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PROPERTIES OF ORTHOCENTROIDAL CIRCLES IN RELATION TO THE
COSYMMEDIANS TRIANGLES

TEMISTOCLE BÎRSAN

ABSTRACT. The purpose of this work is to highlight new properties of the orthocen-
troidal circle via the concept of cosymmedian triangles. Given a triangle ABC, by (1.1)
define the angles φA, φB, and φC. These angles, Proposition 2(1) and Proposition 3(2)
are very useful in the elementary approach of the proposed questions. Theorem 13 estab-
lishes the connection between the Fermat and Brocard axes of the given triangle and those
of the orthocentroidal triangle A1B1C1. Theorem 14 states that 2R · F+F− = GH · J+ J−.
The properties of sequences (AnBnCn)n≥0 and (A′

nB′
nC′

n)n≥0 are studied, where AnBnCn
and A′

nB′
nC′

n are cosymmedian triangles in the orthocentroidal circle of rank n.

In the center of our attention are the concepts of orthocentroidal circle and cosymmedian
triangles. There are many valuable results on these two concepts separately or in con-
nection with each other (see [3], [1], [5], [6], [9]). For a given triangle, ABC, there is only
one triangle so that they form a pair of cosymmedian triangles. This pair of triangles
induces in the orthocendroidal circle of the triangle ABC, in a way specified below, a new
pair of cosymmedian triangles. Repeating the process, a sequence of pairs of cosymme-
dian triangles associated with a given triangle is obtained. There is a close connection
between certain centers or central lines of a given triangle and the corresponding ones
in the induced triangles. The purpose of this work is to highlight new properties in this
framework. We will approach all the proposed issues in an elementary way.

1. NOTATIONS AND PRELIMINARIES

Consider a triangle ABC with the sidelenghts a, b, c and area ∆. Its circumcenter, ortho-
center, centroid, nine-point center, and symmedian point are denoted by O, H, G, N, K,
respectively. Let ha, ma denote the lengths of the altitude and median from the vertice
A of the triangle ABC; denote hb, mb and hc, mc analogously. The line OK is called the
Brocard axis. The line F+F− (F+- the first Fermat (isogonic) point, F−- the second Fermat
(isogonic) point) is called the Fermat axis. The triliniar polar of K with respect to ABC is
called the Lemoine axis. By J+, J− are denoted the isodynamic points; it is known that
J+, J− lie on the Brocard axis and are symmetric about the Lemoine axis. Brocard circle
and Fermat circle are the circles having the line segments OK and respectively F+F− as
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diameter. Details of these remarkable points, lines and circles can be found in [1], [4], [5],
[6], [7], [8], [9], [11].
Let A′, B′, C′ the traces of the symmedians AK, BK, CK on (ABC) , i.e. A′ = AK ∩
(ABC) , A′ ̸= A, and similarly for B′, C′ ((XYZ) denotes the circle determined by the
points X, Y, Z). Then, ABC and A′B′C′ are called cosymmedian triangles. For the conve-
nience of the reader, we recall some properties regarding symmedians and cosymmedian
triangles. Often, for the known results that are used in this section, alternative demon-
strations to those in the places cited are given.

Proposition 1. We have the formulas (Fig. 1):

(i) sa =
2bc

b2 + c2 ma (sa = AL - the symmedian from A);

(ii)
BL
CL

=
c2

b2 , BL =
ac2

b2 + c2 , CL =
ab2

b2 + c2 ;

(iii) AK =
2bc

a2 + b2 + c2 ma, KL =
2a2bc

(b2 + c2) (a2 + b2 + c2)
ma;

(iv) s′a =
bc
ma

, A′K =
3a2bc

2 (a2 + b2 + c2)ma
(s′a = AA′ - the extension of symmedian sa to

circumcircle), and analogue formulas.
For these and many other formulae connected with the symmedians see [11].

Let φA, φB, φC be the angles between the altitudes and medians from the vertices A, B, C
of the triangle ABC, i.e.

φA = ĥa, ma, φB = ĥb, mb, φC = ĥc, mc. (1.1)

They will play an important role in the following. Because

DD′ =
|b2 − c2|

2a
, EE′ =

|c2 − a2|
2b

, FF′ =
|a2 − b2|

2c
, (1.2)

by applying the sine and cosine laws to triangle ADD′ we immediately deduce the for-
mulas:

sin φA =
|b2 − c2|

2ama
, cos φA =

ha

ma
=

2∆
ama

, (1.3)

and then their analogues for φB and φC.

The cosymmedian triangles ABC and A′B′C′ have the same orientation. The order of
the vertices on their circumscribed circle is A − C′ − B − A′ − C − B′. If a > b > c, then
ma < mb < mc and, according to the formulae (1.6) below, we have a′ < b′ < c′.
Further, we will consider that a > b > c without loss of generality.

Proposition 2. Let ABC and A′B′C′ be cosymmedians triangles. Then,
1) the corresponding angles are connected by the formulae:

A′ = A − φB − φC, B′ = B + φC − φA, C′ = C + φA + φB, (1.4)

A = A′ + φB + φC, B = B′ − φC + φA, C′ = C − φA + φB; (1.5)
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2) the sides of the one are proportional to the medians of the other ([11; p.62], [9; #6.20]); more
specifically, we have:

a′ =
3
4

abc
mambmc

· ma, a =
3
4

a′b′c′

ma′mb′mc′
· ma′ , (1.6)

and analogues formulae.
Proof. 1) We show only the first equation in (1.4). With the remaining ones proceed
similarly. We have A′ = B̂′A′C′ = B̂′A′A + ÂA′C′ = B̂′BA + ÂCC′. Since BB′ and
CC′ are symmedians of the triangle ABC, it follows that B̂′BA = ĜBC and ÂCC′ =

ĜCB. Then, A′ = ĜBC + ĜCB =
[

B −
(π

2
− A

)
− φB

]
+

[
C −

(π

2
− A

)
− φC

]
= A −

φB − φC. Obviously, the formulas (1.5) are obtained from (1.4) by solving with respect to
A, B, C.

