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ON CEVA’S AND SEEBACH’S THEOREMS

PARIS PAMFILOS

ABSTRACT. In this article we discuss the relation of Ceva’s condition for three secants of
a triangle to the cross ratio formed by these secants. Subsequently we relate the obtained
result to Seebach’s theorem on the inscription of a triangle of given similarity type, as a
Cevian one of another given triangle. We supply also a method to construct the triangle
center X(370) whose Cevian triangle is equilateral.

1. INTRODUCTION

This work grew out of an attempt to find a simple construction of an equilateral A′B′C′

inscribed as a Cevian triangle inside a given triangle ABC. The intersection point of the
Cevians of such a triangle is the “triangle center” X(370) of Kimberling’s list [1]. It is
however noticeable the small amount of information recorded there for this point. It is
one of the triangle centers, whose barycentric coordinates are not given explicitly. What
is given instead is a system of three quadratic equations satisfied by its barycentrics and
the fact that it lies on the Neuberg cubic of the triangle ABC.

More general, the existence of points D inside a triangle ABC, whose Cevian tri-
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Figure 1. Inscribing as a Cevian △ A′B′C′ in △ ABC

angle has a given similarity type is guaranteed by Seebach’s theorem ([3]), according to
which (see Figure 1):
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ON CEVA’S AND SEEBACH’S THEOREMS

Theorem 1.1. Given two triangles there is precisely one triangle A′B′C′ similar to the second
inscribed in the first triangle ABC as a Cevian triangle of a point D lying inside ABC and
with a prescribed correspondence of vertices of A′B′C′ lying on sides of ABC :

A′ ∈ BC, B′ ∈ CA, C′ ∈ AB .

The original proof by Seebach combined geometric arguments and a considerable amount
of computation. A subsequent elegant proof by Hajja ([2]) succeeded with less compu-
tations. The present work gives two alternative proofs based on well known theorems,
without resort to any substantial computation. In addition, supplies a third method es-
pecially adapted to the equilateral, to solve geometrically the corresponding problem of
inscription.

A central idea of our method is to search for the appropriate Cevian point D by
reversing the problem, starting with △ A′B′C′ and trying to construct an “anticevian”
triangle ABC of △ A′B′C′ w.r.t. D.
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Figure 2. Similar triangles {AtBtCt} circumscribing △ A′B′C′

In fact, triangles {AtBtCt} similar to ABC circumscribing the triangle A′B′C′ and hav-
ing a prescribed correspondence for {angles of ABC} ↔ {sides of A′B′C′}, have their
vertices respectively on three circles {α, β, γ}. However, joining the corresponding ver-
tices, the lines {At A′, BtB′, CtC′} do not pass through the same point, but form instead
a triangle τt = A′

tB
′
tC

′
t (see Figure 2). It will be seen below, that varying this triangle,

equivalently, varying one of its vertices, At say, the corresponding △ τt degenerates for
an appropriate t to a point D. The existence and uniqueness of the inscribed triangle
A′B′C′ is proved under the assumption that it lies inside the triangle ABC. If we allow
for it a position also outside the triangle, then, as has been shown by Hvala ([4]), there
are in general one to three triangles of a given similarity type inscribed in △ ABC.

Regarding the organization of the article, section 2 discusses an aspect of Ceva’s theo-
rem used in the first proof of Seebach’s theorem. Section 3 deals mainly with the question
of “strict” circumscription of △ A′B′C′ by △ ABC in the sense that we want the vertices
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of ABC to view the sides of A′B′C′ by the proper angles of triangle ABC and not their
complements. This restricts the vertices of AtBtCt in certain arcs of the circles, shown in
figure 2 . Section 4 gives a proof of Seebach’s theorem. Section 5 gives a more general
proof of existence of Cevian inscribed triangles including the case △ A′B′C′ is “escribed”
in △ ABC. Section 6 deals with a property related to Maclaurin’s theorem used in the
last section 7, which gives a method to construct the triangle center X(370).

