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SOME METRIC PROPERTIES OF GENERAL SEMI-REGULAR POLYGONS

NENAD STOJANOVIC

ABSTRACT. If we construct isosceles polygon Pa
k with (k − 1) sides of the same length

over each side of regular polygon Pb
n , with n sides, we get a new equilateral polygon Pa,δ

N
with N = (k− 1)n sides of the same length and with different inner angles. Such polygon
is called equilateral semi-regular polygon. This paper deals with metric properties of
general semi-regular polygons Pa

N , with given side a and angle δ, defined by equation
δ = ∠(a, d1) = ∠(di, di+1), i = 1, 2, . . . , k − 3, as an angle between diagonals di drawn
from the apex Aj, j = 1, 2, . . . , n of the regular polygon with sides dk−2 = Aj Aj+1 = b as
well as the application of the obtained results.

1. INTRODUCTION

Given the set of points Aj ∈ E2,j = 1, 2, . . . , n in Euclidian plane E2, such that any three
successive points do not lie on a line p and for which we have a rule: if Aj ∈ p and
Aj+1 ∈ p for each j point Aj+2 does not belong to the line p.
1. Polygon Pn or closed polygonal line is the union along A1A2, A2A3, . . . , An An+1, and
write short

Pn =
n
⋃

j+1

Aj Aj+1, (n + 1 ≡ 1 mod n) (1.1)

Points Aj are vertices, and lines Aj Aj+1 are sides of polygon Pn.
2. The angles on the inside of a polygon formed by each pair of adjacent sides are angles
of the polygon
3. If no pair of polygon’s sides, apart from the vertex, has no common points, that is , if
Aj Aj+1 ∩ Aj+l Aj+l+1 = ∅, l 6= 1
polygon is simple, otherwise it is complex. This paper deals with simple polygons only.
4. Simple polygons can be convex and non-convex. Polygon is convex if it all lies on
the same side of any of the lines Aj Aj+1, otherwise it is non-convex. Polygon Pn divides

plane E2 into two disjoint subsets,U and V. Subset U is called interior, and subset V
is exterior area of the polygon. Union of polygon Pn and its interior area Un makes
polygonal area Sn, which is:

Sn = Pn ∪ Un (1.2)
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5. Given polygon Pn with vertices Aj, j = 1, 2, . . . , n, (n + 1 ≡ 1 mod n) lines of which
Aj Ai are called polygonal diagonals if indices are not consecutive natural numbers, that
is, j 6= i. We can draw n − 3 diagonals from each vertex of the polygon with n number
of vertices.
6. Exterior angle of the polygon Pn with vertex Aj is the angle ∠Av,j with one side Aj+1Aj,
and vertex Aj, and the other one is extension of the side Aj Aj−1 through vertex Aj

7. Sum of all exterior angles of the given polygon Pn is equal to multiplied number or
product of tracing around the polygons in a certain direction and 2π, that is, the rule is

n

∑
j=1

(∠Av,j) = 2kπ, k ∈ Z (1.3)

In which k is number of turning around the polygon in certain direction.
8. The interior angle of the polygon with vertex Aj is the angle ∠Au,j, j = 1, 2, . . . . , n for
which ∠Au,j + ∠Av,j = π. That is the angle with one side Aj−1Aj, and the other side
Aj Aj+1. Sum of all interior angles of the polygon is defined by equation

n

∑
j=1

∠Au,j = (n − 2k)π, n ∈ N, k ∈ Z. (1.4)

In which k is number of turning around the polygon in certain direction.
9. A regular polygon is a polygon that is equiangular (all angles are equal in measure)
and equilateral (all sides have the same length). Regular polygon with n sides of b length

is marked as Pb
n . The formula for interior angles γ of the regular polygon Pb

n with n sides

is γ = (n−2)π
n . A non-convex regular polygon is a regular star polygon.For more about

polygons in [4,5,6].
10. Polygon that is either equiangular or equilateral is called semi-regular polygon. Equi-
lateral polygon with different angles within those sides are called equilateral semi-regular
polygons, whereas polygons that are equiangular and with sides different in length are
called equiangular semi regular polygons. For more about in [1,2,3].

FIGURE 1. Convex semi-regular polygon PN with N = (k − 1)n sides

constructed above the regular polygon Pb
n

40



Some Metric Properties of General Semi-Regular Polygons

2. BASIC TERMS, SIGNS AND DEFINITIONS

1. If we construct a polygon Pk with (k − 1) sides, k ≥ 3,k ∈ N with vertices Bi, i =
1, 2, . . . , k over each side of the convex polygon Pn,n ≥ 3,n ∈ N with vertices Aj,j =
1, 2, . . . , n, (n + 1) ≡ 1 mod n, that is Aj = B1, Aj+1 = Bk, we get new polygon with
N = (k − 1)n sides, (figure 1) marked as PN.
Here are the most important elements and terms related to constructed polygons:

(1) Polygon Pk with vertices B1B2 . . . Bk−1Bk, B1 = Aj, Bk = Aj+1 constructed over
each side Aj Aj+1, j = 1, 2, . . . , n of polygon Pn with which it has one side in com-
mon is called edge polygon for polygon Pn.

(2) AjB2, B2B3, . . . , Bk−1Aj+1, j = 1, 2, . . . , n the sides polygon Pk.
(3) AjB2AjB3, . . . , AjBk−1 are diagonals di, i = 1, 2, . . . , k − 2,of the polygon Pa

k drawn
from the top Aj and that implies dk−2 = Aj Aj+1 = b.

(4) Angles ∠Bu,i are interior angles of vertices Bu,i of the polygon PN and are denote
as βi. Interior angle ∠Au,j of the polygon of the vertices Aj are denoted as αj.

(5) Polygon Pk of the side a constructed over the side b of the polygon Pn is isosceles,
with (k − 1) equal sides, is denoted as Pa

k .
(6) With δ = ∠(di, di+1), i = 1, 2, . . . , k − 2 denotes the angle between its two consec-

utive diagonals drawn from the vertices Aj, j = 1, 2, . . . , n for which it is true

δ = ∠(a, d1) = ∠(didi+1), i = 1, 2, . . . , k − 3, dk−2 = b (2.1)

(7) If the isosceles polygon Pa
k is constructed over each side of the b regular polygon

Pb
n with n sides, then the constructed polygon with N = (k − 1)n of equal sides

is called equilateral semi-regular polygon which is denoted as Pa
N.

