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∗-SOLITONS ON LORENTZIAN KENMOTSU SPACE FORM

SIBSANKAR PANDA, KALYAN HALDER, AND ARINDAM BHATTACHARYYA

ABSTRACT. In this article, we have studied the nature of ∗-Ricci soliton, ∗-conformal
Ricci soliton, ∗-conformal η-Ricci soliton, generalized ∗-Ricci soliton, generalized ∗-conformal
Ricci soliton, generalized ∗-conformal η-Ricci soliton on Lorentzian Kenmotsu space form
with respect to Levi-Civita connection and with respect to generalized Tanaka connec-
tion. We obtained the value of non-dynamical scalar field p of ∗-conformal Ricci soli-
ton, ∗-conformal η-Ricci soliton, generalized ∗-conformal Ricci soliton and generalized
∗-conformal η-Ricci soliton on which nature of solitons depend, whether it is shrinking,
steady or expanding.

1. INTRODUCTION AND MOTIVATIONS

A class of contact Riemannian manifolds which satisfy some special conditions have
been studied by K. Kenmotsu [6] is known as Kenmotsu manifolds. A Kenmotsu mani-
fold together with a Lorentzian metric is called Lorentzian Kenmotsu manifold [12]. If a
Lorentzian Kenmotsu manifold has constant φ-holomorphic sectional curvature, then it
is called Lorentzian Kenmotsu space form.
Tanaka [10] and, independently Webster [17] defined the canonical affine connection
on a nondegenerate, integrable CR manifold. Tanno [15] generalized this connection
extending its definition to the general contact metric manifold which called generalized
Tanaka–Webster connection or generalized Tanaka connection.
In 1982 Hamilton [13] introduced the concept of Ricci flow and proved its existence. The
Ricci flow equation is given by

∂g
∂t

= −2S (1.1)

on a compact Riemannian manifold M with Riemannian metric g, where S is the Ricci
tensor. A self-similar solution to the Ricci flow (1.1) is called Ricci soliton which moves
under the Ricci flow simply by diffeomorphisms of the initial metric, that is, they are
stationary points of the Ricci flow in space of metrics on M. A Ricci soliton is a general-
ization of an Einstein metric. The Ricci soliton equation is given by

LXg + 2S = 2λg (1.2)

2010 Mathematics Subject Classification. 53C50; 53C25.
Key words and phrases. Lorentzian Kenmotsu space form; ∗-Ricci soliton; ∗-conformal Ricci soliton;
∗conformal η-Ricci soliton; generalized ∗-Ricci soliton; generalized ∗-conformal Ricci soliton; generalized
∗-conformal η-Ricci soliton.

35



Sibsankar Panda, Kalyan Halder, Arindam Bhattacharyya

where L is the Lie derivative, S is the Ricci tensor, g is Riemannian metric, X is a vector
field and λ is a scalar. The Ricci soliton is said to be shrinking, steady, and expanding
according as λ is positive, zero and negetive respectively.
Fischer during 2003-2004 developed the concept of conformal Ricci flow [2] which is a
variation of the classical Ricci flow equation that modifies the unit volume constraint of
that equation to a scalar curvature constraint. The conformal Ricci flow on M is defined
by [2]

∂g
∂t

+ 2
(

S +
g
n

)
= −pg (1.3)

where R(g) = −1 and p is a non-dynamical scalar field(time dependent scalar field),
R(g) is the scalar curvature of the n-dimessional manifold M.
In 2015, N. Basu and A. Bhattacharyya [1] introduced the notion of conformal Ricci soli-
ton and the equation is as follows

LXg + 2S =

[
2λ −

(
p +

2
n

)]
g (1.4)

where λ is a scalar.
Cho and Kimura [5] introduced the notion of η-Ricci soliton in 2009, as follows

Lξ g + 2S = 2λg + 2µη ⊗ η, (1.5)

for some constants λ and µ, where ξ is a soliton vector field and η is an 1-form on M.
In 2018, Siddiqi [8] introduced the notion of conformal η-Ricci soliton, given by

Lξ g + 2S +

[
2λ −

(
p +

2
n

)]
g + 2µη ⊗ η = 0, (1.6)

for some constants λ and µ, where ξ is a soliton vector field and η is an 1-form on M.
where Lξ is the Lie derivative along the vector field ξ , p is a scalar non-dynamical field
(time dependent scalar field) and n is the dimension of manifold.
Tachibana[14] and Hamada[18] introduced the notion of ∗-Ricci tensor on almost Her-
mitian manifolds and on real hypersurfaces in non-flat complex space respectively and
then in 2014, Kaimakamis and Panagiotidou[4] introduced the notion of ∗-Ricci soliton
on non-flat complex space forms and the equation as

LV g + 2S∗ + 2λg = 0, (1.7)

where S∗(X, Y) = 1
2 [trace{φ ◦ R(X, φY)}] for all vector fields X, Y on M and φ is a (1,1)-

tensor field.
In 2022, the authors[16] have defined the ∗-conformal η-Ricci soliton on a Riemannian
manifold as

Lξ g + 2S∗ +

[
2λ −

(
p +

2
n

)]
g + 2µη ⊗ η = 0. (1.8)

In 2016, Nurowski and Randall [11] introduced the concept of generalized Ricci soliton
as a class of over determined system of equations

LV g = −2aV# ⊙ V# + 2bS + 2λg, (1.9)

where LV g and V# denote, respectively, the Lie derivative of the metric g in the directions
of vector field V and the canonical one-form associated to V, and some real constants
a, b, and λ. Levy [7] acquired the necessary and sufficient conditions for the existence of

36



∗-Solitons on Lorentzian Kenmotsu space form

such tensors. In 2018 M.D. Siddiqi [9] have studied generalized Ricci solitons on trans-
Sasakian manifolds.
Analogous to above equations, we define the generalized ∗-Ricci soliton, generalized
∗-conformal Ricci soliton and generalized ∗-conformal η-Ricci soliton as follows:

Definition 1.1. A Riemannian manifold (M, g) of dimension n is said to admit generalized
∗-Ricci soliton if

LV g = −2aV# ⊙ V# + 2bS∗ + 2λg. (1.10)

where V ∈ Γ(TM) and LV g is the Lie-derivative of g along V and V# the canonical one-form
associated to V and a, b, λ are some constants.

Definition 1.2. A Riemannian manifold (M, g) of dimension n is said to admit generalized
∗-conformal Ricci soliton if

LV g −
[

2λ −
(

p +
2
n

)]
g + 2aV# ⊙ V# + 2bS∗ = 0. (1.11)

where V ∈ Γ(TM) and LV g is the Lie-derivative of g along V and V# the canonical one-form as-
sociated to V and a, b, λ are some constants and p is a scalar non-dynamical field (time dependent
scalar field).