2. CEVA’S THEOREM

Ceva’s theorem, formulated below for convenience of reference, and whose proof can be
found in every book of geometry ([5, p.145], [6, p.158]), guarantees that (see figure 3-(I)):
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Figure 3. Ceva’s theorem

Theorem 2.1. A necessary and sufficient condition for three lines {AA′, BB′, CC′} through the
vertices of the triangle ABC to meet at a point D, not lying on any side-line of the triangle is
the “Ceva’s condition” for the ratios of oriented segments:

A′B
A′C

· B′C
B′A

· C′A
C′B

= −1. (2.1)

Points {A′ ∈ BC, B′ ∈ CA, C′ ∈ AB} are the “traces” of the point D on respective sides of
the triangle ABC. If we choose the three points {A′, B′, C′} at random on the sides of the
triangle, then the corresponding lines {AA′, BB′, CC′} do not pass in general through the
same point but form instead a triangle A′′B′′C′′ (see figure 3-(II)). In this case we can still
form the expression of the left side of Ceva’s condition and following theorem, which,
despite its simplicity seems to have been unnoticed, shows that this expression is related
to the cross ratio formed by the quadruples of points on the lines {AA′, BB′, CC′}.

Theorem 2.2. For three points {A′, B′, C′} on the side-lines {BC, CA, AB}, different from the
vertices of the triangle ABC, the lines {AA′, BB′, CC′} form a triangle A′′B′′C′′ and the cross
ratio (A′A; C′′B′′) = C′′A′

C′′A : B′′A′

B′′A is equal to the other corresponding cross ratios (B′B; A′′C′′)
and (C′C; B′′A′′). Further this cross ratio is equal to the negative of Ceva’s expression for the
points {A′, B′, C′}:

(A′A; C′′B′′) = (B′B; A′′C′′) = (C′C; B′′A′′) = − A′B
A′C

· B′C
B′A

· C′A
C′B

.
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Figure 4. (A′A; C′′B′′) = − A′B
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B′A · C′A
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Proof. Consider the intersection A1 = AA′′ ∩ BC (see Figure 4). By the well known in-
variance of cross ratio on a secant of a pencil of four lines ([7, p.89]), the pencil of four
lines from A defines the same cross ratio on the secant lines

(CB; A1A′) = (B′B; A′′C′′) = (CC′; A′′B′′) = (C′C; B′′A′′) ,

latter equality following from the symmetry properties of cross ratios ([7, p.88]). This
proves the first part of the theorem on the independence of the cross ratio from the par-
ticular line {AA′, BB′, CC′}.

To prove the other claim, we notice that

(C′C; B′′A′′) = (CB; A1A′) = (BC; A′A1) =
A′B
A′C

:
A1B
A1C

. (2.2)

Equating this with the negative of the Ceva expression we have:

− A′B
A′C

· B′C
B′A

· C′A
C′B

=
A′B
A′C

:
A1B
A1C

⇔ A1B
A1C

· B′C
B′A

· C′A
C′B

= −1 ,

which is Ceva’s condition for the point A′′ to which concur lines {AA1, BB′, CC′}. □

3. MIQUEL’S CONFIGURATION AND THE ARCS OF RESTRICTION

The “Miquel configuration” results by selecting three points {A′ ∈ BC, B′ ∈ CA, C′ ∈ AB}
on respective sides of the triangle ABC (see Figure 5). It is then proved that the three
circles {α = (AB′C′), β = (BC′A′), γ = (CA′B′)} pass through the same point E , called
“Miquel point ” of the “Miquel triangle” A′B′C′ w.r.t. triangle ABC ([8, p.79], [5, p.131]).

Changing viewpoint, we fix the triangle A′B′C′, the point E and the three circles
{α, β, γ} and consider point A varying on the circle α. Drawing then {AC′, AB′} and
extending them until to meet a second time the circles {β, γ} we see by a simple angle
chasing argument, that they define the variable triangle ABC whose vertices lie on the
respective circles {α, β, γ} and consequently has constant angles, or, as we say, it is of
“constant similarity type”. A simple angle chasing argument shows, that we can create
such a configuration for arbitrary similarity types of triangles A′B′C′ and ABC, the
second circumscribing the first and having prescribed angle Â viewing B′C′, angle B̂
viewing C′A′ and angle Ĉ viewing A′B′. This shows that for any two given triangles
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Figure 5. A Miquel configuration

{ABC, A′B′C′} we can find similar to them triangles, such that the second is inscribed
in the first in a prescribed correspondence of vertices of the first viewing sides of the
second.