2. We analyzed here some metric characteristics of the general equilateral semi-regular
polygons, if side a is given, and angle is δ = ∠(di, di+1), i = 1, 2, . . . , (k − 2), in between
the consecutive diagonals of the polygon Pa

k drawn from the vertex Pa
k of the regular

polygon Pb
n . Such semi-regular polygon with N = (k − 1)n sides of a length and angle δ

defined in (2.1) we denote as Pa,δ
N .

3. Regular polygon Pb
n polygon is called corresponding regular polygon of the semi-

regular polygon Pa,δ
N .

4. Interior angles of the semi-regular equilateral polygon is divided into two groups
- angles at vertices Bi, i = 2, . . . , k − 1 we denote as β,
- angles at vertices Aj, j = 1, 2, . . . , n we denote as α.

5. KN stands for the sum of the interior angles of the semi-regular polygon Pa,δ
N .

6. S
γ
Aj

stands for the sum of diagonals comprised by angle γ and drawn from the ver-

tex Aj, and with ε
γ
Aj

we denote the angle between the diagonals drawn from vertex Aj

comprised by angle γ.

7. We denote the radius with rN of the inscribed circle of the semi-regular polygon Pa,δ
N .

3. SOME METRIC PROPERTIES OF SEMI-REGULAR POLYGONS Pa,δ
N

3.1. Interior angles of the semi-regular polygon. Let on each side of the regular poly-

gon Pb
n , be constructed polygon Pa

k , with (k − 1) equal sides, and let dl = AjBi, l =
1, 2, . . . , k − 2, dk−2 = Aj Aj+1 = b, j = 1, 2, . . . , n; i = 3, 4, . . . , k; Bk = Aj+1 diagonals
drawn from the vertex Aj,Aj Aj+1 = b, j = 1, 2, . . . , n to the vertices Bi of the polygon Pa

k .
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The following lemma is valid for interior angles at vertices Bi, i = 3, 4, . . . , k, Bk = Aj+1

of triangle △AjBi−1Bi determined by diagonals di.

Lemma 3.1. Ratio of values of interior angles △AjBi−1Bi; i = 3, 4, . . . , k at vertex Bi of the base
AjBi = di−2 from the given angle AjBi = di−2 δ is defined by relation ∠Bi = (i − 2)δ.

Proof. The proof is done by induction on i, (i ≥ 3), i ∈ N. Let us check this assertion for
i = 4 because for i = 3 the claim is obvious because the triangle erected on the sides of
the regular polygon is isosceles and angles at the base b are equal as angle δ.

If i = 4 and isosceles rectangle is constructed on side b of the regular polygon Pb
n (figure

2a) with vertices A1B2B3B4, i B4 = A2 where A1A2 = b side of the regular polygon.
Diagonals constructed from the vertex A1 divide polygon A1B2B3B4, into triangles△A1B2B3

and △A1B3B4. According to the definition of the angle δ we have:

∠B2A1B3 = ∠B2B3A1 = ∠B3A1B4 = δ

Intersection of the centerline of the triangle’s base △A1B2B3 i A1B4 = b is point S1.Since
A1B2 = B2B3 = a, a and construction of the point S1 leads to conclusion that �A1S1B2B3

is a rhombus with side a. Since B3S1 = B3B4 = a a triangle △B3S1B4 is isosceles, and its
interior angle at vertex S1 is exterior angle of the triangle △A1B3S1, thus ∠S1 = 2δ, as
well as ∠B4 = 2δ.

FIGURE 2. a. Rectangle A1B2B3B4 b.Rectangle AjBp−2Bp−1Bp

Let us presume that the claim is valid for an arbitrary integer (p− 1), (p ≥ 4),p ∈ N, that
is i = (p − 1) interior angle of the triangle △AjBp−2Bp−1 at the vertex Bp−1 has value
∠Bp−1 = (p − 3)δ.
Let us show now that this ascertain is true for integer p, that is for i = p. Also, interior
angle of the triangle △AjBp−1Bp at vertex Bp has value ∠Bp = (p − 2)δ.
Let us note �AjBp−2Bp−1Bp which is split into triangles △AjBp−2Bp−1 and △AjBp−1Bp

by diagonal dp−3, and that ∠Bu,p−1 = (p − 3)δ according to presumption.
Since interior angles of triangles are congruent at vertex Aj, by definition of angle δ,and
Bp−2Bp−1 = Bp−1Bp = a, it is easily proven that there is point S such that triangle
△SBp−1Bp is isosceles triangle(figure 2), and rectangle �AjBp−2Bp−1S is rectangle with
perpendicular diagonals. Congruence of triangles △AjBp−2Bp−1 ≃ △AjBp−1S leads us
to conclusion that ∠AjBp−1S = (p − 3)δ. Angle at vertex S is the exterior angle of trian-
gle △AjBp−2Bp−1. And thus we have ∠S = δ + (p − 3)δ = (p − 2)δ.
Since triangle SBp−1Bp isosceles, ∠Bp = (p − 2)δ which we were supposed to prove. So,
for each i ∈ N,i ≥ 3 interior angle of triangle △AjBi−1Bi at vertex Bi is ∠Bi = (i − 2)δ.
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FIGURE 3. Isosceles polygon Pa
k constructed on side b of the regular poly-

gon Pb
n

Lemma 3.2. Semi regular equilateral polygon Pa,δ
(k−1)n

with given side a and angle δ defined with

(2.1),has n interior angles equal to an that angle

α =
(n − 2)π

n
+ 2(k − 2)δ (3.1)

and (k − 2)n interior angles equal to an that angle

β = π − 2δ, δ > 0, k≥ 3, n ≥ 3, k, n ∈ N (3.2)

Proof. Using figure 3 and results of lemma 3.1, it is easily proven that polygon Pa
k

constructed on side b of the regular polygon Pb
n has (k − 2) interior angles with value

Pb
n π − 2δ, and which are at the same time interior angles of the semi-regular polygon

Pa
N , N = (k − 1).