Definition 1.3. A Riemannian manifold (M, g) of dimension n is said to admit generalized
∗-conformal η-Ricci soliton if

LV g −
[

2λ −
(

p +
2
n

)]
g + 2aV# ⊙ V# + 2bS∗ + 2µη(X)η(Y) = 0. (1.12)

where V ∈ Γ(TM) and LV g is the Lie-derivative of g along V and V# the canonical one-form
associated to V and a, b, λ, µ are some constants and p is a scalar non-dynamical field (time
dependent scalar field).

In this article, we first prove some results on Lorentzian Kenmotsu manifold and derive
its curvature tensor and Ricci tensor on Lorentzian Kenmotsu space form with respect
to Levi-Civita connection in section-3. In section-4, we consider generalized Tanaka con-
nection on Lorentzian Kenmotsu space form and proved some results on its curvature
tensor and Ricci tensor. We have studied the nature of ∗-Ricci soliton, ∗-conformal Ricci
soliton, ∗-conformal η-Ricci soliton, generalized ∗-Ricci soliton, generalized ∗-conformal
Ricci soliton, generalized ∗-conformal η-Ricci soliton on Lorentzian Kenmotsu space
form with respect to Levi-Civita connection in section-5. In section-6, all the above
mentioned solitons in section-5 have been studied on Lorentzian Kenmotsu space form
with respect to generalized Tanaka connection and obtained the conditions for which the
above solitons are expanding or steady or shrinking.
Before proving the main results the following properties are required for the next section.
Let M be a (2n + 1) dimensional (denoted by M2n+1) manifold having almost contact
structure (φ, ξ, η, g) i.e.,

η(ξ) = 1, φ2 = −I + η ⊗ ξ, φ(ξ) = 0, η ◦ φ = 0. (1.13)

where φ is a (1, 1)-tensor field, ξ a contravariant vector field, η a covariant vector field.
A Lorentzian metric g is said to be compatible with the structure (φ, ξ, η, g) if

g(φX, φY) = g(X, Y) + η(X)η(Y). (1.14)
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If the manifold M2n+1 equipped with an almost contact structure (φ, ξ, η, g) and a com-
patible Lorentzian metric g, is called Lorentzian almost contact metric manifold.
Note that equations (1.13) and (1.14) imply

g(X, ξ) = −η(X) and g(ξ, ξ) = −1. (1.15)

Also, equations (1.14) implies

g(X, φY) = −g(φX, Y). (1.16)

Recall the four tensors N(1), N(2), N(3) and N(4) in almost contact manifold, which are
defined by

N(1)(X, Y) = [φ, φ](X, Y) + 2dη(X, Y)ξ,

N(2)(X, Y) = (LφXη)Y − (LφYη)X,

N(3)(X) = (Lξ φ)X,

N(4)(X) = (Lξη)X.

An almost contact manifold is normal if and only if N(1) = 0.

Proposition 1.1. [3] For an almost contact manifold N(1) = 0 implies N(2) = N(3) = N(4) =
0.

In almost contact Lorentzian manifold (M2n+1, φ, ξ, η, g), the fundamental 2-form Φ is
defined as

Φ(X, Y) = g(X, φY) for all X, Y ∈ X(M).

An almost contact metric manifold (M2n+1, φ, ξ, η, g) is Kenmotsu [3] if and only if it is
normal and

dΦ = 2η ∧ Φ, dη = 0. (1.17)

2. MAIN RESULTS

In this section we present the main results related to the paper.

2.1. Lorentzian Kenmotsu space forms with respect to Levi-Civita connection. In this
subsection we proved some results on Lorentzian Kenmotsu manifold and derived its
curvature tensor on Lorentzian Kenmotsu space forms with respect to Levi-Civita con-
nection.

Proposition 2.1. Let (M2n+1, φ, ξ, η, g) be a Lorentzian almost contact metric manifold and ∇
being Levi-Civita connection, then

2g ((∇X φ)Y, Z) = 3dΦ(X, φY, φZ)− 3dΦ(X, Y, Z) + g
(

N(1)(Y, Z), φX
)

−N(2)(Y, Z)η(X)− 2dη(φY, X)η(Z) + 2dη(φZ, X)η(Y). (2.1)

Proof. The proof follows for almost contact Riemannian manifold (see [3]), using the
properties (1.14), (1.15) and (1.16) for Lorentzian manifold. □

Theorem 2.1. Let (M2n+1, φ, ξ, η, g) be a Lorentzian Kenmotsu manifold with Levi-Civita con-
nection ∇, then

(∇X φ)Y = −η(Y)φX + g(X, φY)ξ. (2.2)
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Proof. Using equations (1.13), (1.14), (1.15), (1.16), (1.17) and the normality condition in
the equation (2.1), we get the result. □

From (1.13) and (2.2), we have

∇Xξ = X − η(X)ξ, (2.3)

and from (1.13), (2.3)
(∇Xη)Y = −g(φX, φY). (2.4)

Lemma 2.1. Let (M, g) be a Lorentzian Kenmotsu manifold with Levi-Civita connection ∇ and
R its curvature tensor. Then

(1) R(X, Y)φZ − φR(X, Y)Z

= g(X, Z)φY − g(Y, Z)φX + g(φX, Z)Y − g(φY, Z)X. (2.5)

(2) R(φX, φY)Z − R(X, Y)Z

= g(X, Z)Y − g(Y, Z)X + g(φY, Z)φX − g(φX, Z)φY. (2.6)

Proof. (1) The Ricci identity gives us:

∇X∇Y φZ −∇Y∇X φZ −∇[X,Y]φZ = R(X, Y)φZ.

This implies

R(X, Y)φZ− φR(X, Y)Z

= ∇X[(∇Y φ)Z]−∇Y[(∇X φ)Z] + (∇X φ)∇YZ − (∇Y φ)∇XZ − (∇[X,Y]φ)Z
Using (2.2), (2.3) and (2.4), we get

R(X, Y)φZ − φR(X, Y)Z

= g(X, Z)φY − g(Y, Z)φX + g(φX, Z)Y − g(φY, Z)X.

(2) Taking inner product of the equation (2.5) with φW and then by standard calcu-
lation we get the result (2.6).

