ @,
f1(6)(z) € A(E)(V(¢1)) N (Us UUs) # O,
f1(&)(V(¢1)) is a neighborhood of the ({)-discontinuity point

f1(¢)(81) € f(¢)(Uh) C C.

This shows that the relation (2) in Definition 3 is also verified, hence

() (2) < (6)f3(8)(2).

and we denote

OJ

8. Definitions and Remark 4. We define the ({)-integral on a (&)-differentiable path. If

FH(Z)(C,tdC) > Jw(¢): RD [a,b] >t
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= w(Q)(t) = x(&)(H) +iy()(t) e U CC,
a (¢)-path in the domain U, having the origin zy and the extremity zj, is every (&)-
function with
w(C)(a) = z0, w()(b) = 21.
The (¢)-path s closed if zy = z; and we say that the ({)-path is piecewise ({)-differentiable
if there is
a=ty<...<t,=0b,
where on (t,tj11), AHo)wic) has the right limit at ¢; and the left limit at ¢;,1, 0 < j <

n—1
Define the ({)-integral on the (¢)-differentiable path w({) by,

[ Fo@az="T / 1 () (@) (1)
w(¢) =0
2 T e d(§)x(@) @)Y,
L Ju@ewano (g +i S5 ) s

FH(E)(C,tdC) > I f(¢) : C D U — C.

If the co-domain U of w({) is equal to the definition domain of f(¢), then we have
the composition of the (&)-functions. The (¢)-index Ind (&) (w(¢), zo) of the closed (¢)-
differentiable path, which does not contain the point zg of U, is the number

nd(@)@(@h20) = g [ T 2z
w(g)

Clearly, the (§)-integral is linear, that is for every f(),g(¢) € FH(¢)(C,tdC) and for
every p,q € C, we have

| (pr @@ +ag@@)d @z = p / F@Edz+q [ ()@@=
w(g)

9. Definitions and Remarks 5. Consider the closed piecewise differentiable (&)-paths
FH(Z)(C,tdC) > Fwi(G) : R >t — wi(d)(t)

= xe(8)(8) +iye(8) (1) e U C C,

Wi (6)(1) = 2 (6) (1) + iR () (1),
;vlrlfre we denote (x2(Z) (), y2(&)(t)) = ud(¢) is fixed and the domains Ex C C,1 < k <

8(8)(z) = P(0)(x,y) +iQ(C) (x,y) € FH(¢)(C, tdC),

then the oscillation at ¢ is

S(g(8).¢) = Zh_{% g(¢)(z) — ;l_fi} g(&)(z) #0,
2eCI(E) 2eCI(Ey)

E1tNE, =0
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that is
Fr(E1) NFr(Ey) ={¢} # O,
YA V(C) N (E1 UEZ) 75 Q.
We define the (&)-derivative by

d%? = U (1) 5(5(8), ) + 8 [5(E)] + exp(~2i)p @) s(2)]

=Y @ s(5@,0)

_|_

L (BaRE | AR | (3 Q<t: AE)PE)
+2< o@x oy +’< RE: C >)
P<c>)
o@x oDy (@) 20y
2z # —1, f(z) € A(E1 U Ea, tdC),

1 , 9(¢)P d
+exp(_21¢)< (€)P{G) 9{5)Q(¢ >+l< (6)Q(¢)
2 X
and the angle is the limit between the segment Az and and the axis Ox.

10. Teorema 3. Consider the complex Célugdreanu (&)-polygenic (&)-functions which
are (¢)-discontinuous. If

p(2)[g(@)(2)] <A, z€ EUE, CC
applying the definitions and Remarks 4 and 5, for the closed piecewise differentiable

(¢)-paths,
wi(¢) € FH(Z)(C, tdC),

which does not contain u{(¢), 1 < k <2,z # u)(Z) that is
28(0)(2) = ip(8)[8(Z) (2)] + 7 € FH(Z)(C, tdC),

then we obtain the ({)-formulas (p(¢)) of representation of the considered (&)-functions.

Proof. It is obvious that we have

8(8)(2) p(8)[g(5)(2)] § 1
2 é>z—u2 —1/ Ez+m </>z—u2(§>d<§>z

(G Wi

[ @)
;‘Z/Z_Mk smi [ P e

>\“O

11. Corollary 1. (Cilugadreanu-Cojan (&)-operators). Let
FH(Z)(C,tdC) > 3 f(¢),8(¢): CDO D —C,
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be the ({)-index of the closed piecewise (¢)-differentiable (¢)-path in the domain D rel-
ative to the point uo (&), z # 1o (<),

Ind(£)(@ (@), 10(0) = 3 | T @)

T 2mi z —up(g
w(¢)

that is w(¢) does not contain uy(¢) and
w(E) € FH(E)(N,1C).
Considering the Cdlugdreanu (¢)-integral (&)-operator (p(¢))

(P(E)) = 5= </C> PEISEE) D a(e)z + mind (€) (w(e) o (2)

from Teorema 4 for Ind (&) (w(¢&), up(¢)) and the Cojan (&)-operators

LU = [ foe 5 e
w(g)

1
+w</g> w0
L@ @M@ = [ FoE5aoz
w(g)

h(z) € A(D, tdC,

T3(8) (f(2))(w(Z)) = / (1+2)7'f(2)(2)d()z, z # 1,
w(g)
then the (&)-relation (p(&), T(Z)) holds.

Proof.

T (&) (f(E),8(8))(w(E))
dh >

= [ £©@ (5 + 0+ 78((@),8) ) die)z + 2 1nd @) i), )

w(g)

= %T1<C>(f<€‘>,g<6>)(w<§>) = %Tz<f§>(f<€>,h)(w<é>)

8¢ (w(g)) + mInd(Z) (w(Z), uo(E))-
Replacing 7Ind(Z)(w(Z), uo(G)) in (p(&
o) (f(C), 1) (w(E)) + T3(5) (f (&) (w(&)))S(g(&), &) — Ta(Z)(f(C), &())(w(E))
_ 11 p(0)g(e) ()] 1 8(%)(z)
Y </§> z—u0< d d<C>Z/

) we obtain the (&)-relation

o -7 | i@

w(g)

that is a representation for the Cilugdreanu-Cojan (&)-operators on a closed (¢)-piecewise
differentiable (¢)-path.
We have the domains D D Dy N D, = @, thatis
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Fr(Dy) NFr(Dy) = {¢} # O,
ze V()N (D1UDy) # 0O,
with the oscillation

S(g(¢),¢) = Zlglg g(¢)(z) — Zlgfgl g(¢)(z) #0. O
zeCl(Dy) 2eCI(D,)
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