Figure 1

2) We refer only to the sides a of the triangle ABC (for a′ it is enough to change the roles
of the two triangles). By applying the cosine formula to the triangles KBC and KB′C′, we
obtain: (

a′
)2

= B′K2 + C′K2 − 2B′K · C′K · BK2 + CK2 − a2

2BK · CK
.

According to Proposition 1, BK =
2ca

a2 + b2 + c2 mb, CK =
2ab

a2 + b2 + c2 mc,

B′K =
3ab2c

2 (a2 + b2 + c2)mb
, C′K =

3abc2

2 (a2 + b2 + c2)mc
. By substituting these expressions

and making routine calculations, we finally get the first formula from (1.6).
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Second proof. By the sine formula, a′ = B′C′ = 2R sin A′ (R - the radius of the circumcircle
(ABC)). So, taking into account (1.4),

a′=2R sin(A − φB − φC) = 2R
[

2∆
bc

cos (φB + φC)−
b2 + c2 − a2

2bc
sin (φB + φC)

]
. Now,

by using (1.3), we get the expressions of sin (φB + φC) and cos (φB + φC) quite easily. In

the end, a′ = 2R · 3∆
2mbmc

=
3
4

abc
mambmc

· ma.

Proposition 3. Let ABC and A′B′C′ be cosymmedians triangles. Then,
1) they have the same symmedians ([11; pp.61], [1; p.265, #617]),
2) the angles between the altitudes and the medians in the corresponding vertices are equal, i.e.
φA = φA′ , φB = φB′ , φC = φC′ .
Proof. 1) Let’s show that the symmedian AA′ is at the same time the symmedian of the
triangle A′B′C′. If L′ = AA′ ∩ B′C′ (Fig. 1), then

B′L′

L′C′ =
c′ sin ÂA′B′

b′ sin ÂA′C′
=

c′

b′
· sin ÂBB′

sin ÂCC′

=
c′

b′
· sin ĜBC

sin ĜCB
=

c′

b′
· GC

GB
=

c′

b′
· mc

mb
.

But, according to Proposition 2, mb, mc are proportional to b′, c′, respectively. Hence,
B′L′

L′C′ =

(
c′

b′

)2

and thus AA′ is the symmedian from A′ in the triangle A′B′C′.

2) AA′ being symmedian in the triangle A′B′C′, we have: φA′ = A′ − (
π

2
− C′)− ÂA′C′.

Therefore, φA′ =
π

2
− B′ − ÂA′C′ =

π

2
− B′ − ÂCC′. By (1.4), it follws that φA′ =

π

2
− (B + φC − φA) − ÂCC′. Further, CC′ being symmedian in the triangle ABC, we

have: ÂCC′ = ĜCB = C − φC −
(π

2
− A

)
. Consequently, φA′ =

π

2
− (B + φC − φA)−[

C − φC −
(π

2
− A

)]
= φA, hence φA′ = φA.

Remark. It is clear that the cosymmedian triangles can be defined as two triangles that
had the same circumcircle and symmedians. But, two triangles that have the same cir-
cumcircle and symmedian point may not be cosymmedian (as is the case of two equilat-
eral triangles inscribed in the same circle).

Other important properties are given by
Proposition 4. Two cosymmedian triangles have:
1) the same Apollonius circles, Lemoine axis and isodynamic points ([1; p.265, #617]);
2) the same Brocard axis, Brocard circle, Brocard points and Brocard angle ([6; p.283, #475], [9;
#6.21]).

The orthocentroidal circle of triangle ABC is the circle on HG as diameter. Denote D, E, F
the feets of the altitudes and D′, E′, F′ the midpoints of the sides BC, CA, AB, respec-
tively. Obviously, the orthocentroidal circle contains the orthogonal projections A1, B1, C1
of G on the altitudes AD, BE, CF, and the orthogonal projections A′

1, B′
1, C′

1 of H on the
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medians AD′, BE′, CF′, respectively. Therefore, both triangles A1B1C1 and A′
1B′

1C′
1 are

inscribed in the orthocentroidal circle (Fig. 2). A1B1C1 is called the orthocetroidal triangle.
We refer to these triangles as the pair of triangles induced by ABC in its orthocentroidal
circle.

Figure 2

Proposition 5. The following statements are true:
1) the triangles in the pairs (ABC, A1B1C1) and (A′B′C′, A′

1B′
1C′

1) are inversely similar;
2) A1B1C1 and A′

1B′
1C′

1 are cosymmedian triangles;
3) K is the symmedian point for triangles ABC, A′B′C′, A1B1C1, A′

1B′
1C′

1;
4) the triangles ABC, A′B′C′, A1B1C1, A′

1B′
1C′

1 have in the corresponding vertices equal angles
between their altitudes and medians.
Proof. 1) The fact that ABC ∼ A1B1C1 is notorious and easy to prove. Indeed, because
GA1 ⊥ AD, it follows that GA1 ∥ CB; similarly, GB1 ∥ CA and GC1 ∥ BA. We deduce
that Â1GB1 = B̂CA = C, B̂1GC1 = ĈAB = A, Ĉ1GA1 = ÂBC = π − B. Then, A1 =

B̂1 A1C1 = B̂1GC1 = A. Similarly, B1 = B, C1 = C.