□

Theorem 2.2. Let (M, g) be a Lorentzian Kenmotsu manifold with Levi-Civita connection ∇.
Then M has constant φ-holomorphic sectional curvature c if and only if

R(X, Y)Z =
c + 3

4
[g(X, Z)Y − g(Y, Z)X]

+
c − 1

4
{[η(X)Y − η(Y)X]η(Z)− [g(X, Z)η(Y)− g(Y, Z)η(X)]ξ

−g(φY, Z)φX + g(φX, Z)φY + 2g(φX, Y)φZ}. (2.7)

Proof. From (2.5), we have

g(R(X, φY)X, φY)− g(R(X, φY)Y, φX) = g(X, Y)2 − g(φX, Y)2 + g(X, X)g(Y, Y).
(2.8)

Which implies
g(R(X, φX)X, φY) = g(R(X, φX)Y, φX). (2.9)

For any vector field X and Y in X(M), we have

g(R(X, φX)X, φX) = −cg(X, X)2. (2.10)
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Replacing X by X + Y in (2.10), we see

−c[2g(X, Y)2 + 2g(X, X)g(Y, Y) + 2g(Y, Y)g(X, Y) + g(X, X)g(Y, Y)]

=
1
2

g(R(X + Y, φX + φY)(X + Y), φX + φY) +
c
2
[g(X, X)2 + g(Y, Y)2].

Using equations (2.5), (2.6), (2.8), (2.9), Bianchi identity and after along and rigorous
calculations, we prove the theorem. □

From (2.7), we have the Ricci tensor:

S(X, Y) = −n(c + 3)− 4
2

g(X, Y)− n(c − 1)
2

η(X)η(Y). (2.11)

A Lorentzian Kenmotsu manifold M2n+1 having constant φ-holomorphic sectional cur-
vature c is called a Lorentzian Kenmotsu space form and denoted by M2n+1(c).

2.2. Lorentzian Kenmotsu space form with respect to generalized Tanaka connection.
For an (2n + 1)-dimensional Lorentzian Kenmotsu manifold M with almost contact
structure (φ, ξ, η, g), the relation between generalized Tanaka connection ∇̊ and Levi-
Civita connection ∇ is given by

∇̊XY = ∇XY + η(X)φY + (∇Xη) (Y)ξ − η(Y)∇Xξ (2.12)
By (2.3) and (2.4),

∇̊XY = ∇XY + η(X)φY − g(φX, φY)ξ + η(Y)φ2X (2.13)

Putting Y = ξ in (2.13),

∇̊Xξ = ∇Xξ + η(X)φξ + g(X, φξ)ξ − η(ξ)∇Xξ

By (2.3),
∇̊Xξ = 0. (2.14)

Now,
(∇̊Xη)Y = ∇̊Xη(Y)− η(∇̊XY)

Using (2.4) and (2.13),
(∇̊Xη)Y = 0. (2.15)

And
(∇̊Xg)(Y, Z) = g(∇̊XY, Z) + g(Y, ∇̊XZ).

By (2.13),
(∇̊Xg)(Y, Z) = 0. (2.16)

Thus we can sate the following theorem

Theorem 2.3. In a Lorentzian Kenmotsu manifold, the structural vector field, contact 1-form
and metric are parallel with respect to the generalized Tanaka connection.

Using (2.13),
(∇̊X φ)Y = ∇̊X φY − φ(∇̊XY) = 0.

The curvature tensor of Lorentzian Kenmotsu manifold with respect to the generalized
Tanaka connection is given by

R̊(X, Y)Z = ∇̊X∇̊YZ − ∇̊Y∇̊XZ − ∇̊[X,Y]Z = R(X, Y)Z + g(X, Z)Y − g(Y, Z)X (2.17)
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and
S̊(X, Y) = S(X, Y)− 2(n − 1)g(X, Y)

If M has constant φ-holomorphic sectional curvature c, then by (2.7) and (2.17) we get

R̊(X, Y)Z =
c + 3

4
[g(X, Z)Y − g(Y, Z)X]+

c − 1
4

{[η(X)Y− η(Y)X]η(Z)− [g(X, Z)η(Y)

−g(Y, Z)η(X)]ξ − g(φY, Z)φX + g(φX, Z)φY + 2g(φX, Y)φZ}+ g(X, Z)Y − g(Y, Z)X
(2.18)

and

S̊(X, Y) = −n(c − 1)
2

g(φX, φY)− 4(n − 1)g(X, Y). (2.19)

2.3. ∗-Ricci tensor on Lorentzian Kenmotsu space form with respect to Levi-Civita
connection. In this subsection we derived the ∗-Ricci tensor in Lorentzion Kenmotsu
space form with respect to Levi-Civita connection.

Theorem 2.4. In a Lorentzion Kenmotsu space form with respect to Levi-Civita connection, the
∗-Ricci tensor

S∗(X, Y) =
n(c − 1) + 2

4
g(φX, φY). (2.20)

Proof. Putting Z = φZ in (2.7),

R(X, Y)φZ =
c + 3

4
[g(X, φZ)Y − g(Y, φZ)X]

+
c − 1

4
{[η(X)Y − η(Y)X]η(φZ)− [g(X, φZ)η(Y)− g(Y, φZ)η(X)]ξ

−g(φY, φZ)φX + g(φX, φZ)φY + 2g(φX, Y)φ2Z}.

Taking inner product of above equation with φW and contracting X and W, and then
using definition we get the result. □

Corollary 2.1. In a Lorentzion Kenmotsu space form with respect to Levi-Civita connection,

S∗(X, ξ) = 0. (2.21)

Now we can define ∗-η-Einstein manifold as follows:

Definition 2.1. A manifold M is said to be ∗-η-Einstein if there exists certain σ, δ ∈ C∞(M)
such that

S∗(X, Y) = σg(X, Y) + δη(X)η(Y), (2.22)

for all X, Y ∈ X(M).

Lemma 2.2. If a Lorentzian Kenmotsu space form (M, η, φ, ξ, g) with respect to Levi-Civita
connection ∇ is ξ-Ricci semi-symmetric i.e. R(ξ, X) · S = 0 , then g(X, Y) = −η(X)η(Y)
where S is Ricci tensor.
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Proof. From R(ξ, X) · S = 0, we have

S(R(ξ, X)Y, Z) + S(Y, R(ξ, X)Z) = 0.

−n(c + 3)− 4
2

g(R(ξ, X)Y, Z)− n(c − 1)
2

η(R(ξ, X)Y)η(Z)

−n(c + 3)− 4
2

g(Y, R(ξ, X)Z)− n(c − 1)
2

η(Y)η(R(ξ, X)Z) = 0.