So indeed, for k = 3 the constructed polygon Pk is isosceles triangle with interior angle
at vertex B2 = π − 2δ, and for k = 4 constructed polygon is isosceles rectangle (figure 2).
That rectangle is drawn by diagonal d1 from vertex Aj,j = 1, 2, . . . , n, B1 ≡ A1,B4 ≡ Aj+1

and Aj Aj+1 = b split into triangles AjB2B3 and AjB3Aj+1 with interior angles at vertices
∠B2 = ∠B3 = π − 2δ.
Similarly is proven that for every rectangle AjBi−2Bi−1Bi, i = 4, 5, . . . , k; (B1 = Aj, Bk =
Aj+1,Aj Aj+1 = b) and the value of its vertex Bi−1,

∠Bi−1 = (i − 3)δ + π − [(i − 2)δ + δ] = π − 2δ.

So, in every isosceles polygon Pa
k exist k − 2 interior angles with measure π − 2δ. Since

isosceles polygon Pa
k , is constructed on each side of regular polygon Pb

n , it follows that
equilateral semi-regular polygon Pa

N has total of (k − 2)n angles, which we were sup-
posed to prove.
When interior angle of the semi-regular equilateral polygon at vertex Aj, j = 1, 2, . . . , n is

equal to sum of interior angle of the regular polygon Pb
n and double value of the interior

angle of the polygon Pa
k at vertex Bk, (Lema 3.1)is valid ∠Au,j = (n−2)π

n + 2(k− 2)δ which
we were supposed to prove.

Corollary 3.3. Sum of interior angles of the equilateral semi-regular polygon Pa,δ
N is given in

KN = [N − 2]π (3.3)
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Proof. On the basis of Lema 3.2. and relation (3.1) and (3.2) it is true that

KN = nα + β(k − 2)n = n[ (n−2)π
n + 2δ(k − 2)] + n(k − 2)(π − 2δ) = (n − 2)π + n(k −

2)π = (nk − n − 2)π = [n(k − 1) − 2]π = [N − 2]π.

3.2. Convexity semi regular equilateral polygons Pa,δ
N . Condition of convexity of the

semi-regular equilateral polygon Pa,δ
N and the values of its angle δ is given in the theorem.

Theorem 3.4. Equilateral semi-regular polygon Pa,δ
N ,N = (k − 1)n is convex if the following is

true for the angle δ

δ ∈

(

0;
π

(k − 2)n

)

k, n ∈ N, n, k ≥ 3. (3.4)

Proof. Let us write values of the interior angles of the semi-regular polygon Pa,δ
N defined

by relations (3.1),(3.2) in the form of linear functions

f (δ) =
(n − 2)π

n
+ 2(k − 2)δ, g(δ) = π − 2δ, k̇, n∈ N, k̇, n≥ 3. (3.5)

As the polygon is convex if all its interior angles are smaller than π, to prove the theorem

it is enough to show that for ∀δ ∈
(

0; π
(k−2)n

)

all interior angles of the semi-regular

polygon Pa,δ
N are smaller than π.

Indeed, from this relation β = g(δ) = π − 2δ follows that β = 0 for δ = π
2 , (figure 4). On

the basis of this and demands β > 0 and δ > 0, we find that β∈ (0, π) and 0 < δ <
π
2 ,

and thus we have δ ∈
(

0; π
(k−2)n

)

, k ≥ 3.

FIGURE 4. Semi-regular polygon and convexity

It is similar for interior angles equal to angle α, (figure 4). If we multiply the inequality

0 < δ <
π

(k−2)n
with 2(k − 2), and then add to the left and right side

(n−2)π
n , we get the

inequality
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(n − 2)π

n
<

(n − 2)π

n
+ 2(k − 2)δ <

2π

n
+

(n − 2)π

n
⇔

(n − 2)π

n
< α < π,⇒ α ∈

(

(n − 2)π

n
, π

)

for δ ∈
(

0; π
(k−2)n

)

, k ≥ 3.

So, for every δ ∈
(

0, π
(k−2)n

)

interior angles of the semi-regular polygon Pa,δ
N are smaller

than π. That is, semi-regular equilateral polygon Pa,δ
N is convex for δ ∈

(

0; π
(k−2)n

)

.

Values of the interior angles of the convex semi-regular equilateral polygon Pa,δ
N depend

on the interior angle of the corresponding regular polygon γ = (n−2)π
n as well as the

angle δ. Which means that the following theorem is true:

Theorem 3.5. Values of the interior angles of the equilateral semi-regular polygon Pa,δ
(k−1)n

are

within the interval
(

(n−2)π
n ; π

)

if β ≤ α or within the interval
(

(kn−2n−2)π
(k−2)n

; π
)

if β ≤ α for

k, n ≥ 3,k, n ∈ N.

Proof. Let β ≥ α. We find from the inequality π − 2δ ≥ (n−2)π
n + 2(k − 2)δ that δ ≤

π
(k−1)n

. Let us determine values of the interior angles, equal to angles α, β defined in

relations (3.1) and (3.2) if δ ∈
(

0, π
(k−1)n

]

.

Let us multiply the inequality 0 < δ ≤ π
(k−1)n

with −2, and then add π to the left and

right side, we get inequalities from which we determine value interval of the angles
equal to angle β.

π > π − 2δ ≥ π −
2π

(k − 1)n
⇔ π > β ≥

(kn − n − 2)π

(k − 1)n
⇒ β ∈

[

(kn − n − 2)π

(k − 1)n
, π

)

.

We can similarly determine values of the interior angles equal to angle α. If we multiply

the initial inequality 0 < δ ≤ π
(k−1)n

is first by 2(k− 2),k ≥ 3 and then we add (n−2)π
n , n ≥

3 to the left and right side.
We get a series of inequalities from which we can determine value interval (figure 4)

(n − 2)π

n
<

(n − 2)π

n
+ 2(k − 2)δ ≤

(n − 2)π

n
+

2(k − 2)π

(k − 1)n

⇔
(n − 2)π

n
< α ≤

(kn − n − 2)π

(k − 1)n

⇒ α ∈

(

(n − 2)π

n
,
(kn − n − 2)π

(k − 1)n

]

.