Regarding the angles, under which these vertices view the corresponding sides, they
can be equal to those of the circumscribing triangle or equal to their supplements. If we
insist in having the proper angles of ABC opposite to the prescribed sides of A′B′C′

and not their complements, then the vertices of ABC must be restricted into certain
arcs, which we call “arcs of restriction”, subtending equal central angles, equivalently,
subtending equal inscribed angles at E (see Figure 6). The relative location of the three
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Figure 6. Restrictions of vertices of ABC on certain arcs (I)

arcs of restriction for the vertices of ABC vary in dependence of the angles of the two
triangles {ABC, A′B′C′} and the location of the point E of the three circles carrying the
vertices of ABC.

The existence of these arcs follows from a standard exercise ([6, p.44]), according
to which, given two triangles {ABC, A′B′C′} we can inscribe the second into the first,
so that the sides of the inscribed are parallel to those of the second (see Figure 7). For
this we start with an arbitrary segment A1C1 parallel to A′C′ with endpoints on the
sides {BA, BC} of the triangle and construct on it the similar to A′B′C′ triangle A1B1C1.
Then, define B′ = BB1 ∩ AC and project it parallel to the sides of {A1B1, C1B1} at points
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Figure 7. Inscribing △ A′B′C′ into △ ABC

{A′ ∈ BC , C′ ∈ BA}. Obviously selecting the appropriate orientation of {A′B′C′} we
can realize every combination of an angle of ABC viewing a given side of A′B′C′.

Having at least a point on each circle {α, β, γ}, we can pass to the maximal connected
arc on that circle, whose points see the corresponding side under the same angle and
from the three maximal arcs take the one with minimal in measure central angle. The
arcs on the other circles result by the vertical inscribed angles at appropriate vertices of
△ A′B′C′. For example in figure 6, taking the minimal arc (B1BB2) of circle β, the other
arcs result by the vertical angles at the vertices {A′, C′}.

The endpoints of these arcs can be found by varying a vertex, A say, of ABC and
taking the limiting positions of the other vertices, when a side of ABC tends to coincide
with a side of A′B′C′. Thus, these endpoints coincide either with vertices of the triangle
A′B′C′ or with intersections of the circles with the sides of A′B′C′ or with the second
intersection of a circle with a tangent at its intersection with one of the other circles. One
example of the last case is point C1 of figure 6, which is the second intersection of circle
γ with the tangent to α at B′. This results from the limiting position of ABC coinciding
with that of the triangle B′B1C1.

Figure 8 shows two other configurations with the corresponding arcs of restriction.
Some other characteristics of these arcs, proved by simple angle chasing arguments, are:
(i) each side-line of ABC divides the corresponding two arcs in proportional parts, and
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Figure 8. Restrictions of vertices of ABC on certain arcs (II)

(ii) point E, together with the endpoints of the arcs and the corresponding vertex of
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ABC define quadrangles, like {EB1BC′ , EA2AA1 , EB′CC1} of the first figure 8, which
are similar, their similarity center being point E.

We formulate these remarks in the form of a theorem.

Theorem 3.1. For two triangles of given similarity type, the vertices of a triangle ABC of
the first similarity type, circumscribing a triangle A′B′C′ of the second type, with {A, B, C}
viewing respectively the sides {B′C′, C′A′, A′B′}, vary on three circles {α, β, γ} intersecting
at a point E. The angles under which {A, B, C} view the sides {B′C′, C′A′, A′B′} are equal
to those of the triangle ABC or their supplements. The vertices of the triangles ABC which
view the corresponding sides under angles equal to those of the triangle ABC and not equal to
their supplements, lie on three similar w.r.t. E arcs of the circles {α, β, γ}, which are divided by
corresponding sides of △ ABC in proportional parts.