Or, −n(c − 1)
2

[η(Y)η(X)η(Z) + g(X, Y)η(Z) + η(Z)η(Y)η(X) + η(Y)g(X, Z)] = 0

Putting Z = ξ,

g(X, Y) = −η(Y)η(X).

□

2.4. ∗-Ricci soliton with respect to Levi-Civita connection.

Theorem 2.5. A Lorentzion Knemotsu space form (M, η, φ, ξ, g) with respect to Levi-Civita
connection ∇ admitting ∗-Ricci soliton is ∗-η-Einstein.

Proof. By the definition of ∗-Ricci soliton, we get

(Lξ g)(X, Y) + 2S∗(X, Y) + 2λg(X, Y) = 0,

or, S∗(X, Y) = −λg(X, Y)− g(X, Y)− η(X)η(Y),

or, S∗(X, Y) = −(λ + 1)g(X, Y)− η(X)η(Y).

This shows that the manifold is ∗η-Einstein. □

Theorem 2.6. If a Lorentzian Kenmotsu space form (M, η, φ, ξ, g) with respect to Levi-Civita
connection ∇ admits ∗-Ricci soliton and is ξ-Ricci semi-symmetric, then the soliton is steady.

Proof. From the equation of ∗-Ricci soliton, we have

Lξ g(X, Y) + 2S∗(X, Y) + 2λg(X, Y) = 0

By (2.3),

S∗(X, Y) + λg(X, Y) = 0

From(2.20),we get

n(c − 1) + 2
4

g [g(X, Y) + η(X)η(Y)] + λg(X, Y) = 0

Applaying Lemma (2.2),

λ = 0.

Thus, the soliton is steady. □
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2.5. ∗-Conformal Ricci soliton with respect to Levi-Civita connection.

Theorem 2.7. A Lorentzion Kenmotsu space form (M, η, φ, ξ, g) with respect to Levi-Civita
connection admitting ∗-conformal Ricci soliton is ∗η-Einstein.

Proof. The equation of ∗-conformal Ricci soliton given by

(LV g)(X, Y) + 2S∗(X, Y) +
[

2λ − (p +
2

2n + 1
)

]
g(X, Y) = 0

Since (M, η, φ, ξ, g) is a ∗-conformal Ricci soliton, we have

g(∇ξ X, Y) + g(X,∇ξY) + 2S∗(X, Y) +
[

2λ − (p +
2

2n + 1
)

]
g(X, Y) = 0

By (2.3),

2g(X, Y) + 2η(X)η(Y) + 2S∗(X, Y) +
[

2λ − (p +
2

2n + 1
)

]
g(X, Y) = 0.

Or, S∗(X, Y) = Ag(X, Y) + Bη(X)η(Y)

Where A = 1
2 (p + 2

2n+1 )− 1 − λ and B = −1, and hence the space form is ∗η-Einstein.
□

Theorem 2.8. If a Lorentzian Kenmotsu space form (M, η, φ, ξ, g) with respect to Levi-Civita
connection admits ∗-conformal Ricci soliton and is ξ-Ricci semi-symmetric. Then the soliton is
expanding or steady or shrinking according as p < − 2

2n+1 or p = − 2
2n+1 or p > − 2

2n+1 .

Proof. From the equation of ∗-conformal Ricci soliton equation, we have

(Lξ g)(X, Y) + 2S∗(X, Y) +
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y) = 0.

or, g(X, Y) + η(X)η(Y) + S∗(X, Y) +
[

λ − 1
2

(
p +

2
2n + 1

)]
g(X, Y) = 0.

From(2.20),we get

g(X, Y) + η(X)η(Y) +
n(c − 1) + 2

4
[g(X, Y) + η(X)η(Y)]

+

[
λ − 1

2

(
p +

2
2n + 1

)]
g(X, Y) = 0.

Applying Lemma (2.2), [
λ − 1

2

(
p +

2
2n + 1

)]
g(X, Y) = 0

or, λ =
1
2

(
p +

2
2n + 1

)
Thus, the soliton is expanding or steady or shrinking according as p < − 2

2n+1 or p =

− 2
2n+1 or p > − 2

2n+1 . □
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2.6. ∗-Conformal η-Ricci soliton with respect to Levi-Civita connection.

Theorem 2.9. A Lorentzion Kenmotsu space form (M, η, φ, ξ, g) with respect to Levi-Civita
connection admitting ∗-conformal η-Ricci soliton is ∗η-Einstein.

Proof. By the definition of ∗-conformal η-Ricci soliton ,we get

(Lξ g)(X, Y) + 2S∗(X, Y) +
[

2λ − (p +
2

2n + 1
)

]
g(X, Y) + 2µη(X)η(Y) = 0

By (2.3),

2g(X, Y) + 2η(X)η(Y) + 2S∗(X, Y) +
[

2λ − (p +
2

2n + 1
)

]
g(X, Y) + 2µη(X)η(Y) = 0.

Or, S∗(X, Y) = Cg(X, Y) + Dη(X)η(Y)

Where C = 1
2 (p + 2

2n+1 ) − 1 − λ and D = −1 − µ, and hence the space form is ∗η-
Einstein. □

Theorem 2.10. If a Lorentzian Kenmotsu space form (M, η, φ, ξ, g) with respect to Levi-Civita
connection admits ∗-conformal η-Ricci soliton and is ξ-Ricci semi-symmetric. Then the soliton
is expanding or steady or shrinking according as p < − 2

2n+1 − 2µ or p = − 2
2n+1 − 2µ or

p > − 2
2n+1 − 2µ.

Proof. From the equation of ∗-conformal η-Ricci soliton equation, we have

(Lξ g)(X, Y)+ 2S∗(X, Y)+
[

2λ − (p +
2

2n + 1
)

]
g(X, Y)+ 2µη(X)η(Y) = 0

or, g(X, Y) + η(X)η(Y) + S∗(X, Y) +
[

λ − 1
2
(p +

2
2n + 1

)

]
g(X, Y) + µη(X)η(Y) = 0

From(2.20),we get

g(X, Y) + η(X)η(Y) +
n(c − 1) + 2

4
[g(X, Y) + η(X)η(Y)]

+

[
λ − 1

2
(p +

2
2n + 1

)

]
g(X, Y) + µη(X)η(Y) = 0

Applying Lemma (2.2), [
λ − 1

2
(p +

2
2n + 1

)− µ

]
g(X, Y) = 0

or, λ = µ +
1
2

(
p +

2
2n + 1

)
Thus, the soliton is expanding or steady or shrinking according as p < − 2

2n+1 − 2µ or
p = − 2

2n+1 − 2µ or p > − 2
2n+1 − 2µ. □
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2.7. Generalized ∗−Ricci soliton with respect to Levi-Civita connection.