So,

α, β ∈

(

(n − 2)π

n
, π

)

. (3.6)

Now, let us determine values of the interior angles if β ≤ α.We have the inequality

π − 2δ ≤ (n−2)π
n + 2(k − 2) from the condition δ ≥ π

n(k−1)
.
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Since the semi-regular polygon is convex we have δ ∈
[

π
n(k−1) ,

(n−2)
π

)

. If we multiply the

inequality π
n(k−1) ≤ δ <

π
(k−2)n

with −2, and then add π to the left and right side , we get

π −
2π

n(k − 1)
≥ π − 2δ > π −

2π

n(k − 2)
⇔

(nk − 2n − 2)π

n(k − 2)
< β ≤

(nk − n − 2)π

n(k − 1)

⇒ β ∈

(

(nk − 2n − 2)π

n(k − 2)
,
(nk − n − 2)π

n(k − 1)

]

.

Similarly, if we multiply the inequality π
(k−1)n

≤ δ <
π

(k−2)n
with 2(k − 2), and then we

add
(n−2)π

n , n ≥ 3 we get

(n − 2)π

n
+

2(k − 2)π

(k − 1)n
≤

(n − 2)π

n
+ 2(k − 2)δ <

2π

n
+

(n − 2)π

n
⇔

(nk − n − 2)π

n(k − 1)
≤ α < π ⇒ α ∈

[

(nk − n − 2)π

n(k − 1)
, π

)

So, if β ≤ α then

α.β ∈

(

(nk − 2n − 2)π

n(k − 2)
, π

)

(3.7)

which was supposed to be proven.

Corollary 3.6. Convex semi-regular equilateral polygon Pa,δ
N is regular for δ = π

(k−1)n
; k, n ∈

N, n, k ≥ 3, δ > 0 and the values of its interior angles are given in the relation

α = β =
(nk − n − 2)π

n(k − 1)
. (3.8)

Proof. According to the definition of the regular polygon, its every angle has to be equal,
thus from α = β and the relation (3.1) ,(3.2) we have the equation

(n − 2)π

n
+ 2(k − 2)δ = π − 2δ

out of which we find out that the sought value of the angle is δ = π
(k−1)n

for which the

semi-regular equilateral polygon Pa,δ
N is regular. On this basis we find that the value of

the interior angles is

α = β =
(nk − n − 2)π

n(k − 1)
.

Example 1 Values of the angle δ and of the interior angles for different values k and n for
which the semi-regular equilateral polygon is regular (Table 1).
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Table 1.

k n δ = π
(k−1)n

(nk−n−2)π
n(k−1)

3 3 δ = π
6

2π
3

3 4 δ = π
8

3π
4

4 3 δ = π
9

7π
9

5 3 δ = π
12

5π
6

4 4 δ = π
12

5π
6

Theorem 3.7. Semi-regular equilateral polygon, Pa,δ
N with positively oriented angles is non-

convex for k, n ∈ N,n, k ≥ 3, δ ∈
(

π
(k−2)n

; π
2

)

, and for δ ≥ π
2 is not defined.

Proof. It is sufficient to prove that there are interior angles of the semi-regular polygon,

Pa,δ
N ,for those values of angle δ, which are bigger than π. Starting from the inequality

π
(k−2)n

< δ <
π
2 , we find that the value interval of those angles, for the interior angles

equal to angle β ( Lema 3.2), is

0 < π − 2δ < π −
2π

(k − 2)n
⇔ 0 < β <

(kn − n − 2)π

(k − 2)n
⇒ β ∈

(

0;
(kn − n − 2)π

(k − 2)n

)

We can apply the similar procedure here. If we multiply the initial inequality with

2(k − 2), and then we add (n−2)π
n to the left and right side , after solving the equation

we find that the values of the interior angles equal to angle α are within the interval
(

π;
(kn−n−2)π

n

)

.

Since α > π for all values δ ∈
(

π
(k−2)n

; π
2

)

semi-regular equilateral polygon Pa,δ
N is non-

convex. If

δ ≥
π

2
⇒ 2δ ≥ π ⇒ π − 2δ ≤ 0 ⇒ β ≤ 0

Which is opposite to the presumption that interior angles are positively oriented, thus
there is no convex semi-regular polygon for δ ≥ π

2 .

3.3. Diagonals of the semi-regular equilateral polygons Pa,δ
N .

Theorem 3.8. Length of the diagonal di, i = 1, 2, . . . , k − 2,and dk−2 = b, drawn from the

vertex Aj, j = 1, 2, . . . , n,Aj Aj+1 = b of the edging polygon Pa,δ
k , constructed on side b of the

regular polygon Pb
n , defined by the recurrent equations.

d1 = 2acos δ, d2 = a(1 + 2 cos 2δ), di = di−2 + 2acos(iδ), i ≥ 3. (3.9)

Proof. This will be proven by mathematical induction with i. Let us check the recurrent
formula for i = 3. If the formula is valid then

d3 = d1 + 2acos 3δ = 2acos δ + 2acos3δ = 2a(cosδ + cos3δ) = 4acos2δcosδ. (3.10)

In order to prove the equality (3.10) let us presume that isosceles polygon AjB2B3B4Aj+1

is constructed on side b = Aj Aj+1 of the regular polygon Pb
n .(Figure 5a) Diagonals

d1, d2, d3 are drawn from the vertex Aj for the rectangle �AjB3B4Aj+1 and on the ba-
sis of the definition of the angle δ it is valid that δ = ∠(a, d1) = ∠(d1d2) = ∠(d2d3),
d3 = b.
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FIGURE 5. Isosceles polygon Pa
k constructed on the side b of the regular

polygon Pb
n

Let us note that triangle △AjB2B3 is isosceles triangle for which ∠Aj = ∠B3 = δ,
AjB2B2B3 = a and AjB3 = d1. On the basis of Lemma 3.1. we have ∠B3 = δ, ∠B4 = 2δ,
∠Aj+1 = 3δ.
Let us construct point S1 on the base of the triangle △AjB3B4 so that the triangles △AjB3S1

and △S1B3B4 are isosceles. It is valid that ∠S1 = 2δ for it is exterior angle of the triangle
△AjB3S1.
Similarly, we will construct point S2 on the base Aj Aj+1 = b of the triangle △AjB4Aj+1 so
that triangle △S2B4Aj+1 is isosceles with interior angles at the base ∠S2 = ∠Aj+1 = 3δ.
Further on, ∠B4S2 Aj+1 = 3δ is the exterior angle of the triangle △AjB4S2, for which

∠Aj = δ and S2B4 = B3B4 = a so it is valid that ∠AjB4S2 = 2δ.