4. SEEBACH’S THEOREM

Seebach’s theorem ([3]), guarantees the existence of points D inside a triangle ABC,
whose Cevian triangle has a given similarity type (see Figure 1):

Theorem 4.1. Given two similarity types of triangles there is precisely one triangle A′B′C′ of
the second type inscribed in a triangle ABC of the first type as a Cevian triangle of a point D
with {A′ ∈ BC, B′ ∈ CA, C′ ∈ AB}.

In this section we give a proof based on the theorems of the two preceding sections. For
this, we locate the appropriate Cevian point D by reversing the problem and starting
with △ A′B′C′ , try to construct an “anticevian” triangle ABC of △ A′B′C′ w.r.t. D. In
fact, we saw that triangles {AtBtCt} similar to ABC circumscribing the triangle A′B′C′

and having a prescribed correspondence for {angles of ABC} ↔ {sides of A′B′C′}, have
their vertices respectively on three arcs of circles {α, β, γ} (see figure 9-(I)). However,
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Figure 9. Similar triangles {AtBtCt} circumscribing △ A′′B′′C′′

joining the corresponding vertices, the lines {At A′, BtB′, CtC′} do not pass through the
same point, but form instead a triangle τt = A′

tB
′
tC

′
t . Figure 9-(II) shows some of the

triangles {τt} corresponding to various positions of the triangle AtBtCt.
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It will be seen below, that varying this triangle, equivalently, varying one of its ver-
tices, At say on the corresponding arc of restriction (C′AtB′) (see Figure 10), the cor-
responding triangle τt degenerates to a point D precisely one time and defines the re-
quired point. For this, denote by τt = △A′

tB
′
tC

′
t the triangle formed by the intersections

of lines {A′At, B′Bt, C′Ct}. We show, that as At moves on the arc of restriction from
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Figure 10. Studying the cross product (A′′At; C1B1)

C′ to B′, the cross ratio ct = (A′At; C′
tB

′
t) varies continuously from 0 to +∞. In fact,

for At tending to C′, we see that B′
t tends also to C′, implying that ct → 0. For At

tending to B′, we see that C′
t tends also to B′, implying that ct → +∞. Hence, by con-

tinuity, there is a t = t0 for which c0 = 1. This translates to C′
t A′

C′
t At

= B′
t A′

B′
t At

, i.e. the points
{B′

t, C′
t} are identical and by theorem 2.2 also points {C′

t, A′
t} are identical. Consequently

τ0 = A′
tB

′
tC

′
t degenerates to a point D and A′B′C′ becomes the Cevian triangle of D

w.r.t. △ At0 Bt0 Ct0 as required.
Regarding the uniqueness of the point D, we use a known property of the anticevian

triangle ([9, proposition 4, p.147]), which, for convenience of reference, I formulate as a
theorem.

Theorem 4.2. Given the triangle A′B′C′ and the point D, the harmonic conjugate line of D
w.r.t. side-lines {A′B′, A′C′} coincides with the side-line through A′ of the anticevian triangle
ABC of A′B′C′ w.r.t. D.

Having that, we consider the relative positions of the lines {BtCt, αt}, latter being the
harmonic conjugate of At w.r.t. {A′B′, A′C′} (see Figure 10). As At moves clockwise on
the arc of restriction from C′ to B′, point Bt moves also clockwise on the corresponding
arc of restriction of Bt from B2 to B1 and the second intersection point Xt of αt with
β moves counterclockwise on β from C′ to B2. Triangle AtBtCt becomes anticevian of
A′B′C′ precisely when αt ≡ BtCt, equivalently, when Xt ≡ Bt. This, because of the op-
posite monotonicity of the variations of {Xt, Bt} on the arc (B1B2,) can happen there only
once. It follows that there is a unique position on the arc (B1B2) for which Xt ≡ Bt and
consequently the point D for which △ AtBtCt becomes anticevian w.r.t. △ A′′B′′C′′ is
unique.
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5. A MORE GENERAL PROOF OF EXISTENCE

Next proof of the existence part of Seebach’s theorem relies on theorem 4.2 and reveals
a connection to the problem at hand of a structure from the realm of projective conics.
Next lemma formulates a key property for this approach.
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Figure 11. Harmonic perspectivity transformation and the conic λκ

Lemma 5.1. Let κ be a circle through the vertices {A, B} of the triangle ABC. For each
point X ∈ κ consider the harmonic conjugate lines {AY, BY} of X w.r.t. the pairs of side-lines
(AB, AC) and (BA, BC) intersecting at Y. The correspondence Y = fC(X) is a “harmonic
perspectivity” with axis the line AB and center C, and point Y lies on the image λk via f of
the circle κ.

