

SOME METRIC PROPERTIES OF GENERAL SEMI-REGULAR POLYGONS

NENAD STOJANOVIC

ABSTRACT. If we construct isosceles polygon P_k^a with (k-1) sides of the same length over each side of regular polygon P_n^b , with n sides, we get a new equilateral polygon $P_N^{a,\delta}$ with N = (k-1)n sides of the same length and with different inner angles. Such polygon is called equilateral semi-regular polygon. This paper deals with metric properties of general semi-regular polygons P_N^a , with given side a and angle δ , defined by equation $\delta = \angle (a, d_1) = \angle (d_i, d_{i+1}), i = 1, 2, \dots, k-3$, as an angle between diagonals d_i drawn from the apex $A_j, j = 1, 2, \dots, n$ of the regular polygon with sides $d_{k-2} = A_j A_{j+1} = b$ as well as the application of the obtained results.

1. INTRODUCTION

Given the set of points $A_j \in E^2$, j = 1, 2, ..., n in Euclidian plane E^2 , such that any three successive points do not lie on a line p and for which we have a rule: if $A_j \in p$ and $A_{j+1} \in p$ for each j point A_{j+2} does not belong to the line p.

1. Polygon P_n or closed polygonal line is the union along $A_1A_2, A_2A_3, \ldots, A_nA_{n+1}$, and write short

$$P_n = \bigcup_{j+1}^n A_j A_{j+1}, (n+1 \equiv 1 \mod n)$$
(1.1)

Points A_i are vertices, and lines $A_i A_{i+1}$ are sides of polygon P_n .

2. The angles on the inside of a polygon formed by each pair of adjacent sides are angles of the polygon

3. If no pair of polygon's sides, apart from the vertex, has no common points, that is , if $A_jA_{j+1} \cap A_{j+l}A_{j+l+1} = \emptyset, l \neq 1$

polygon is simple, otherwise it is complex. This paper deals with simple polygons only. 4. Simple polygons can be convex and non-convex. Polygon is convex if it all lies on the same side of any of the lines A_jA_{j+1} , otherwise it is non-convex. Polygon P_n divides plane E^2 into two disjoint subsets, U and V. Subset U is called interior, and subset Vis exterior area of the polygon. Union of polygon P_n and its interior area U_n makes *polygonal area* S_n , which is:

$$S_n = P_n \cup U_n \tag{1.2}$$

Key words and phrases. semi regular polygons, regular polygons, polygons.

Mathematics Subject Classification MSC 2010: 51M05, Secondary 11D04.

5. Given polygon P_n with vertices A_j , j = 1, 2, ..., n, $(n + 1 \equiv 1 \mod n)$ lines of which A_jA_i are called polygonal diagonals if indices are not consecutive natural numbers, that is, $j \neq i$. We can draw n - 3 diagonals from each vertex of the polygon with n number of vertices.

6. Exterior angle of the polygon P_n with vertex A_j is the angle $\angle A_{v,j}$ with one side $A_{j+1}A_j$, and vertex A_j , and the other one is extension of the side A_jA_{j-1} through vertex A_j 7. Sum of all exterior angles of the given polygon P_n is equal to multiplied number or product of tracing around the polygons in a certain direction and 2π , that is, the rule is

$$\sum_{j=1}^{n} (\angle A_{v,j}) = 2k\pi, k \in \mathbb{Z}$$

$$(1.3)$$

In which *k* is number of turning around the polygon in certain direction.

8. The interior angle of the polygon with vertex A_j is the angle $\angle A_{u,j}$, j = 1, 2, ..., n for which $\angle A_{u,j} + \angle A_{v,j} = \pi$. That is the angle with one side $A_{j-1}A_j$, and the other side A_iA_{i+1} . Sum of all interior angles of the polygon is defined by equation

$$\sum_{j=1}^{n} \angle A_{u,j} = (n-2k)\pi, n \in \mathbb{N}, k \in \mathbb{Z}.$$
 (1.4)

In which *k* is number of turning around the polygon in certain direction.

9. A regular polygon is a polygon that is equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygon with *n* sides of *b* length is marked as P_n^b . The formula for interior angles γ of the regular polygon P_n^b with *n* sides is $\gamma = \frac{(n-2)\pi}{n}$. A non-convex regular polygon is a regular star polygon.For more about polygons in [4,5,6].

10. Polygon that is either equiangular or equilateral is called *semi-regular polygon*. Equilateral polygon with different angles within those sides are called *equilateral semi-regular* polygons, whereas polygons that are *equiangular* and with sides different in length are called *equiangular* semi regular polygons. For more about in [1,2,3].

FIGURE 1. Convex semi-regular polygon P_N with N = (k - 1)n sides constructed above the regular polygon P_n^b

2. BASIC TERMS, SIGNS AND DEFINITIONS

1. If we construct a polygon P_k with (k-1) sides, $k \ge 3, k \in \mathbb{N}$ with vertices $B_i, i = 1, 2, ..., k$ over each side of the convex polygon $P_n, n \ge 3, n \in \mathbb{N}$ with vertices $A_j, j = 1, 2, ..., n$, $(n+1) \equiv 1 \mod n$, that is $A_j = B_1, A_{j+1} = B_k$, we get new polygon with N = (k-1)n sides, (figure 1) marked as P_N .