Since B3B4 = B4B2 = B4Aj+1 = a and ∠AjB4B3 = 2δ triangles △AjB3B4 and △AjS2B4

are congruent, thus we have AjB3 = AjS2 = d1 = 2a cos δ.

Triangle △S2B4Aj+1 is isosceles thus we have S2Aj+1 = 2a cos 3δ. So,

d3 = Aj Aj+1 = AjS2 + S2Aj+1 = 2acos δ + 2acos 3δ

= 2a(cos δ + cos 3δ) = 4a cos δ cos 3δ.

This proves that formulas (3.10) is valid.We can similarly check if this is valid for i = 4.
That is, it is true for diagonal d4 drawn from the vertex Aj

d4 = d2 + 2a cos 4δ = a + 2a cos 2δ + 2a cos 4δ =

a + 2a(cos 2δ + cos 4δ) = a(1 + 4 cos δ cos 3δ).

Let us presume that the recurrent formula (3.9) is valid for natural number p − 1, p ≥
4, p ∈ N that is for i = p − 1 and that

dp−1 = dp−3 + 2a cos (p − 1)δ. (3.11)

Let us show that the formula is valid for natural number p, that is for i = p. We can
take AjBpBp+1Bp+2 from the isosceles polygon Pa

k (figure 5b.) constructed on the side b

of the regular polygon Pb
n . This is valid for triangle △AjBpBp+1 according to definition

(2.1), and according to Lemma 3.1, ∠Bp+1 = (p − 1)δ and BpBp+1 = a is the side of the

regular polygon Pa,δ
N . Let us construct isosceles triangle △Bp+1S3Bp+2, so that S3Bp+1 =

Bp+1Bp+2 = a. Then, according to Lemme 3.1 ∠Bp+1S3Bp+2 = pδ.
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Since ∠Bp+1S3Bp+2 = 3δ is the exterior angle of the triangle △AjBp+1S3 and ∠Aj =
δ it follows that ∠AjBi+1S3 = (p − 1)δ. So, triangles △AjBiBi+1 and △AjBp+1S3 are

congruent, thus we have AjBp = AjS3 = dp−2.

We find that S3Bp+2 = 2acos(iδ) from the isosceles triangle △Bp+1S3Bp+2. Hence

dp = AjBp+2 = AjS3 + S3Bp+2 = dp−2 + 2a cos(pδ).

Thus,the recurrent formula is valid for every i = 3, 4, . . . , k − 2.

Theorem 3.9. Length of the diagonal di, i = 1, 2, . . . , k − 2 of the edging polygons Pa,δ
k drawn

from the vertex Aj, j = 1, 2, . . . , n, in which Aj Aj+1 = b is the side of the regular polygon Pb
n for

i = 2p, p ∈ N, is given in the formula

d2p = a + 2a
cos(p + 1)δ sin pδ

sin δ
(3.12)

and for i = 2p − 1,p ∈ N with formula

d2p−1 = a
sin(2pδ)

sin δ
(3.13)

Proof. Using Theorem (3.8) for i = 2p we have

d2p = d2p−2 + 2acos 2pδ = d2p−4 + 2acos(2p − 2)δ + 2acos 2pδ

= d2p−6 + 2acos(2p − 4)δ + 2acos(2p − 2)δ + 2acos 2pδ

. . . . . . . . . . . . . . . . . . . . . . . . . . .

= d2 + 2acos 4δ + 2acos 6δ + · · · + 2acos 2pδ

= a + 2a(cos 2δ + cos 4δ + · · · + cos 2pδ) = a + 2a
cos(p + 1)δ . . . sin pδ

sinδ
.

We find similar thing for i = 2p − 1,

d2p−1 = d2p−3 + 2acos(2p − 1)δ = d2p−5 + 2acos(2p − 3)δ + 2acos(2p − 1)δ

= d2p−7 + 2a cos(2p − 5)δ + 2a cos(2p − 3)δ + 2a cos (2p − 1)δ

. . . . . . . . . ˙. . . . . . . . . . . . . . .

= d1 + 2a cos 3δ + 2a cos 5δ + · · · + 2a cos (2p − 1)δ

= 2a cos δ + 2a cos 3δ + · · · + 2a cos (2p − 1)δ = a
sin 2pδ

sinδ
.

Theorem 3.10. The following is valid for the diagonals drawn from the vertex of the semi-regular

polygon Pa,δ
N :

(1) There are (k − 1)n − (2k − 1) diagonals which are within the interior angle γ = (n−2)π
n

of the corresponding regular polygon Pb
n which together form angle π

(k−1)n
and 2(k − 2)

diagonals of the polygon Pa
k constructed on sides of that regular polygon which form

angle equal to angle d defined with(2.1) if the interior angle equal to angle L from (3.1) is
corresponding to the vertex from which the diagonals are drawn.

(2) There are (k − 1)n − 5 diagonals which together form angle π−4δ
(k−1)n−4

if interior angle

β = π − 2δ corresponds to the vertex.
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Proof.

(1) Let us consider that diagonals are constructed from vertex A1 and that interior
angle α defined in relation (3.1) is corresponding for the vertex. Let us denote
with SA1

number of diagonals which can be drawn from vertex A1. Then we
have SA1

= (k − 1)n − 3. It was earlier proven that we can construct (k − 2)
diagonals di, i = 1, 2, . . . , k − 2, from the vertex A1 of the polygon Pa

k constructed

on the side A1A2 = b of the regular polygon Pb
n , with interior angle γ = (n−2)π

n ,
for which dk−2 = b and which together form angle δ.