Next, we have: A′
1 = B̂′

1A′
1C′

1 = B̂′
1GC′

1 = π− B̂GC = ĜBC+ ĜCB =
[

B − φB −
(π

2
− A

)]
+[

C − φC −
(π

2
− A

)]
= A − φB − φC. But, by (1.4), A − φB − φC = A′, hence A′

1 = A′.

In the same way we find that B′
1 = B′ and C′

1 = C′. Thus, A′B′C′ ∼ A′
1B′

1C′
1.
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2) We have to show that A1A′
1, B1B′

1, C1C′
1 are the symmedians of the triangle A1B1C1. We

only show for A1A′
1. So, let’s show that A1A′

1 and the median mA1 are equally inclined on

the sides A1B1 and A1C1, i.e. Â′
1A1B1 = ̂mA1 , A1C1. On the one hand, because A1B1C1 ∼

ABC, we have:

̂mA1 , A1C1 = m̂A, AC = A −
(π

2
− B

)
− φA =

π

2
− C − φA.

On the other hand, in the orthocentroidal circle we have:

Â′
1A1B1 = Â′

1GB1 = Â′
1GA1 − Â1GB1

= ÂGA1 − Â1C1B1 =
(π

2
− φA

)
− C =

π

2
− C − φA,

what concludes the proof.
3) We need the following result:

Lemma ([9; p.59]). If three lines, concurrent at O, are cut by a transversal at P, Q, R, and by
another at P′, Q′, R′ (Fig. 3a), then

PQ
PR

:
P′Q′

P′R′ =
OQ
OR

:
OQ′

OR′ .

Denote K the common symmedian point of the triangles ABC and A′B′C′, and K1 that of
the triangles A1B1C1 and A′

1B′
1C′

1 (their existence is guaranteed by of Proposition 3(1)).
Let AK1 meets the side BC at X (Fig. 3b). By Lemma,

K1A′
1

K1A1
:

XD′

XD
=

AA′
1

AA1
:

AD′

AD
.

Figure 3

For ABC ∼ A1B1C1 and Proposition 1, we obtain:

K1A′
1

K1A1
=

KA′

KA
=

s′a
AK

− 1 =
a2 + b2 + c2

2m2
a

− 1 =
3a2

4m2
a

.

From the equation AH · AA1 = AG · AA′
1 (the power of A with respect to the orthocen-

troidal circle) it follows that
AA′

1
AA1

=
AH
AG

=
3R cos A

ma
.
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Substituting and calculating, we obtain:

XD′

XD
=

3a2

4m2
a
· ma

3R cos A
· ma

ha
=

a2

b2 + c2 − a2 ,

from where we get:

XD′ =
a2

b2 + c2 · DD′ =
a2

b2 + c2 · b2 − c2

2a
=

a
(
b2 − c2)

2 (b2 + c2)
.

Then
BX
XC

=
BD′ − XD′

XD′ + D′C
=

1 −
(
b2 − c2) /

(
b2 + c2)

1 + (b2 − c2) / (b2 + c2)
=

c2

b2 ,

i.e. AX is the symmedian through vertex A of the triangle ABC. Therefore, K1 ∈ AX.
With the same arguments it is shown that K1 is also on the other simedianes of the trian-
gle ABC. We conclude that K1 coincides with K.
4) It follows directly from 1) above and from Proposition 3(2).

Remark. In [3; pp.215-218], as an application of the theory of figures directly similar,
many properties of the point K are indicated in connection with the orthocentroidal cir-
cle. The assertion ABC ∼ A1B1C1 from 1) and property 4) are precisely Corollaire 3 and
Corollaire 4, p.217.
Remark. We conclude this section by emphasizing the usefulness of angles φA, φB, φC in
the elementary approach to the proposed theme.

2. PROPERTIES OF INDUCED TRIANGLES

We intend to establish a connection between the Lemoine, Fermat and Brocard axes of
the given triangle and those of the induced triangles A1B1C1 and A′

1B′
1C′

1.

Proposition 6. 1) (AA1A′
1) is the Apollonius circle of the triangle A1B1C1 with respect to the

side B1C1.
2) (AA1A′

1) is the Apollonius circle of the triangle A′
1B′

1C′
1 with respect to the side B′

1C′
1.

3) U = AB ∩ A1C1 and V = AC ∩ A1B1 lie on (AA1A′
1) (Fig. 4).

The circles (BB1B′
1), (CC1C′

1) have similar properties.
Proof. 1) We have to show that

AB1

AC1
=

A′
1B1

A′
1C1

=
A1B1

A1C1
. (2.1)

Applying Stewart’s theorem to the triangle ABE and the point B1 ∈ BE, we obtain:

AB2
1 =

1
BE

(
AB2 · B1E + AE2 · B1B − BE · B1B · B1E

)
=

1
hb

[
c2 · hb

3
+

(
c2 − h2

b
)
· 2hb

3
− hb ·

2hb

3
· hb

3

]
= c2 − 8

9
h2

b = c2
(

1 − 8
9

sin2 A
)

.

Similarly, considering the triangle ACF and the point C1, we get: AC2
1 = b2

(
1 − 8

9
sin2 A

)
.
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Figure 4

Then, it follow that
AB1

AC1
=

c
b

. Since the triangles ABC and A1B1C1 are similar,
c
b
=

A1B1

A1C1

and so
AB1

AC1
=

A1B1

A1C1
.