Theorem 2.11. If a Lorentzian Knemotsu space form (M, η, φ, ξ, g) with respect to Levi-Civita
connection admits generalized ∗-Ricci soliton, then the soliton is is expanding or steady or shrink-
ing according as a > 0 or a = 0 or a < 0.

Proof. In the equation (1.10), taking V#(X) = g(X, V). Then it becomes

LV g(X, Y) = −2ag(X, V)g(Y, V) + 2bS∗(X, Y) + 2λg(X, Y). (2.23)

This implies

g(∇Xξ, Y) + g(X,∇Yξ) = −2aη(X)η(Y) + 2bS∗(X, Y) + 2λg(X, Y).

By (2.3),
g(φX, φY) + aη(X)η(Y)− bS∗(X, Y)− λg(X, Y) = 0. (2.24)

Putting Y = ξ, then
aη(X)− bS(X, ξ) + λη(X) = 0.

Using (2.21)
(a + λ)η(X) = 0.

This implies
λ = −a. (2.25)

The equation (2.25) shows that, the soliton is is expanding or steady or shrinking accord-
ing as a > 0 or a = 0 or a < 0. □

Theorem 2.12. If a Lorentzian Knemotsu space form (M, η, φ, ξ, g) with respect to Levi-Civita
connection admits generalized ∗-Ricci soliton and V is is pointwise colinear vector field with ξ.
Then V is constant multiple of ξ.

Proof. Let V = σξ, where σ is a function on the Lorentzian Knemotsu manifold. Then
from the equation (1.10), we have

g(∇Xσξ, Y) + g(X,∇Yσξ) = −2aσ2η(X)η(Y) + 2bS∗(X, Y) + 2λg(X, Y).

By (2.3) we get

2σg(φX, φY)− (Xσ)η(Y)− (Yσ)η(X) = −2aη(X)η(Y) + 2bS∗(X, Y) + 2λg(X, Y).

Putting Y = ξ and using (2.21),

−(Xσ)− (ξσ)η(X) = −2aσ2η(X)− 2λη(X). (2.26)

Putting X = ξ,
ξσ = aσ2 + λ. (2.27)

From (2.26) and (2.27), we have

Xσ = (aσ2 + λ)η(X).

Or, dσ = (aσ2 + λ)η.
Applying d on above equation,

2aσ(dσ)η + (aσ2 + λ)dη = 0.

Or, 2aσ(dσ)η = 0.
This shows that, either a = 0 or σ is constant. □
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2.8. Generalized *-conformal Ricci soliton with respect to Levi-Civita connection.

Theorem 2.13. If a Lorentzian Knemotsu space form (M, η, φ, ξ, g) with respect to Levi-Civita
connection inherits generalized ∗-conformal Ricci soliton, then the soliton is expanding or steady
or shrinking according as p < 2a − 2

2n+1 or p = 2a − 2
2n+1 or p > 2a − 2

2n+1 .

Proof. We Consider V#(X) = g(X, V) in the equation (1.11). Then we get

LV g(X, Y)−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y) + 2aV#(X)⊙ V#(Y) + 2bS∗(X, Y). (2.28)

This implies

g(∇Xξ, Y)+ g(X,∇Yξ)−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y)+ 2aη(X)η(Y)+ 2bS∗(X, Y) = 0.

By (2.3),

2g(φX, φY)−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y) + 2aη(X)η(Y) + 2bS∗(X, Y) = 0. (2.29)

Putting Y = ξ and using (2.21), we get

λ =
1
2

(
p +

2
2n + 1

)
− a. (2.30)

□

Thus, the soliton is expanding or steady or shrinking according as p < 2a − 2
2n+1 or

p = 2a − 2
2n+1 or p > 2a − 2

2n+1 .

Theorem 2.14. If a Lorentzian Knemotsu space form (M, η, φ, ξ, g) with respect to Levi-Civita
connection inherits generalized ∗-conformal Ricci soliton and V is is pointwise colinear vector
field with ξ. Then V is constant multiple of ξ.

Proof. Let V = σξ, where σ is a function on M. Then equation (1.11) implies

g(∇X(σξ), Y) + g(X,∇Y(σξ))−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y)

+2aσ2η(X)η(Y) + 2bS∗(X, Y) = 0.
Using (2.3),

2σg(φX, φY)− (Xσ)η(Y)− (Yσ)η(X)−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y)

+2aσ2η(X)η(Y) + 2bS∗(X, Y) = 0.
Replacing Y by ξ and using equation (2.21), we get

−(Xσ)− (ξσ)η(X) +

[
2λ −

(
p +

2
2n + 1

)]
η(X) + 2aσ2η(X) = 0. (2.31)

Putting X = ξ in (2.31),

ξσ = aσ2 +

[
λ − 1

2

(
p +

2
2n + 1

)]
. (2.32)
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Using (2.32) in (2.31),

Xσ =

[
aσ2 +

[
λ − 1

2

(
p +

2
2n + 1

)]]
η(X).

Or, dσ =

[
aσ2 +

[
λ − 1

2

(
p +

2
2n + 1

)]]
η.

Applying d on the above equation we get,

d
[

aσ2 +

[
λ − 1

2

(
p +

2
2n + 1

)]]
η +

[
aσ2 +

[
λ − 1

2

(
p +

2
2n + 1

)]]
dη = 0.

Since dη = 0, we have
Or, 2aσ(dσ)η = 0.

This shows that, either a = 0 or σ is constant.
□

2.9. Generalized ∗-conformal η-Ricci soliton with respect to Levi-Civita connection.

Theorem 2.15. If a Lorentzian Knemotsu space form (M, η, φ, ξ, g) with respect to Levi-Civita
connection admits generalized ∗-conformal η-Ricci soliton, then the soliton is expanding or
steady or shrinking according as p < 2a + 2µ − 2

2n+1 or p = 2a + 2µ − 2
2n+1 or p > 2a +

2µ − 2
2n+1 .