Since there are two such polygons Pa
k constructed on sides A1A2 = b and

A1An = b with common vertex A1 number of diagonals which together form
angle δ defined in the relation (2.1), is 2(k − 2).

Having in mind relation (3.1) number of diagonals within the interior angle γ

of the corresponding regular polygon Pb
n ,let us mark them S

γ
A1

, is

S
γ
A1

= (k − 1)n − 3 − 2(k − 2) = (k − 1)n − (2k − 1).

Those diagonals together form angle which we will mark with ε
γ
A1

, and for

which the following is valid

ε
γ
A1

=
γ

S
γ
A1

+ 1
=

(n−2)π
n

(k − 1)n − (2k − 1) + 1
=

π

(k − 1)n
.

which was supposed to be proven.
(2) Let diagonals be drawn from the vertex B1 with the corresponding interior angle

β = π − 2δ, then we have S
β
B1

= (k − 1)n − 3 umber of drawn diagonals from the

vertex B1. Only two of those drawn diagonals form the angle d with the sides of

the semi-regular polygon Pa,δ
(k−1)n

, and those are the first and the last diagonal.

Thus, other diagonals, and there are SB1
= (k − 1)n − 5 of them, within the

angle ψ = β − 2δ = π − 4δ together form angle e ε
ψ
B1

and for them the following

is valid

ε
ψ
B1

=
ψ

SB1 + 1
=

π − 4δ

(k − 1)n − 4
.

Example 2. Here is given tabular review of the values from the previous theorem, in

which i = 1, 2, .n and j = 1, 2, ..(k − 2)n, for the convex semi-regular polygon Pa,δ
N , for

n = 3, 4, 5 and k = 3, 4, 5.(Table 2)

Table 2.

n k Pa,δ
(k−1)n

δ ∈
(

0; π
(k−2)n

)

γ α β S
γ
Ai

ε
γ
Ai

S
ψ
Bj

ε
ψ
Bj

3 3 6 δ ∈
(

0; π
3

)

π
3

π
3 + 2δ π − 2δ 1 π

6 1 π
2 − 2δ

4 9 δ ∈
(

0; π
6

)

π
3

π
3 + 4δ π − 2δ 2 π

9 4 π
5 − 4

5 δ

5 12 δ ∈
(

0; π
9

)

π
3

π
3 + 6δ π − 2δ 3 π

12 7 π
8 − 1

2 δ

4 3 8 δ ∈
(

0; π
4

)

π
2

π
2 + 2δ π − 2δ 3 π

8 3 π
4 − δ

4 12 δ ∈
(

0; π
8

)

π
2

π
2 + 4δ π − 2δ 5 π

12 7 π
8 − 1

2 δ

5 16 δ ∈
(

0; π
12

)

π
2

π
2 + 6δ π − 2δ 7 π

16 11 π
12 −

1
3 δ

5 3 10 δ ∈
(

0; π
5

)

3π
5

3π
5 + 2δ π − 2δ 5 π

10 5 π
6 − 2

3 δ

4 15 δ ∈
(

0; π
10

)

3π
5

3π
5 + 4δ π − 2δ 8 π

15 10 π
11 −

4
11 δ
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Corollary 3.11. S
γ
Ai

= S
ψ
Bj

, i, j = 1, 2, . . . , n is valid for every equilateral semi-regular polygon

Pa,δ
2n with 2n sides.

Proof. Let us presume that the equality is valid. Let us define semi-regular equilateral

polygon for which that equality is valid. From S
γ
Ai

= S
ψ
Bj

we have (k − 1)n − (2k − 1) =

(k − 1)n − 5 ⇔ 2k − 1 = 5 ⇒ k = 3. For k = 3 required semi-regular polygon is
(k − 1)n = 2n, n ∈ N.

Corollary 3.12. If ε
γ
Ai

= ε
ψ
Bj

, with i = 1, 2, . . . , n and j = 1, 2, . . . , (k − 2)n polygon is regular.

Proof. If the equality is valid then we have the equation from ε
γ
Ai

= ε
ψ
Bj

and it π
(k−1)n

=
π−4δ

(k−1)n−4
, from which we find that δ = π

(k−1)n
. According to Corollary (3.6) convex semi-

regular equilateral polygon for that value of the angle δ is regular.

3.4. Area of the semi-regular equilateral polygon Pa,δ
N . The following theorems show

dependence of the area of the semi-regular polygon Pa,δ
N from the length of its sides a and

angle δ defined by relation (2.1).

Theorem 3.13. Area of the semi-regular polygon Pa,δ
N is given in the relation

Pa,δ
(k−1)n

=







1
4 na2

(

1 + 2
cos k

2 δsin( k
2−1)δ

sin δ

)2
cot π

n + nPa
k f or even k

1
4 na2

(

sin(k−1)δ
sin δ )2 cot π

n + nPa
k f or odd k

(3.14)

In which area of Pa
k edging isosceles polygon with side a and angle δ defined by (2.1).

Before we prove this Theorem let us prove lemma.

Lemma 3.14. Area of edging polygon Pa
k with side a and angle δ is given in the relation

Pa
k =

a2(k − 2) cot δ

4
−

a2

4 sin δ

(

⌈ k
2 ⌉−1

∑
p=1

cos(4p + 1)δ +
⌈ k−1

2 ⌉

∑
p=1

cos(4p − 1)δ
)

. (3.15)

Proof. Area of the isosceles polygon Pa
k can be expressed as sum of triangles’ areas of

which diagonals di, i = 1, 2, . . . , k − 2 are bases, that is, the following is valid

Pa
k =

k−2

∑
i=1

pdi
(3.16)

where pdi
is area of the triangle with base di, (figure 3). Since pdi

= dihi
2 ,in which hi is

height of the triangle drawn to the base di and hi = a sin iδ id using the relation (3.12)
and (3.13) we find that for k ≥ 3, k ∈ N.

pdk−2
=







a2

2 sin(k − 2)δ
(

1 + 2
cos k

2 δsin( k
2−1)δ

sin δ

)

f or even k

a2

2
sin(k−2)δsin(k−1)δ

sin δ f or odd k
(3.17)