On the other hand, in the orthocentroidal circle we have:

A′
1B1

A′
1C1

=
sin Â′

1A1B1

sin Â′
1A1C1

=
sin X̂A1B1

sin X̂A1C1

,

where X = B1C1 ∩ A1A′
1. But, sin X̂A1B1 = XB1 ·

sin Â1XB1

A1B1
and sin X̂A1C1 = XC1 ·

sin Â1XC1

A1C1
. Then,

A′
1B1

A′
1C1

=
XB1

XC1
· A1C1

A1B1
=

c2

b2 · b
c
=

c
b
=

A1B1

A1C1

(was used that A1X is symmedian in the triangle A1B1C1, according to Proposition 3).
Hence (7) is established and therefore (AA1A′

1) is the Apollonius circle of the triangle
A1B1C1.
2) It follows from the fact that A1B1C1 and A′

1B′
1C′

1 are cosymmedian triangles.
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3) Let’s show that the quadrilateral AUA1A′
1 and AUA1V are inscribed in the circle

(AA1 A′
1) Indeed, ÛAA′

1 = B̂AD′ = B̂AD + D̂AD′ =
(π

2
− B

)
+ φA and ÛA1A′

1 =

π − Â′
1 A1C1 = Â1A′

1C1 + Â1C1A′
1 = B̂1 + Â1GA′

1 = B +
(π

2
− φA

)
; hence ÛAA′

1 +

ÛA1 A′
1 = π, i.e. U ∈ (AA1A′

1). On the other hand, we have: ÛAV = A and ÛA1V =

π − B̂1 A1C1 = π − A; hence ÛAV + ÛA1V = π, i.e. V ∈ (AA1A′
1).

The next result can be demonstrated with arguments similar to those of Proposition 6(1).
We omit the details.
Proposition 7. The circles (AA′

1A′), (BB′
1B′) , (CC′

1C′) are the Apollonius circles of the trian-
gle ABC with respect to the sides BC, CA, AB respectively (Fig. 4).

Remark. Proposition 6 can also be demonstrated in another way. It is first shown that
the quadrilaterals A1B1A′

1C1, B1C1B′
1A1, C1A1C′

1B1 are harmonic [5, p.90], and then use
is made of their known properties [15]. Same for Proposition 7.

The next result requires some preparations. Let A+ (resp. A−) be the point such that the
triangle CBA+ is equilateral with the same (resp. opposite) orientation as ABC; similarly
for B+, B− and C+, C−. Then, F+ = AA+ ∩ BB+ ∩ CC+ and F+ = AA− ∩ BB− ∩ CC−.
It is known that the segments AA+, BB+, CC+ (resp. AA−, BB−, CC−) have the same
lengths l+ (resp. l−) and that

l+ =

[
1
2

(
a2 + b2 + c2 + 4

√
3∆

)] 1
2

and l− =

[
1
2

(
a2 + b2 + c2 − 4

√
3∆

)] 1
2

(2.2)

(for ex. [6, p.220], [2]). Denote α+ (resp. α−) the measure of the counterclockwise ori-
ented angle BAA+ (resp. BAA−) (Fig. 5); β+, β− and γ+, γ− are similarly defined.

Lemma 8. We have:

sin α+ =
4∆ +

√
3
(
c2 + a2 − b2)

4cl+
, cos α+ =

b2 + 3c2 − a2 + 4
√

3∆
4cl+

; (2.3)

sin α− =
4∆ −

√
3
(
c2 + a2 − b2)

4cl−
, cos α− =

b2 + 3c2 − a2 − 4
√

3∆
4cl−

(2.4)

and similar formulas for β+, β− and γ+, γ−.
Proof. In both cases, see Fig. 5, it is enough to apply the sine and cosine formulas to the
triangles ABA+ and ABA−. For example,

sin α+ =
BA+ · sin

(
B + π

3

)
AA+

=
a
(

sin B +
√

3 cos B
)

2l+
=

4∆ +
√

3
(
c2 + a2 − b2)

4cl+

(I used the formulas sin B =
2∆
ca

and cos B =
c2 + a2 − b2

2ca
).

Remark. If in the formulas (2.3) we put −
√

3 instead of
√

3, we get the formulas (2.4),
and vice-versa. In the same way we can pass from l+ to l− in (2.2). Thus, the amount of
calculations can be halved.
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Figure 5

Lemma 9. The distances of F+ and F− to the vertex A of the triangle ABC are given by

F+A =
1

2
√

3

4∆ +
√

3
(
b2 + c2 − a2)
l+

,

F−A =
1

2
√

3

4∆ −
√

3
(
b2 + c2 − a2)
l−

. (2.5)

Proof. Consider the triangle F+AB. Note that ÂF+B =
2π

3.
and ÂBF+ = B − β+. By the

sine formula,

F+A =
2c√

3
sin

(
B − β+

)
=

2c√
3

(
2∆
ca

cos β+ − c2 + a2 − b2

2ca
sin β+

)
.

Using Lemma 8 for sin β+, cos β+ and the formula 16∆2 = 2b2c2 + 2c2a2 + 2a2b2 − a4 −
b4 − c4 (Heron), we obtain by a simple calculation the first formula (2.5). For the second
we can do the same in the triangle F−AB.

Remark. With the aid of the formulas (2.3) and (2.4) we can express through the sides of
the given triangle various segments associated with the points F+ and F− as is usually
done in the case of angle-bisectors, symmedians, etc. For example, if P = BC ∩ AA+, we

10
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have:

AP =
4∆l+

4∆ +
√

3a2
,

BP =
4∆ +

√
3
(
c2 + a2 − b2)

2
(

4∆ +
√

3a2
) a, CP =

4∆ +
√

3
(
a2 + b2 − c2)

2
(

4∆ +
√

3a2
) a, etc.