Proof. Taking V#(X) = g(V, X) in (1.12), then

LV g(X, Y)−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y)

+2aV#(X)⊙ V#(Y) + 2bS∗(X, Y) + 2µη(X)η(Y) = 0. (2.33)
The equation (2.33) implies that

g(∇Xξ, Y) + g(X,∇Yξ)−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y)

+2aη(X)η(Y) + 2bS∗(X, Y) + 2µη(X)η(Y) = 0.
By (2.3),

2g(φX, φY)−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y)

+2aη(X)η(Y) + 2bS̊∗(X, Y) + 2µη(X)η(Y) = 0. (2.34)
Putting Y = ξ and using (2.21) we get,

λ =
1
2

(
p +

2
2n + 1

)
− a − µ. (2.35)

□

Thus, the soliton is expanding or steady or shrinking according as p < 2a + 2µ − 2
2n+1 or

p = 2a + 2µ − 2
2n+1 or p > 2a + 2µ − 2

2n+1 .

Theorem 2.16. If a Lorentzian Knemotsu space form (M, η, φ, ξ, g) with respect to Levi-Civita
connection inherits generalized ∗-conformal η-Ricci soliton and V is is pointwise colinear vector
field with ξ. Then V is constant multiple of ξ.
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Proof. Let V = σξ in (1.12), where σ is a function on M. Then have

g(∇X(σξ), Y) + g(X,∇Y(σξ))−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y)

+2aσ2η(X)η(Y) + 2bS∗(X, Y) + 2µη(X)η(Y) = 0.
Using (2.3),

2σg(φX, φY)− (Xσ)η(Y)− (Yσ)η(X)−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y)

+2aσ2η(X)η(Y) + 2bS̊∗(X, Y) + 2µη(X)η(Y) = 0.
Replacing Y by ξ and using equation (2.21), we get

−(Xσ)− (ξσ)η(X) +

[
2λ −

(
p +

2
2n + 1

)]
η(X) + 2aσ2η(X) + 2µη(X) = 0. (2.36)

Putting X = ξ in (2.36),

ξσ = aσ2 + µ +

[
λ − 1

2

(
p +

2
2n + 1

)]
. (2.37)

Using (2.37) in (2.36),

Xσ =

[
aσ2 + µ +

[
λ − 1

2

(
p +

2
2n + 1

)]]
η(X).

Or, dσ =

[
aσ2 + µ +

[
λ − 1

2

(
p +

2
2n + 1

)]]
η.

Applying d on the above equation we get,

d
[

aσ2 + µ +

[
λ − 1

2

(
p +

2
2n + 1

)]]
η +

[
aσ2 + µ +

[
λ − 1

2

(
p +

2
2n + 1

)]]
dη = 0.

Since dη = 0, we have
Or, 2aσ(dσ)η = 0.

This shows that, either a = 0 or σ is constant.
□

2.10. ∗-Ricci tensor on Lorentzian Kenmotsu space form with respect to the gener-
alized Tanaka connection. In this section we derived the ∗-Ricci tensor in Lorentzion
Kenmotsu space form with respect to generalized Tanaka connection.

Theorem 2.17. In a Lorentzion Kenmotsu space form with respect to the generalized Tanaka
connection, the ∗-Ricci tensor

S̊∗(X, Y) =
n(c − 1)− 2

4
g(φX, φY). (2.38)

Proof. Similar as proof of Theorem 2.4. □

Corollary 2.2. In a Lorentzion Kenmotsu space form with respect to the generalized Tanaka
connection,

S̊∗(X, ξ) = 0. (2.39)
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By (2.11), we see that

S̊(X, Y) + 2S̊∗(X, Y) = −(4n − 3)g(X, Y)− η(X)η(Y). (2.40)

Definition 2.2. A manifold M is said to be ∗-Einstein if there exists constant k such that

S∗(X, Y) = kg(X, Y), (2.41)

for all X, Y ∈ X(M).

Lemma 2.3. If a Lorentzian Kenmotsu space form with respect to generalized Tanaka connection
∇̊ is Ricci semi-symmetric i.e. R̊(ξ, X) · S̊ = 0 , then S̊∗(X, Y) = 0.

Proof. From R(ξ, X) · S̊ = 0,

S̊(R̊(ξ, X)Y, Z) + S̊(Y, R̊(ξ, X)Z) = 0.

Or, −n(c − 1)
2

[g(φR(ξ, X)Y, φZ) + g(φY, φR(ξ, X)Z)] = 0.

Or, η(Y)g(φX, φZ) + η(Z)g(φX, φY) = 0.

Putting Z = ξ,

g(φX, φY) = 0. (2.42)

From (2.38),

S̊∗(X, Y) =
n(c − 1)− 2

4
g(φX, φY).

So, by the equation (2.42),

S̊∗(X, Y) = 0

□

2.11. ∗-Ricci soliton with respect to generalized Tanaka connection.

Theorem 2.18. A Lorentzion Knemotsu space form with respect to generalized Tanaka connec-
tion ∇̊ admitting ∗-Ricci soliton is ∗-Einstein.

Proof. By the definition of ∗-Ricci soliton , we get

(Lξ g)(X, Y) + 2S̊∗(X, Y) + 2λg(X, Y) = 0,

or, g(∇̊ξ X, Y) + g(X, ∇̊ξY) + S̊∗(X, Y) = −λg(X, Y),

or, S̊∗(X, Y) = −λg(X, Y).

This shows that the manifold is ∗-Einstein. □

Theorem 2.19. If a Lorentzian Kenmotsu space form with respect to generalized Tanaka connec-
tion ∇̊ admits ∗-Ricci soliton and is ξ-Ricci semi-symmetric. Then the soliton is steady.
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Proof. From the equation of ∗-Ricci soliton, we have

Lξ g(X, Y) + 2S̊∗(X, Y) + 2λg(X, Y) = 0

g(∇̊ξ X, Y) + g(X, ∇̊ξY) + S̊∗(X, Y) + λg(X, Y) = 0
By (2.14),

S̊∗(X, Y) + λg(X, Y) = 0
Applaying Lemma (2.3),

λg(X, Y) = 0.
or, λ = 0.

Thus, the soliton is steady. □

2.12. ∗-Conformal Ricci soliton with respect to generalized Tanaka connection.

Theorem 2.20. A Lorentzion Kenmotsu space form (M, η, φ, ξ, g) with respect to generalized
Tanaka connection admits ∗-conformal Ricci soliton is ∗η-Einstein.

Proof. By the definition of ∗-conformal Ricci soliton ,we get

(Lξ g)(X, Y) + 2S̊∗(X, Y) +
[

2λ − (p +
2

2n + 1
)

]
g(X, Y) = 0

By (2.14),

2S̊∗(X, Y) +
[

2λ − (p +
2

2n + 1
)

]
g(X, Y) = 0.