Here are the most important elements and terms related to constructed polygons:

- (1) Polygon P_k with vertices $B_1B_2...B_{k-1}B_k$, $B_1 = A_j$, $B_k = A_{j+1}$ constructed over each side A_jA_{j+1} , j = 1, 2, ..., n of polygon P_n with which it has one side in common is called edge polygon for polygon P_n .
- (2) $A_j B_2, B_2 B_3, \dots, B_{k-1} A_{j+1}, j = 1, 2, \dots, n$ the sides polygon P_k .
- (3) $A_j B_2 A_j B_3, \dots, A_j B_{k-1}$ are diagonals $d_i, i = 1, 2, \dots, k-2$, of the polygon P_k^a drawn from the top A_j and that implies $d_{k-2} = A_j A_{j+1} = b$.
- (4) Angles $\angle B_{u,i}$ are interior angles of vertices $B_{u,i}$ of the polygon P_N and are denote as β_i . Interior angle $\angle A_{u,i}$ of the polygon of the vertices A_i are denoted as α_i .
- (5) Polygon P_k of the side *a* constructed over the side *b* of the polygon P_n is isosceles, with (k 1) equal sides, is denoted as P_k^a .
- (6) With $\delta = \angle (d_i, d_{i+1}), i = 1, 2, ..., k 2$ denotes the angle between its two consecutive diagonals drawn from the vertices $A_j, j = 1, 2, ..., n$ for which it is true

$$\delta = \angle (a, d_1) = \angle (d_i d_{i+1}), i = 1, 2, \dots, k-3, d_{k-2} = b$$
(2.1)

(7) If the isosceles polygon P_k^a is constructed over each side of the *b* regular polygon P_n^b with *n* sides, then the constructed polygon with N = (k - 1)n of equal sides is called equilateral *semi-regular polygon* which is denoted as P_N^a .

2. We analyzed here some metric characteristics of the general equilateral semi-regular polygons, if side *a* is given, and angle is $\delta = \angle (d_i, d_{i+1}), i = 1, 2, ..., (k-2)$, in between the consecutive diagonals of the polygon P_k^a drawn from the vertex P_k^a of the regular polygon P_n^b . Such semi-regular polygon with N = (k-1)n sides of *a* length and angle δ defined in (2.1) we denote as $P_n^{a,\delta}$.

3. Regular polygon P_n^b polygon is called corresponding regular polygon of the semiregular polygon $P_N^{a,\delta}$.

4. Interior angles of the semi-regular equilateral polygon is divided into two groups

- angles at vertices B_i , i = 2, ..., k - 1 we denote as β ,

- angles at vertices A_j , j = 1, 2, ..., n we denote as α .

5. K_N stands for the sum of the interior angles of the semi-regular polygon $P_N^{a,\delta}$.

6. $S_{A_j}^{\gamma}$ stands for the sum of diagonals comprised by angle γ and drawn from the vertex A_j , and with $\varepsilon_{A_j}^{\gamma}$ we denote the angle between the diagonals drawn from vertex A_j comprised by angle γ .

7. We denote the radius with r_N of the inscribed circle of the semi-regular polygon $P_N^{a,\delta}$.

3. SOME METRIC PROPERTIES OF SEMI-REGULAR POLYGONS $P_N^{a,\delta}$

3.1. **Interior angles of the semi-regular polygon.** Let on each side of the regular polygon P_n^b , be constructed polygon P_k^a , with (k - 1) equal sides, and let $d_l = A_j B_i$, l = 1, 2, ..., k - 2, $d_{k-2} = A_j A_{j+1} = b$, j = 1, 2, ..., n; i = 3, 4, ..., k; $B_k = A_{j+1}$ diagonals drawn from the vertex A_j , $A_j A_{j+1} = b$, j = 1, 2, ..., n to the vertices B_i of the polygon P_k^a .

The following lemma is valid for interior angles at vertices B_i , i = 3, 4, ..., k, $B_k = A_{j+1}$ of triangle $\triangle A_j B_{i-1} B_i$ determined by diagonals d_i .

Lemma 3.1. Ratio of values of interior angles $\triangle A_j B_{i-1} B_i$; i = 3, 4, ..., k at vertex B_i of the base $A_j B_i = d_{i-2}$ from the given angle $A_j B_i = d_{i-2} \delta$ is defined by relation $\angle B_i = (i-2)\delta$.

Proof. The proof is done by induction on i, $(i \ge 3)$, $i \in \mathbb{N}$. Let us check this assertion for i = 4 because for i = 3 the claim is obvious because the triangle erected on the sides of the regular polygon is isosceles and angles at the base b are equal as angle δ .