Previous preparations make possible an elementary demonstration of the next result.
Theorem 10. The Fermat points of the triangle ABC are at the same time the isodynamic points
of the orthocentroidal triangle A1B1C1, i.e. J+1 = F+ and J−1 = F−.
Proof. By definition, the isodynamic points of the triangle A1B1C1 are the two points
common to the Apollonius circles of this triangle. By Proposition 6, they are also the
common points of the circles (AA1A′

1), (BB1B′
1), (CC1C′

1) (Fig. 4). Therefore, we have
to show that the points F+ and F− lie on each of the circles (AA1A′

1), (BB1B′
1), (CC1C′

1) .
Obviously, it is enough to show that F+, F− ∈ (AA1A′

1). Moreover, we restrict ourselves
to F+ ∈ (AA1A′

1), for the remaining statement is established the same. We will do this
in an elementary way, but omitting routine calculations.
According to Ptolemy’s theorem, the points F+, A, A1, A′

1 are concyclical if the equality

F+A · A1A′
1 = AA′

1 · F+A1 + AA1 · F+A′
1 (2.6)

is true (Fig. 6).

Figure 6

We have that F+A is given by (2.5). Also, we have: AA1 =
2
3

ha (whereas GA1 ∥ CB),
hence

AA1 =
4∆
3a

. (2.7)

Next, AA′
1 = AH · cos φA = 2R cos A · 2∆

ama
, hence

AA′
1 =

b2 + c2 − a2

2ma
. (2.8)

11
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Denote ρ1 the radius of the orthocentroidal circle, so ρ1 = HG. Then, A1A′
1 = 2ρ1 sin Â1GA′

1 =

2ρ1 sin
(π

2
− φA

)
= 2ρ1 cos φA, and so

A1A′
1 = HG · 2∆

ama
. (2.9)

The expressions of F+A1 and F+A′
1 are still to be calculated. For this, we apply the cosine

formula in the triangles AA1F+ and AF+A′
1, respectively. We give some calculation

details only on the F+A1; the calculation for F+A′
1 follows the same steps and we omit

it. So, we start with(
F+A1

)2
=

(
F+A

)2
+ (AA1)

2 − 2F+A · AA1 cos
[
α+ −

(π

2
− B

)]
. (2.10)

But, by (2.3) and usual formulas, we obtain:

cos
[
α+ −

(π

2
− B

)]
= sin

(
B + α+

)
= sin B cos α+ + cos B sin α+

=
2∆
ca

· b2 + 3c2 − a2 + 4
√

3∆
4cl+

+
c2 + a2 − b2

2ca
·

4∆ +
√

3
(
c2 + a2 − b2)

4cl+

=
1

8ac2l+
[
16
√

3∆2 + 16c2∆ +
√

3
(
c2 + a2 − b2)2

]
=

4∆ +
√

3a2

2al+
,

so

sin
(

B + α+
)
=

4∆ +
√

3a2

2al+
. (2.11)

If we replace the terms in the second member of (2.10) by their expressions given by (2.5),
(2.7), (2.11), and effect the routine calculations, we find that(

F+A1
)2

=
1

9a2 (l+)2 · q or F+A1 =

√
q

3al+
, (2.12)

where

q = a6 + b6 + c6 + 3a2b2c2 − a4b2 − a2b4 − b4c2 − b2c4 − c4a2 − c2a4 (2.13)

(q > 0, Schur’s inequality [16]).
For F+A′

1 we get a similar formula:(
F+A′

1
)2

=
1

3 (2b2 + 2c2 − a2) (l+)2 · q =
1

12m2
a (l+)

2 · q

or

F+A′
1 =

√
q

2
√

3mal+
.

12
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Now, we are ready to check the equality (2.6). Indeed,

1
2
√

3

4∆ +
√

3
(
b2 + c2 − a2)
l+

· HG · 2∆
ama

=
b2 + c2 − a2

2ma
·
√

q
3al+

+
4∆
3a

·
√

q

2
√

3mal+

⇔
[
4∆ +

√
3
(
b2 + c2 − a2)] · HG · 2∆

=

√
q

3

[√
3
(
b2 + c2 − a2)+ 4∆

]
⇔ 6∆ · HG =

√
q,

and the last equality is true, for 36∆2 · HG2 = 36∆2 · 4
9
[
9R2 −

(
a2 + b2 + c2)] = 9a2b2c2 −

16∆2 (a2 + b2 + c2) = 9a2b2c2 − (2a2b2 + 2b2c2 + 2c2a2 − a6 − b6

−c6)
(
a2 + b2 + c2) = q. This concludes the proof.

Corollary 11. F+, F− lie on the Apollonius circles of the triangles A1B1C1 and A′
1B′

1C′
1, and

they are mutually inverse points in orthocentroidal circle.

Corollary 12. 1) The Fermat points of the triangle A1B1C1 are the isogonal conjugates of F+, F−

with respect to this triangle.
2) The isodynamic points of the triangle A′

1B′
1C′

1 are F+, F−, and its Fermat points are the isog-
onal conjugates of F+, F− with respect to this triangle.
Proof. It is taken into account that A1B1C1 and A′

1B′
1C′

1 are cosymmedian triangles and
that the Fermat and isodynamic points of a triangle are isogonal conjugate.

Theorem 13. The orthocentroidal triangle has the properties (Fig. 7):
1) the Brocard axis of the triangle A1B1C1 is the Fermat axis of the triangle ABC;
2) the Fermat axis of the triangle A1B1C1 is the Brocard axis of the triangle ABC.
Proof. 1) By Theorem 10.
2) The triangles ABC and A1B1C1 are inversely similar and have the same symmedian
point. Let M1 be centre of the orthocentroidal circle of the triangle A1B1C1. The corre-
spondence of points : K −→ K, O −→ M, M −→ M1 holds. Hence, ÔKM = M̂KM1.
Because these angles have a common side, namely KM, and the opposite orientation, it
results that the sides KO and KM1 coincide, i.e. the assertion is true.