Or, S∗(X, Y) = Eg(X, Y),
where E = 1

2 (p + 2
2n+1 )− λ. Hence the space form is ∗-Einstein. □

Theorem 2.21. If a Lorentzian Kenmotsu space form (M, η, φ, ξ, g) with respect to generalized
Tanaka connection admits ∗-conformal Ricci soliton and is ξ-Ricci semi-symmetric. Then the
soliton is expanding or steady or shrinking according as p < − 2

2n+1 or p = − 2
2n+1 or p >

− 2
2n+1 .

Proof. From the equation of ∗-conformal η-Ricci soliton equation, we have

(Lξ g)(X, Y) + 2S̊∗(X, Y) +
[

2λ − (p +
2

2n + 1
)

]
g(X, Y) = 0.

By (2.14),

S̊∗(X, Y) +
[

λ − 1
2
(p +

2
2n + 1

)

]
g(X, Y) = 0.

From(2.38), we get

n(c − 1)− 2
4

[g(X, Y) + η(X)η(Y)] +
[

λ − 1
2
(p +

2
2n + 1

)

]
g(X, Y) = 0.

Applying Lemma (2.3), [
λ − 1

2
(p +

2
2n + 1

)

]
g(X, Y) = 0.

or, λ =
1
2

(
p +

2
2n + 1

)
.
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Thus, the soliton is expanding or steady or shrinking according as p < − 2
2n+1 or p =

− 2
2n+1 or p > − 2

2n+1 . □

2.13. ∗-Conformal η-Ricci soliton with respect to generalized Tanaka connection.

Theorem 2.22. A Lorentzion Kenmotsu space form (M, η, φ, ξ, g) with respect to generalized
Tanaka connection admits ∗-conformal η-Ricci soliton is ∗η-Einstein.

Proof. By the definition of ∗-conformal η-Ricci soliton ,we get

(Lξ g)(X, Y) + 2S̊∗(X, Y) +
[

2λ − (p +
2

2n + 1
)

]
g(X, Y) + 2µη(X)η(Y) = 0

By (2.14),

2S̊∗(X, Y) +
[

2λ − (p +
2

2n + 1
)

]
g(X, Y) + 2µη(X)η(Y) = 0.

Or, S∗(X, Y) = Ag(X, Y) + Bη(X)η(Y)

Where A = 1
2 (p + 2

2n+1 )− λ and B = −µ, and hence the space form is ∗η-Einstein. □

Theorem 2.23. If a Lorentzian Kenmotsu space form (M, η, φ, ξ, g) with respect to generalized
Tanaka connection admits ∗-conformal η-Ricci soliton and is ξ-Ricci semi-symmetric. Then the
soliton is expanding or steady or shrinking according as p < − 2

2n+1 − 2µ or p = − 2
2n+1 − 2µ

or p > − 2
2n+1 − 2µ.

Proof. From the equation of ∗-conformal η-Ricci soliton equation, we have

(Lξ g)(X, Y)+ 2S̊∗(X, Y)+
[

2λ − (p +
2

2n + 1
)

]
g(X, Y)+ 2µη(X)η(Y) = 0

By (2.14),

S̊∗(X, Y) +
[

λ − 1
2
(p +

2
2n + 1

)

]
g(X, Y) + µη(X)η(Y) = 0

From(2.38), we get

n(c − 1)− 2
4

[g(X, Y) + η(X)η(Y)] +
[

λ − 1
2
(p +

2
2n + 1

)

]
g(X, Y) + µη(X)η(Y) = 0

Applying Lemma (2.3), [
λ − 1

2
(p +

2
2n + 1

)− µ

]
g(X, Y) = 0

or, λ = µ +
1
2

(
p +

2
2n + 1

)
Thus, the soliton is expanding or steady or shrinking according as p < − 2

2n+1 − 2µ or
p = − 2

2n+1 − 2µ or p > − 2
2n+1 − 2µ. □
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2.14. Generalized ∗−Ricci soliton with respect to generalized Tanaka connection.

Theorem 2.24. If a Lorentzian Knemotsu space form (M, η, φ, ξ, g) with respect to generalized
Tanaka connection inherits generalized ∗-Ricci soliton, then the soliton is is expanding or steady
or shrinking according as a > 0 or a = 0 or a < 0.

Proof. In the equation (1.10), taking V#(X) = g(X, V) and replacing S∗ by S̊∗. Then we
have

LV g(X, Y) = −2ag(X, V)g(Y, V) + 2bS̊∗(X, Y) + 2λg(X, Y). (2.43)
Since (M, η, φ, ξ, g) is a generalized ∗-Ricci soliton, the above equation implies

g(∇̊Xξ, Y) + g(X, ∇̊Yξ) = −2aη(X)η(Y) + 2bS̊∗(X, Y) + 2λg(X, Y).

By (2.14),
aη(X)η(Y)− bS̊∗(X, Y)− λg(X, Y) = 0. (2.44)

Putting Y = ξ, then
aη(X)− bS̊(X, ξ) + λη(X) = 0.

Using (2.39)
(a + λ)η(X) = 0.

This implies
λ = −a. (2.45)

The equation (2.45) shows that, the soliton is is expanding or steady or shrinking accord-
ing as a > 0 or a = 0 or a < 0. □

Theorem 2.25. If a Lorentzian Knemotsu space form (M, η, φ, ξ, g) with respect to generalized
Tanaka connection inherits generalized ∗-Ricci soliton and V is is pointwise colinear vector field
with ξ. Then V is constant multiple of ξ.

Proof. Let V = σξ, where σ is a function on the Lorentzian Knemotsu space form. Then
from (2.43),

g(∇̊Xσξ, Y) + g(X, ∇̊Yσξ) = −2aσ2η(X)η(Y) + 2bS̊∗(X, Y) + 2λg(X, Y).

By (2.14) we get

−(Xσ)η(Y)− (Yσ)η(X) = −2aη(X)η(Y) + 2bS̊∗(X, Y) + 2λg(X, Y).

Putting Y = ξ and using (2.39),

−(Xσ)− (ξσ)η(X) = −2aσ2η(X)− 2λη(X). (2.46)

Putting X = ξ,
ξσ = aσ2 + λ. (2.47)

From (2.46) and (2.47), we have

Xσ = (aσ2 + λ)η(X).

Or, dσ = (aσ2 + λ)η.
Applying d on above equation,

2aσ(dσ)η + (aσ2 + λ)dη = 0.

Or, 2aσ(dσ)η = 0.
This shows that, either a = 0 or σ is constant. □
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2.15. Generalized *-conformal Ricci soliton with respect to generalized Tanaka con-
nection.