Proof. Recall that the “harmonic perspectivity” or “harmonic homology” ([10, p.55]) with
axis AB and center C is the projectivity mapping a point of the plane X to a point
Y ∈ XC, having cross ratio (XY; CC′) = −1, where C′ = AB ∩ CX. The proof of the
lemma follows directly from theorem 4.2, since X is the vertex of the anticevian triangle
of ABC w.r.t. Y. □

Remark 5.1. A triangle ABC defines three harmonic perspectivities { fA, fB, fC} with corre-
sponding centers the vertices of the triangle and axes the opposite to them side-lines. It is easy to
see ([11]) that the three perspectivities, together with the identity transformation e of the plane,
build a group of four elements satisfying

f 2
A = e ⇔ f−1

A = fA and fA ◦ fB = fB ◦ fA = fC,

and the analogous relations for cyclic permutations of {A, B, C}.

Returning to the existence part of Seebach’s theorem, we consider the circles {α, β, γ}
carrying the vertices of the circumscribing triangles ABC of A′B′C′ (see Figure 12). Ap-
plying to each circle the corresponding harmonic perspectivity { fA, fB, fC} of the preced-
ing lemma, we obtain three conics {λα = fA(α) , λβ = fB(β) , λγ = fC(γ)}. If a certain
point on a circle, A say on α, is a vertex of an anticevian triangle of A′B′C′, w.r.t. some
point D, then, by theorem 4.2 and lemma 5.1, point D will be on the conic λα.

The existence of D results from the fact that two of the conics, {λα, λγ} say, inter-
secting at a vertex (B′) intersect also at least at one more point. For, suppose that they
had no other intersection point and were tangent there, having a common tangent line t
trhough B′. This would imply that the circles {α, γ} have also a common tangent at B′

and since all three circles are supposed to pass through the same point E, this would be
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Figure 12. Construction of the point D using three conics

coincident with B′, which, by assumption, is not allowed. Thus, there is a point D com-
mon to {λα, λγ} different from the vertex B′. This, using the preceding remark, implies
that the third conic λβ passes also through D. In fact,

D = fA(A) = fC(C) ⇒
C = fC( fA(A)) = fB(A) ⇒ A = fB(C) .

By the definition of fB this implies that {A, C} and B′ are collinear and

D = AA′ ∩ CC′ ⇒
fB(D) = ( fB(A) fB(A′)) ∩ ( fB(C) fB(C′))

fB(D) = CA′ ∩ AC′ .

Since point B′ ∈ AC, this implies that fB(D) = CA′ ∩ AC′ is a point of the circle β,
hence D = fB(CA′ ∩ AC′) lies also on the conic λβ.

Remark 5.2. Since the conics {α, β, γ} intersect pairwise at a point, the three conics cannot share
more than three common points. This conforms to the result by Hvala who gives a generalization
of Seebach’s theorem ([4]), its paper including the history of the subject and further references
to it. Seebach’s theorem guarantees one common point D. Hence they can exist at most two
additional points {D′, D′′} whose anticevian triangles w.r.t. A′B′C′ are similar to ABC and
circumscribe A′B′C′. Necessarily then, the two other triangles must have at least one of their
vertices on the complement of the arc of restriction on the corresponding circle. Hence they are
“circumscribing” A′B′C′ in a wider sense, since that vertex will view the corresponding side
of A′B′C′ under the supplement of the respective angle of the triangle ABC and not under the
angle itself.
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Figure 13 shows a case of an equilateral A′B′C′ circumscribed by three similar triangles
{A1B1C1, A2B2C2, A3B3C3}. The first one A1B1C1 is cevian w.r.t. D and circumscribes
the equilateral in the strict sense. The other two are cevian correspondingly w.r.t. the points
{D′, D′′} and circumscribe the equilateral in the wider sense, having, each, two vertices viewing
the sides of the equilateral by a supplemental angle of the triangle A1B1C1.
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Figure 13. Three similar triangles circumscribing an equilateral

6. TWO CONICS AND A LINE

The two preceding sections lead to two different approaches to the problem of construc-
tion of an equilateral A′B′C′ inscribed as a Cevian triangle inside a given triangle ABC.
The intersection of the Cevians of such a triangle, to which this construction amounts, is
the “triangle center” D = X(370) of ABC in Kimberling’s list [1].