So,

pdi
=

{

a2

2 sin2pδ
(

1 + 2
cos(p+1)δsinpδ

sin δ

)

f or i=2p p ∈ N

a2

2
sin(2p−1)δsin2pδ

sin δ f or i=2p-1 p ∈ N
(3.18)
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On the basis of 3.17 and 3.18 equality 3.16 is transformed

Pa
k =

⌈ k
2 ⌉−1

∑
p=1

a2

2
sin 2pδ(1 + 2

cos (p + 1)δ sin pδ

sin δ
) +

⌈ k−1
2 ⌉

∑
p=1

a2

2

sin (2p − 1)δ sin 2pδ

sin δ

=
a2

2

˙(

⌈ k
2 ⌉−1

∑
p=1

sin 2pδ
(

1 + 2
cos (p + 1)δ sin pδ

sin δ

)

+
⌈ k−1

2 ⌉

∑
p=1

sin 2pδ sin(2p − 1)δ

sin δ

)

=
a2

2 sin δ

(

⌈ k
2 ⌉−1

∑
p=1

sin2pδ(sin δ + 2 cos (p + 1)δ sin pδ) +
⌈ k−1

2 ⌉

∑
p=1

sin 2pδ sin(2p − 1)δ

)

After solving the equation we get the sought relation

Pa
k =

a2(k − 2) cot δ

4
−

a2

4 sin δ

(

⌈ k
2 ⌉−1

∑
p=1

cos(4p + 1)δ +
⌈ k−1

2 ⌉

∑
p=1

cos(4p − 1)δ
)

.

Let us return to proving the theorem.

Proof. Let us notice that area of the semi-regular polygon Pa,δ
N is equal to sum of area

of the regular polygon Pb
n and area of all polygons Pa

k , constructed on each side of the
regular polygon, that is

Pa,δ
(k−1)n

= Pb
n + nPa

k . (3.19)

Since the area of the regular polygon Pb
n = 1

4 nb2 cot( π
n ). with side b given in the equality

b = dk−2 =







a
(

1 + 2
cos k

2 δsin( k
2−1)δ

sin δ

)

f or even k

a
sin(k−1)δ

sin δ f or odd k
(3.20)

Area of the semi-regular polygon Pa,δ
(k−1)n

has the following form on the basis of the rela-

tions (3.15) and (3.19)

Pa,δ
(k−1)n

=







1
4 na2

(

1 + 2
cos k

2 δsin( k
2−1)δ

sin δ

)2
cot π

n + nPa
k f or even k

1
4 na2

(

sin(k−1)δ
sin δ )2 cot π

n + nPa
k f or odd k

(3.21)

which proves the theorem.

Example 3. Formulas for area of the isosceles polygons, k = 3 and k = 4,if side a and

angle δ are given, are as follows; for k = 3, Pa
3 = a2 cot δ

4 − a2

4 sin δ cos 3δ = a2

4 sin δ (cos δ −

cos 3δ) = a2

2 sin 2δ.

Similarly, for k = 4, Pa
4 = 2a2 cot δ

4 − a2

4 sin δ (cos 5δ + cos 3δ) = a2 cot δ
2 − a2 cot δ

2 cos 4δ =
a2

2 cot δ(1 − cos 4δ) = · · · = a2

2 (2sin2δ + sin 4δ).

Example 4.Let us determine area of the semi-regular 2n polygon with given side a and
andle δ,defined in (2.1),
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Pa,δ
2n = Pb

n + nPa
3 = 1

4 na2( sin2δ
sin δ )2 cot π

n + na2

4 sin δ (cos δ − cos 3δ)

= na2 cos δ
(

cos δcos π
n +sin δsin π

n
sin π

n

)

= na2

sin π
n

cos δ cos( π
n − δ).

In which n is the number of sides of the regular polygon on which semi-regulr polygon
is drawn.

Theorem 3.15. Area of the isosceles polygon Pa
k , which given side a and angle δ, constructed on

sides of the regular polygon Pb
n , is determined by relation

Pa
k =

a2

8

˙(k − 1) sin 2δ − sin 2(k − 1)δ

sin2 δ
(3.22)

za k ≥ 3.

Proof. Let the polygon Pa
k be given, side a and diagonals di, i = 1, 2, . . . , k − 2, k ≥ 3

drawn from the vertex Aj, j = 1, 2, . . . , n, Aj = B1, Bk = Aj+1,with Aj Aj+1 = b side

of the regular polygons Pb
n . Let us note triangles AjBk−1Bk basis of which are diagonals

di. Let us introduce marks P1, P2, P3, . . . , Pk for areas of triangles AjB2B3, AjB3B4, . . . ,
AjBk−1Bk respectively. It is easily proven that the following relations are valid for areas
of those triangles

P1 =
a2

2
sin 2δ = Pa,δ

P2 =
a2

2
(2 sin 2δ + sin 4δ) = Pa,δ + Pa,2δ

P3 = Pa,δ + Pa,2δ + Pa,3δ

. . . . . . . . .

Pi = Pa,δ + Pa,2δ + Pa,3δ + · · · + Pa,iδ.

,

Pa,iδ = a2

2 sin 2iδ is area of the isosceles triangle wirh side a and angle at the base delta,
i = 1, 2, . . . , k − 2. Since the area of the enge polygon Pa

k is equal to sum of areas of the
triangles Ajbk−1bk is valid

Pa
k = (k − 2)Pa,δ + (k − 3)Pa,2δ + · · · + Pa,(k−3)δ + P(k−2)δ.

That is

Pa
k =

a2

2

[

(k − 2) sin 2δ + (k − 3) sin 4δ + · · · + 2 sin 2(k − 3)δ + sin 2(k − 2)δ
]

.