Remark. We consider the coaxal system consisting of all the circles that pass through the
points F+ and F−(for more details on the coaxal systems, see [1], [6], and [12]). Obvi-
ously, its radical axis is the Fermat axis KM of the triangle ABC, and the line of centers is
the perpendicular bisector of the line segments F+F−. It is known that the Fermat circle,
Lester circle (F+F−ON), (F+F−G) and (F+F−H) are members of this system.
By Corollary 11, the Apollonius circles of the triangles A1B1C1 and A′

1B′
1C′

1 also belong
to this coaxal system. So their centers are on the radical axis of the system. On the
other hand, these centers are on the (common) Lemoine axis of the triangles A1B1C1 and
A′

1B′
1C′

1. Therefore, the line of centers of the coaxal system is the Lemoine axis of these
triangles (Fig. 7 and 8).
The orthocentroidal circle belongs to the conjugate coaxal system; indeed, because it is
orthogonal to the Apollonius circles of the triangles A1B1C1 and A′

1B′
1C′

1 it follows that

13
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Figure 7

it is orthogonal to all circles in the system (in particular, to Fermat and Lester circles).
The radical axis of this conjugate coaxal system is the Lemoine axis of the mentioned
triangles. Clearly, F+ and F− are the limiting points of the conjugate system. Also, the
(common) Brocard circle of the triangles A1B1C1 and A′

1B′
1C′

1 (i.e. the circle having the
line segment KM as diameter), belongs to him; in particular, it is orthogonal to Fermat
and Lester circles. We can show as a simple exercise that K is the midpoint of the com-
mon chord of orthocentroidal circle and Fermat circle of the triangle ABC.

Based on Theorem 10 we can establish a simple and interesting connection between the
points H, G (on the Euler line), F+, F− (on the Fermat axis), and J+, J− (on the Brocard
axis):
Theorem 14. The following formula is true:

2R · F+F− = GH · J+ J−. (2.14)

Proof. Indeed, by similarity of the triangles ABC and A1B1C1, we obtain:

J+ J−

J+1 J−1
=

2R
GH

or
J+ J−

F+F− =
2R
GH

,

from where it follows (2.14).

If the Euler line is represented by the points O and H, then (2.14) it is written in the form

3R · F+F− = OH · J+ J−, (2.15)

hence
3R · F+F− =

√
9R2 − (a2 + b2 + c2) · J+ J−. (2.16)

14
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Denote e, e1 the Euler lines, f , f1 the Fermat axes, and b, b1 the Brocard axes of the tri-
angles ABC and, respectively, A1B1C1. By Theorem 13, f coincides with b1 and b with
f1.
Proposition 15. We have (Fig. 7):
1) ê, e1 = ê, b + b̂, e1 = ê, f1 + f̂1, e1;
2) f̂ , f1 = b̂1, b = ê, f − ê, b = b̂, e1 − ê1, f .
Proof. 1) ê, e1 is an exterior angle of the triangle OMM1.
2) Apply the exterior angle theorem to the triangles OKM and KMM1.

Theorem 16. The Fermat and isodynamic points of the triangles ABC and A1B1C1 have the
properties (Fig. 7):
1) F+ J+ ∥ F− J− ∥ e ([7,Table 5.3, p.139]), F+

1 J+1 ∥ F−
1 J−1 ∥ e1;

2) F+F+
1 ∥ F−F−

1 ∥ e1.
Proof. 1) We demonstrate only the first statement. By Theorem 10, J+1 ≡ F+. From
ABC ∼ A1B1C1 and the correspondence K −→ K, O −→ M, J+ −→ J+1 it results that
KO
KJ+

=
KM
KF+

. Then, J+F+ ∥ OM, i.e. F+ J+ ∥ e. It is shown that F− J− ∥ e reasoning the
same.
2) It follows from 1) and Theorem 10.

Let’s note that we will obtain similar results if we leave with the triangles A′B′C′ and
A′

1B′
1C′

1 instead of ABC and A1B1C1. Denote H′, G′, N′ the orthocenter, centroid, nine-
point center of the triangle A′B′C′, and M, M′ the midpoints of the segments HG and
H′G′, respectively. The cosymmedians triangles ABC and A′B′C′ have the same circum-
center O and symmedian point K, but their orthocentroidal circles (i.e. the circumcircles
of the triangles A1B1C1 and A′

1B′
1C′

1) having the diameters HG and H′G′ will not coin-
cide. Taking into account the positions occupied by points H, G, N, M and H′, G′, N′, M′

on the Euler lines OH and OH′ of the triangles ABC and A′B′C′, it is immediately ob-
tained that HH′ ∥ GG′ ∥ NN′ ∥ MM′. Fermat axes of the two triangles, f and f ′, do not
coincide, but F+F′+ ∥ F−F′− ∥ HH′. (Fig. 8).

3. SEQUENCES OF TRIANGLES WITH THE SAME AXES

In this section, the given triangle ABC is denoted A0B0C0, Then, we define by induction
two sequences of triangle (AnBnCn)n≥0 and (A′

nB′
nC′

n)n≥0 . Recall that A1B1C1 was de-
fined as the triangle whose vertices are the orthogonal projections of the centroid G ≡ G0
of the triangle A0B0C0 on its corresponding altitudes. By doing so, we successively ob-
tain the triangles A2B2C2, A3B3C3, etc. For n ≥ 0, let Cn be the circumcircle of the triangle
AnBnCn and On, Hn, Gn, Mn, F+

n , J+n , ... be the standard notations relative to the triangle
AnBnCn. Obviously, Cn+1 is the orthocentroidal circle of the triangle AnBnCn.
On the other hand, let A′

0B′
0C′

0 be the triangle A′B′C′ and, for n ≥ 1 fixed, A′
nB′

nC′
n be

the cosymmedian triangle in pair with AnBnCn in the circle Cn (or, equivalently, A′
n is the

projection of the orthocenter Hn−1 of the triangle An−1Bn−1Cn−1 on his median through
An−1, and B′

n, C′
n are difined cyclically).