In this section we examine a configuration, different from the preceding two, leading
to a method of construction of this point, which is completed in the next section. The
present configuration is based on Maclaurin’s theorem ([12, p.77], [13, p.247]). This con-
siders four lines {α, β, γ, δ} in general position, their six intersection points and two arbi-
trary points {A ∈ α, C ∈ γ}. The theorem guarantees, that a triangle XYI, whose side-
lines pass through the fixed points {O = α ∩ γ, A, C} with {A ∈ IX, C ∈ IY, O ∈ XY}
and two of its vertices {X, Y} move on the fixed lines {X ∈ δ, Y ∈ β}, have their third
vertex I describing a conic λ passing through points {A, C}. Further, the conic passes
also through the intersection points {B = β ∩ δ, D = γ ∩ δ, E = α ∩ β} of the quadruple
of fixed lines.

In figure 14 illustrating this configuration, appears a second conic µ enveloping the
lines UV created by the intersections {U = OC ∩ AX , V = OA ∩ CY}. Its existence is
guaranteed through the Chasles-Steiner theorem ([10, p.77]), by which two points {U, V}
varying on two lines {γ, α} and corresponding by a homographic relation V = f (U) de-
fine lines UV enveloping a conic. The homography relating the two points is the compo-
sition f = r ◦ q ◦ p of perspectivities between lines γ ∋ U

p7→ X ∈ δ with lines through
A, δ ∋ X

q7→ Y ∈ β with lines through O, and β ∋ Y r7→ V ∈ α with lines through C.
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Figure 14. Maclaurin’s theorem for the variable triangle

Line ε, appearing in figure 14 and containing the intersections J = XY ∩ UV, results
from the following lemma.

Lemma 6.1. With the notation and conventions of this section, the lines {XY, UV} intersect at
a point J describing a line as X varies on line δ .
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Figure 15. A reduction by a projectivity of Maclaurin’s configuration

Proof. Since all the ingredients of the configuration at hand are invariant under projective
transformations, we simplify our reasoning by transforming the configuration of figure
14 to a simpler one. For this we consider the projective transformation sending BDE
to an isosceles right triangle and also sending point O to infinity in the direction of
the bisector of the angle D̂BE (see Figure 15). Then, lines {α = AO , γ = CO} become
parallel and also the line XY passing through O becomes parallel to these two lines for
any X ∈ δ = BD and the corresponding Y ∈ β = BE.
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Consider now the line ξ = BK through B orthogonal to the direction of these paral-
lels. Points J = XY ∩ UV vary on line ε which is the reflection on ξ of the line ζ = AC.
To see this it suffices to verify that XZ = JY, where Z = XY ∩ ζ. In fact, from their def-
inition triangles {XAZ , UAC} are similar and also triangles {JYV , UCV} are similar
and the required equality XZ = JY results immediately. □

7. THE POINT X(370)

Given the triangle ABC, We start with an angle B̂′AC′ of measure π/3 revolving about
the vertex A and intersecting the line BC at {B′, C′} (see Figure 16). On the sides
{AB′, AC′} we construct equilaterals {AB′B′′, AC′C′′} and consider the intersections of
the variable lines {C1 = AB ∩ CB′′ , B1 = AC ∩ BC′′}. From these points we draw par-
allels respectively to {B′B′′, C′C′′}, intersect at a point A1 with the following properties.