Or

Pa
k =

a2

2

k−2

∑
ν=1

(k − ν − 1) sin (2νδ). (3.23)

So, in order to prove the theorem it is necessary to determine sum of row (3.23). In order
to calculate the sum of that row let us note the function

F(θ) =
k−2

∑
ν=1

(k − ν − 1) cos(νθ) + i
k−2

∑
ν=1

(k − ν − 1) sin(νθ) (3.24)
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In which θ = 2δ. If replace cos νθ = 1
2(eiνθ + e−iνθ) and sin νθ = 1

2i (eiνθ − e−iνθ) into
(3.24) we get the equality

F(θ) =
k−2

∑
ν=1

(k − ν − 1)
1

2
(eiνθ + e−iνθ) + i

k−2

∑
ν=1

(k − ν − 1)
1

2i
(eiνθ − e−iνθ),

After arranging it it is transformed into

F(θ) =
k−2

∑
ν=1

(k − 1)eiνθ −
k−2

∑
ν=1

νeiνθ . (3.25)

Since

k−2

∑
ν=1

(k − 1)eiνθ = (k − 1)eiθ ei(k−2)θ − 1

eiθ − 1
(3.26)

and
k−2

∑
ν=1

νeiνθ =
1

i

d

dθ

( k−2

∑
ν=1

eiθ
)

= eiθ (k − 2)ei(k−1)θ − (k − 1)ei(k−2)θ + 1

(eiθ − 1)2
(3.27)

Equality (3.25) can be rearranged into

F(θ) = eiθ ei(k−1)θ − (k − 1)eiθ + (k − 2)

(eiθ − 1)2
(3.28)

Having in mind that eiθ = cos θ + i sin θ and e−iθ = cos θ − i sin θ the last equality can be
reduced into following form

F(θ) =
(k − 1) cos θ − cos(k − 1)θ − (k − 2)

4 sin2 θ
2

+ i
( (k − 1) sin θ − sin (k − 1)θ

4 sin2 θ
2

)

. (3.29)

By comparison of the initial equality (3.24) with (3.29) and by giving θ = 2δ, we find that
the requested sum of row

k−2

∑
ν=1

(k − ν − 1) sin (2νδ) =
(k − 1) sin 2δ − sin 2(k − 1)δ

4 sin2 δ
. (3.30)

On the basis of (3.23) and (3.30) we find that

Pa
k =

a2

2

k−2

∑
ν=1

(k − ν − 1) sin (2νδ) =
a2

8

(k − 1) sin 2δ − sin 2(k − 1)δ

sin2 δ
(3.31)

that we wanted to prove.

Corollary 3.16. Area of the semi-regular equilateral polygon Pa,δ
N constructed on the regular

polygon PB
n if side a and angle δ are given, defined in (2.1) is given in the relation

Pa,δ
(k−1)n

=
na2

4

[(

1 + 2
cos( k

2 δ) sin ( k
2 − 1)δ

sin δ

)2
cot

π

n
+

(k − 1) sin 2δ − sin 2(k − 1)δ

2 sin2 δ

]

(3.32)
for even k, and
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Pa,δ
(k−1)n

=
na2

4

[(sin (k − 1)δ

sin δ

)2
cot

π

n
+

(k − 1) sin 2δ − sin 2(k − 1)δ

2 sin2 δ

]

(3.33)

for odd k.

Proof. Using results of the theorems (Theorem 3.13) and equality (3.21) we get the re-
quired relations (3.32) and (3.33).

Example 5 Area of the semi-regular equilateral polygon with 2n sides, with given side a
and angle δ is

Pa,δ
2n =

na2

4

[( sin 2δ

sin δ

)2
cot

π

n
+

2 sin 2δ − sin 4δ

2 sin2 δ

]

=
na2

4

[

4 cos2 δ cot
π

n
+

2 sin 2δ(1 − cos 2δ)

2 sin2 δ

]

=
na2

sin π
n

cos δ cos (
π

n
− δ).

Theorem 3.17. Convex regular polygon Pb
n and semi-regular equilateral polygon Pa,δ

N con-
structed on it cannot have equal sides.

Proof.Let us presume opposite, that is, semi-regular and regular polygons have equal
sides. Then we have b = a, in which a is side of the semi-regular polygon and b is side of
the regular polygon on which it is constructed. Then on the basis of the equality (3.20)

we have the equation cos k
2 δ sin ( k

2 − 1)δ = 0 if the edging polygon Pa
k has even number

of sides and equation sin (k − 1)δ − sin δ = 0 if k if k is odd number. We can see out

of these equations that δ = (2p+1)π
k or δ = 2sπ

(k−2)
. On the basis of the theorem (3.4) and

convexity of the semi-regular polygon we have that δ ∈
(

0; π
(k−2)n

)

; k, n ≥ 3; k, n ∈ N

and the inequality

{

0 <
(2p+1)π

k <
π

(k−2)n

0 <
2sπ

(k−2)
<

π
(k−2)n

.

That is

{

0 < n <
k

(k−2)(2p+1)

0 < n <
1
2s

From these inequality we can draw a conclusion that there are no values n and k in the
set N for which the semi-regular polygon is convex, and the values of the angle δ are

given in the relation δ = (2p+1)π
k or δ = 2sπ

(k−2)
.

We get the same results by similar procedure from the other equation

a = a
sin(k − 1)δ

sin δ
.
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Thus, there is no angle δ defined with (2.1) for which the semi-regular polygon is con-
vex and it has side which is equal to the side of the regular polygon on which it is con-
structed, which was meant to prove.

3.5. Application. By using results of the Lemma 3.14 and Theorem 3.15 we can define
sum of rows,

⌈ k
2 ⌉−1

∑
p=1

cos(4p + 1)δ +
⌈ k−1

2 ⌉

∑
p=1

cos(4p − 1)δ, k ∈ N, k ≥ 3

Which means that it is valid.

Corollary 3.18. It is valid

⌈ k
2 ⌉−1

∑
p=1

cos(4p + 1)δ +
⌈ k−1

2 ⌉

∑
p=1

cos(4p − 1)δ =
sin 2(p − 1)δ − sin 2δ

2 sin δ
, k ∈ N, k ≥ 3 (3.34)

Proof. If we equalize relations (3.15) and (3.31), after shortening and arranging we get
tha the requested sum is

⌈ k
2 ⌉−1

∑
p=1

cos(4p + 1)δ +
⌈ k−1

2 ⌉

∑
p=1

cos(4p − 1)δ =
sin 2(k − 1)δ − sin 2δ

2 sin δ
.
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