Using the results from the previous sections, we immediately obtain a number of prop-
erties of the sequence (AnBnCn)n≥0 .
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Figure 8

I. Any two triangles in the sequence (AnBnCn)n≥0 are similar. The ratio of similitude of the

triangles AnBnCn and An+1Bn+1Cn+1, n ≥ 0, is equal to q =
1

3R
√

9R2 − (a2 + b2 + c2).

The subsequences (A2nB2nC2n)n≥0 and (A2n+1B2n+1C2n+1)n≥0 are formed from directly similar
triangles. Any triangle in subsequence (A2nB2nC2n)n≥0 is inversely similar to any triangle in
subsequence (A2n+1B2n+1C2n+1)n≥0 .

According to Proposition 5(1), concerning the ratio of similitude we have:
an+1

an
=

HnGn

Hn−1Gn−1

(HnGn being the diameter of the circumcircle of An+1Bn+1Cn+1) and
HnGn

Hn−1Gn−1
=

an

an−1

(since AnBnCn ∼ An−1Bn−1Cn−1). Therefore,
an+1

an
=

an

an−1
= ... =

a1

a
. But,

a1

a
=

HG
2R

(A1B1C1 ∼ ABC) and finally we get:
an+1

an
=

HG
2R

=
HO
3R

=
1

3R
√

9R2 − (a2 + b2 + c2).

II. K is the symmedian point of all triangles AnBnCn (by Proposition 5(3)).
III. The triangles in the subsequence (A2nB2nC2n)n≥0 have common symmedians, namely, the
lines AK, BK and CK, while those in the subsequence (A2n+1B2n+1C2n+1)n≥0 have as symmedi-
ans the lines A1K, B1K and C1K. In other words, for n ≥ 1 we have: A2n ∈ AK, B2n ∈ BK,
C2n ∈ CK and A2n+1 ∈ A1K, B2n+1 ∈ B1K, C2n+1 ∈ C1K (Fig. 9).
Let’s just show that A2 ∈ AK. We know that the triangles ABC and A2B2C2 are directly
similar, and have the same symmedian point, K, and Brocard axis, OK. Hence, it fol-
lows that the angles between the axis OK and the symmedians of the triangles ABC and
A2B2C2 at the vertices A and A2 are equal. Then, A2 ∈ AK.
IV. The corresponding sides of the triangles A2nB2nC2n, n ≥ 0 (as well as those of the tri-
angles A2n+1B2n+1C2n+1, n ≥ 0) are parallel. The homothety H with center K and ratio

q2 =
1

9R2

[
9R2 −

(
a2 + b2 + c2)] transforms triangle AnBnCn into triangle An+2Bn+2Cn+2,

n ≥ 0.
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V. The triangles in the subsequence (A2nB2nC2n)n≥0 have as the Fermat axis the line KM and
as the Brocard axis the line OK, while those in the subsequence (A2n+1B2n+1C2n+1)n≥0 have as
the Fermat axis the line OK and as the Brocard axis the line KM (by Theorem 13).
Therefore, for the centers of the orthocentroidal circles Cn we have: O2, ..., O2n,
... ∈ OK and O1, O3, ...O2n+1, ... ∈ KM.

Figure 9

Since ABC ∼ A2nB2nC2n, it follows that the angle beetwen BC and the symmedian at A
is equal to the angle beetwen B2nC2n and the symmedian at A2n. Since these symmedians
coincide, it follows that B2nC2n ∥ BC. The collinearity of the points B2n as well as those
of the points C2n and the property I ensure that the homothety H verifies the desired
statement if n is even. Analogously, if n is odd.
VI. The Lemoine axes of the triangles A2nB2nC2n, n ≥ 0, are parallel to each other and perpen-
dicular to OK, while those of the triangles A2n+1B2n+1C2n+1, n ≥ 0, are parallel to each other
and perpendicular to KM.
From V and the fact that in any triangle the Lemoine axis is perpendicular to the Brocard
axis.
VII. The Euler lines of the triangles A2nB2nC2n, n ≥ 0, are parallel to the Euler line of ABC
and those of the triangles A2n+1B2n+1C2n+1, n ≥ 0, are parallel to the Euler line of A1B1C1, i.e.
e2n ∥ e and e2n+1 ∥ e1.
From the similarity ABC ∼ A2nB2nC2n and the fact that KM is the common Fermat axis
of A2nB2nC2n, n ≥ 0, we infer that the lines e2n are equally inclined on KM, hence they
are parallel. Hence, e2n ∥ e. Similarly, for the remaining part.
VIII. For any n ≥ 0 we have: 1) F+

2n, F−
2n ∈ KM and F+

2n+1, F−
2n+1 ∈ OK, 2) J+2n, J−2n ∈ OK and

J+2n+1, J−2n+1 ∈ KM, 3) J+2n+1 = F+
2n and J−2n+1 = F−

2n.
Consequence of Theorem 10 and the property V.
IX. F+

2n J+2n ∥ F−
2n J−2n ∥ e, and F+

2n+1 J+2n+1 ∥ F−
2n+1 J−2n+1 ∥ e1 (or F+

2n−1F+
2n ∥ F−

2n−1F−
2n ∥ e and

F+
2nF+

2n+1 ∥ F−
2nF−

2n+1 ∥ e1).
Consequence of the property VII, Theorem 16 and Theorem 10.
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The sequence (A′
nB′

nC′
n)n≥0 retains unchanged some of the preceding properties, while

others require adaptations or modifications to remain valid. The properties I-IV and VI
are also valid for the sequence (A′

nB′
nC′

n)n≥0 we just have to change An → A′
n, Bn → B′

n,
and Cn → C′

n. K is the symmedian point of all triangles AnBnCn and A′
nB′

nC′
n, n ≥ 0.