Theorem 2.26. If a Lorentzian Knemotsu space form (M, η, φ, ξ, g) with respect to generalized
Tanaka connection admits generalized ∗-conformal Ricci soliton, then the soliton is expanding or
steady or shrinking according as p < 2a − 2

2n+1 or p = 2a − 2
2n+1 or p > 2a − 2

2n+1 .

Proof. Taking V#(X) = g(X, V) and replacing S∗ by S̊∗ in the equation (1.11). It becomes

LV g(X, Y)−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y) + 2ag(X, V)g(Y, V) + 2bS̊∗(X, Y) = 0.

(2.48)
If (M, η, φ, ξ, g) is a generalized ∗-conformal Ricci soliton. Then from equation (2.48) we
have

g(∇̊Xξ, Y)+ g(X, ∇̊Yξ)−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y)+ 2aη(X)η(Y)+ 2bS̊∗(X, Y) = 0.

By (2.14),

−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y) + 2aη(X)η(Y) + 2bS̊∗(X, Y) = 0. (2.49)

Putting Y = ξ and using (2.39), we get

λ =
1
2

(
p +

2
2n + 1

)
− a. (2.50)

Thus, the soliton is expanding or steady or shrinking according as p < 2a − 2
2n+1 or

p = 2a − 2
2n+1 or p > 2a − 2

2n+1 . □

Theorem 2.27. If a Lorentzian Knemotsu space form (M, η, φ, ξ, g) with respect to generalized
Tanaka connection inherits generalized ∗-conformal Ricci soliton and V is is pointwise colinear
vector field with ξ. Then V is constant multiple of ξ.

Proof. Let V = σξ, where σ is a function on M. Then the equation (2.48) implies

g(∇̊X(σξ), Y) + g(X, ∇̊Y(σξ))−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y)

+2aσ2η(X)η(Y) + 2bS̊∗(X, Y) = 0.
Using (2.14),

−(Xσ)η(Y)− (Yσ)η(X)−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y)

+2aσ2η(X)η(Y) + 2bS̊∗(X, Y) = 0.
Replacing Y by ξ and using equation (2.39), we get

−(Xσ)− (ξσ)η(X) +

[
2λ −

(
p +

2
2n + 1

)]
η(X) + 2aσ2η(X) = 0. (2.51)

Putting X = ξ in (2.51),

ξσ = aσ2 +

[
λ − 1

2

(
p +

2
2n + 1

)]
. (2.52)
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Using (2.52) in (2.51),

Xσ =

[
aσ2 +

[
λ − 1

2

(
p +

2
2n + 1

)]]
η(X).

Or, dσ =

[
aσ2 +

[
λ − 1

2

(
p +

2
2n + 1

)]]
η.

Applying d on the above equation, we get

d
[

aσ2 +

[
λ − 1

2

(
p +

2
2n + 1

)]]
η +

[
aσ2 +

[
λ − 1

2

(
p +

2
2n + 1

)]]
dη = 0.

Since dη = 0, we have
2aσ(dσ)η = 0.

This shows that, either a = 0 or σ is constant.
□

2.16. Generalized ∗-conformal η-Ricci soliton with respect to generalized Tanaka con-
nection.

Theorem 2.28. If a Lorentzian Knemotsu space form (M, η, φ, ξ, g) with respect to generalized
Tanaka connection inherits generalized ∗-conformal η-Ricci soliton, then the soliton is expanding
or steady or shrinking according as p < 2a + 2µ − 2

2n+1 or p = 2a + 2µ − 2
2n+1 or p >

2a + 2µ − 2
2n+1 .

Proof. In equation (1.12), Taking V#(X) = g(X, V) and replacing S∗ by S̊∗. Then equation
(1.12) becomes

LV g(X, Y)−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y)

+2ag(X, V)g(Y, V) + 2bS̊∗(X, Y) + 2µη(X)η(Y) = 0. (2.53)

As the given space form (M, η, φ, ξ, g) is a generalized ∗-conformal η-Ricci soliton, equa-
tion (2.53) implies

g(∇̊Xξ, Y) + g(X, ∇̊Yξ)−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y)

+2aη(X)η(Y) + 2bS̊∗(X, Y) + 2µη(X)η(Y) = 0.

By (2.14),

−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y)+ 2aη(X)η(Y)+ 2bS̊∗(X, Y)+ 2µη(X)η(Y) = 0. (2.54)

Putting Y = ξ and using (2.39), we get

λ =
1
2

(
p +

2
2n + 1

)
− a − µ. (2.55)

Thus, the soliton is expanding or steady or shrinking according as p < 2a + 2µ − 2
2n+1 or

p = 2a + 2µ − 2
2n+1 or p > 2a + 2µ − 2

2n+1 . □
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Theorem 2.29. If a Lorentzian Knemotsu space form (M, η, φ, ξ, g) with respect to generalized
Tanaka connection inherits generalized ∗-conformal η-Ricci soliton and V is is pointwise colinear
vector field with ξ. Then V is constant multiple of ξ.

Proof. In equation (2.53), putting V = σξ, where σ is a function on M. Then we have

g(∇̊X(σξ), Y) + g(X, ∇̊Y(σξ))−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y)

+2aσ2η(X)η(Y) + 2bS̊∗(X, Y) + 2µη(X)η(Y) = 0.
Using (2.14),

−(Xσ)η(Y)− (Yσ)η(X)−
[

2λ −
(

p +
2

2n + 1

)]
g(X, Y)

+2aσ2η(X)η(Y) + 2bS̊∗(X, Y) + 2µη(X)η(Y) = 0.
Replacing Y by ξ and using equation (2.39), we get

−(Xσ)− (ξσ)η(X) +

[
2λ −

(
p +

2
2n + 1

)]
η(X) + 2aσ2η(X) + 2µη(X) = 0. (2.56)

Putting X = ξ in (2.56),

ξσ = aσ2 + µ +

[
λ − 1

2

(
p +

2
2n + 1

)]
. (2.57)

Using (2.57) in (2.56),

Xσ =

[
aσ2 + µ +

[
λ − 1

2

(
p +

2
2n + 1

)]]
η(X).

Or, dσ =

[
aσ2 + µ +

[
λ − 1

2

(
p +

2
2n + 1

)]]
η.

Applying d on the above equation we get,

d
[

aσ2 + µ +

[
λ − 1

2

(
p +

2
2n + 1

)]]
η +

[
aσ2 + µ +

[
λ − 1

2

(
p +

2
2n + 1

)]]
dη = 0.

Since dη = 0, we have
2aσ(dσ)η = 0.

This shows that, either a = 0 or σ is constant.
□
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