A

B CB' C'

B''
C''

C
1

I

B
1

A''

D

E

A
1

F

δβ γα μ

B
0

C
0

F'

M

ζ

Figure 16. Searching for a point whose cevian is equilateral

Theorem 7.1. With the notation and conventions of this and the preceding section, the following
are valid properties:

(1) The intersection A′′ = B′B′′ ∩ C′C′′ moves on the parallel ζ to BC containing the
reflection of A in BC.

(2) Line B1C1 is parallel to line B′′C′′.
(3) The triangle A1B1C1 is equilateral and its vertex A1 lies on BC.
(4) The conic µ carrying the intersection points {I = CB′′ ∩ BC′′} passes through the re-

flected point F of the vertex A w.r.t. BC and also through the symmetric F′ of A w.r.t
to the middle M of BC.

(5) The conic µ passes also through the vertices {B, C} and the intersection points {E, D}
of the sides {AB, AC} with the sides of the equilateral B0FC0 having a vertex at F and
opposite side contained in line BC.

(6) One axis of the conic µ is parallel to BC.
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Proof. Nr-1. We notice first, that the equilateral triangle AC′C′′ varies having the vertex
A fixed and the vertex C′ moving on line BC. Hence, by the well known property of
similar triangles ([6, p.49]) varying that way, the third vertex varies on a line δ = FD
intersecting line BC at 60◦ degrees. The same happens with vertex B′′, seen to vary
on a line β = EF intersecting BC also at 60◦ degrees. The triangle A′′B′′C′′ created
by the extensions of {B′′B′, C′′C′} is equilateral, its vertex A′′ defines the parallelogram
AB′A′′C′′ and varies on a line through F, parallel to BC, point F being the reflection
of A on BC.

Nr-2. The resulting configuration is that of lemma 6.1, guaranteeing that the intersec-
tion E1 = BC′′ ∩ CB′′ varies on a conic µ passing through the five points {E, B, F, C, D}
and the intersection point J of lines {B′′C′′, C1B1} varies on a line ε. When A′′ takes the
position F, we see easily that B′′C′′ becomes parallel to BC and C1B1 is parallel to BC.
Hence line ε is either the line at infinity or is a parallel to BC. The parallelism of lines
{B′′C′′, B1C1} is equivalent with the coincidence of ε with the line at infinity. This fol-
lows by one more point at infinity contained in ε and obtained through an appropriate
position of triangle B̂′A′C′.

This position for B′AC′ is the one for which B′ = C0 and C′ is the point at infin-
ity of BC, i.e. AC′C′′ becomes an infinite triangle with B′′C′′ parallel to δ. Then, it
is easily seen that C1 = E1 = B , B′′ = B0 and B1 = C′′B ∩ γ defines B1C1 parallel to
B′′C′′. This means that ε passes through the point at infinity of AB0, hence, having two
different points at infinity coincides with the line at infinity.

Nr-3. This follows from the preceding nrs. In fact, the triangle A1B1C1 is by definition
equilateral and has its sides parallel to corresponding sides of the equilateral B′AB′′. Be-
sides, the two lines {AB1 , B′′C1} joining corresponding vertices pass through the same
point C. Hence the B′A1 joining the third couple of corresponding vertices will pass
through C too.

Nr-4. Follows by observing the position of I when triangle B′AC′ becomes isosceles
with apical angle of measure 120◦ degrees. Then all four points {A′′, B′′, C′′, I} coincide
with F. An analogous argument involving a special position of line B′′C shows that µ
passes through F′. This is the position of I when B′′C becomes parallel to AB.

Nr-5. Follows from the Maclaurin configuration of figure 14, of which the present
configuration is a special case.

Nr-6. This follows from the preceding nrs, since {BC, FF′} are parallel chords of the
conic µ. It is then easily seen, that they are both symmetric w.r.t. the bisector line of
the side BC, hence the directions of this bisector line and of BC are two orthogonal
conjugate lines w.r.t. the conic µ. □

The theorem implies, that point X(370), whose Cevian triangle is equilateral, is an
intersection point of µ and the other two analogous conics {µ′, µ′′} constructed w.r.t. to
the other sides of the triangle ABC (see Figure 17). The interesting fact is that we have,
for each of these conics, six easily constructible points, such as {B, C, D, E, F, F′} in the
case of µ, through which passes the conic.
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