According to Proposition 4, the triangles AnBnCn and A′
nB′

nC′
n, for any n ≥ 0, have

the same axis Brocard. Because neither centroid nor orthocenter of these triangles do
not coincide, the midpoints of the line segments GnHn and G′

nH′
n, say Mn and M′

n, are
different. Moreover, Cn is not the orthocentroidal circle of the triangle A′

n−1B′
n−1C′

n−1.
But, it is easy to see that K, M′

0, M′
2, ..., M′

2n, ... and K, M′
1, M′

3, ...M′
2n+1, ... are sequence of

collinear points. Then, corresponding to the properties V, and VII-IX we must take the
following statements:
V′. The triangles in the subsequence (A′

2nB′
2nC′

2n)n≥0 have as the Fermat axis the line KM′
0 and

as the Brocard axis the line OK, while those in the subsequence
(

A′
2n+1B′

2n+1C′
2n+1

)
n≥0 have as

the Fermat axis the line KM′
1 and as the Brocard axis the line KM (M′

0 and M′
1 are the midpoints

of G′H′ and G′
1H′

1, respectively).
VII′. The Euler lines of the triangles A′

2nB′
2nC′

2n, n ≥ 0, are parallel to the Euler line of A′B′C′

(i.e. e′2n ∥ e′ ≡ G′H′) and those of the triangles A′
2n+1B′

2n+1C′
2n+1, n ≥ 0, are parallel to the

Euler line of A′
1B′

1C′
1, (i.e. e′2n+1 ∥ e′1 ≡ G′

1H′
1).

VIII′. For any n ≥ 0 we have: 1) F′+
2n , F′−

2n ∈ KM′ and F′+
2n+1, F′−

2n+1 ∈ KM′
1, 2) J′+2n , J′−2n ∈ OK

and J+2n+1, J−2n+1 ∈ KM.
IX′. F′+

2n J′+2n ∥ F′−
2n J′−2n ∥ e′, and F′+

2n+1 J′+2n+1 ∥ F′−
2n+1 J′−2n+1 ∥ e′1.

4. CENTERS AND CENTRAL LINES

Below, we will use the following statements relative to the centers and central lines of
the given triangle ABC ([7]): 1) the line joining two centers is a central line, 2) the point
of intersection of two distinct central lines is a center, 3) if P and Q are centers, then the
reflection of P in Q is also a center, 4) the line through a center and parallel to a central
line is a central line.

Proposition 17. For any n ≥ 1, On, Gn, Hn are centers and en are central lines of the triangle
ABC.
Proof. The vertices of the triangle A1B1C1 have the following trilinear coordinates ([8,
#X(5476)], Peter Moses, 2014):

A1 = a :
1
b
(
a2 + b2 − c2) :

1
c
(
a2 − b2 + c2) ,

B1 =
1
a
(
b2 − c2 + a2) : b :

1
c
(
b2 + c2 − a2) ,

C1 =
1
a
(
c2 + a2 − b2) :

1
b
(
c2 − a2 + b2) : c. Then, for the centroid G1 of this triangle we

obtain:
G1 = a

[
a2b2 + b2c2 + c2a2 −

(
b2 − c2)2

]
::

Hence G1 is a center of the triangle ABC. Now, it is known that O1 ≡ M ≡ X381 ([7],[8])
is a center. Then, M1 ≡ O2 as reflection of O1 in G1 and H1 as reflection of G1 in M1
are centers of the triangle ABC. On the other hand, the Euler line e1 joining the centers
O1 ≡ M and G1 is a central line. Thus, the property is verified for n = 1.

18



Properties of orthocentroidal circles in relation to the cosymmedians triangles

The Euler line e2 of the triangle A2B2C2 passes through O2 ≡ M1 and is parallel to e;
so, e2 is a central line of the triangle ABC. On the other hand, H2 ∈ KH, G2 ∈ KG
and M2 ∈ KM according to property IV. Hence H2 ∈ KH ∩ e2 and G2 ∈ KG ∩ e2, from
which it follows that the points H2, G2, and M2 ≡ O3 are centers of the triangle ABC. The
remaining claims to be proven are deduced by induction.

Proposition 18. For any n ≥ 0, F+
n , F−

n are centers and F+
n F+

n+1, F−
n F−

n+1 are central lines of the
triangle ABC.
Proof. The lines F+F+

1 and F−F−
1 are parallel to e1 (Theorem 16 or property IX) and pass

through the centers F+ and F−, respectively. It follows, therefore, that F+F+
1 and F−F−

1
are central lines of the triangle ABC.
Now, taking into account the formulae F+

1 = F+F+
1 ∩OK and F−

1 = F−F−
1 ∩OK it follows

that F+
1 and F−

1 are centers of the triangle ABC. The lines F+
1 F+

2 and F−
1 F−

2 are parallel to
e (property IX) and pass through the centers F+

1 and F−
1 , respectively. Hence, F+

1 F+
2 and

F−
1 F−

2 are central lines of the triangle ABC. Obviously, we can proceed by induction to
conclude the proof.
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