If i = 4 and isosceles rectangle is constructed on side b of the regular polygon P_n^b (figure 2a) with vertices $A_1B_2B_3B_4$, i $B_4 = A_2$ where $A_1A_2 = b$ side of the regular polygon. Diagonals constructed from the vertex A_1 divide polygon $A_1B_2B_3B_4$, into triangles $\triangle A_1B_2B_3$ and $\triangle A_1B_3B_4$. According to the definition of the angle δ we have:

$$\angle B_2 A_1 B_3 = \angle B_2 B_3 A_1 = \angle B_3 A_1 B_4 = \delta$$

Intersection of the centerline of the triangle's base $\triangle A_1B_2B_3$ i $A_1B_4 = b$ is point S_1 . Since $A_1B_2 = B_2B_3 = a$, a and construction of the point S_1 leads to conclusion that $\Box A_1S_1B_2B_3$ is a rhombus with side a. Since $B_3S_1 = B_3B_4 = a$ a triangle $\triangle B_3S_1B_4$ is isosceles, and its interior angle at vertex S_1 is exterior angle of the triangle $\triangle A_1B_3S_1$, thus $\angle S_1 = 2\delta$, as well as $\angle B_4 = 2\delta$.

FIGURE 2. a. Rectangle $A_1B_2B_3B_4$ b.Rectangle $A_iB_{\nu-2}B_{\nu-1}B_{\nu}$

Let us presume that the claim is valid for an arbitrary integer (p-1), $(p \ge 4)$, $p \in \mathbb{N}$, that is i = (p-1) interior angle of the triangle $\triangle A_j B_{p-2} B_{p-1}$ at the vertex B_{p-1} has value $\angle B_{p-1} = (p-3)\delta$.

Let us show now that this ascertain is true for integer p, that is for i = p. Also, interior angle of the triangle $\triangle A_j B_{p-1} B_p$ at vertex B_p has value $\angle B_p = (p-2)\delta$.

Let us note $\Box A_j B_{p-2} B_{p-1} B_p$ which is split into triangles $\triangle A_j B_{p-2} B_{p-1}$ and $\triangle A_j B_{p-1} B_p$ by diagonal d_{p-3} , and that $\angle B_{u,p-1} = (p-3)\delta$ according to presumption.

Since interior angles of triangles are congruent at vertex A_j , by definition of angle δ , and $B_{p-2}B_{p-1} = B_{p-1}B_p = a$, it is easily proven that there is point *S* such that triangle $\triangle SB_{p-1}B_p$ is isosceles triangle(figure 2), and rectangle $\Box A_jB_{p-2}B_{p-1}S$ is rectangle with perpendicular diagonals. Congruence of triangles $\triangle A_jB_{p-2}B_{p-1} \simeq \triangle A_jB_{p-1}S$ leads us to conclusion that $\angle A_jB_{p-1}S = (p-3)\delta$. Angle at vertex *S* is the exterior angle of triangle $\triangle A_iB_{p-2}B_{p-1}$. And thus we have $\angle S = \delta + (p-3)\delta = (p-2)\delta$.

Since triangle $SB_{p-1}B_p$ isosceles, $\angle B_p = (p-2)\delta$ which we were supposed to prove. So, for each $i \in \mathbb{N}, i \ge 3$ interior angle of triangle $\triangle A_i B_{i-1} B_i$ at vertex B_i is $\angle B_i = (i-2)\delta$.

FIGURE 3. Isosceles polygon P_k^a constructed on side *b* of the regular polygon P_n^b

Lemma 3.2. Semi regular equilateral polygon $P_{(k-1)n}^{a,\delta}$ with given side a and angle δ defined with (2.1), has n interior angles equal to an that angle

$$\alpha = \frac{(n-2)\pi}{n} + 2(k-2)\delta \tag{3.1}$$

and (k-2)n interior angles equal to an that angle

$$\beta = \pi - 2\delta, \delta > 0, k \ge 3, n \ge 3, k, n \in \mathbb{N}$$
(3.2)

Proof. Using figure 3 and results of lemma 3.1, it is easily proven that polygon P_k^a constructed on side *b* of the regular polygon P_n^b has (k - 2) interior angles with value $P_n^b \pi - 2\delta$, and which are at the same time interior angles of the semi-regular polygon $P_{N'}^a N = (k - 1)$.

So indeed, for k = 3 the constructed polygon P_k is isosceles triangle with interior angle at vertex $B_2 = \pi - 2\delta$, and for k = 4 constructed polygon is isosceles rectangle (figure 2). That rectangle is drawn by diagonal d_1 from vertex $A_{j,j} = 1, 2, ..., n$, $B_1 \equiv A_1, B_4 \equiv A_{j+1}$ and $A_jA_{j+1} = b$ split into triangles $A_jB_2B_3$ and $A_jB_3A_{j+1}$ with interior angles at vertices $\angle B_2 = \angle B_3 = \pi - 2\delta$.

Similarly is proven that for every rectangle $A_jB_{i-2}B_{i-1}B_i$, i = 4, 5, ..., k; $(B_1 = A_j, B_k = A_{j+1}, A_jA_{j+1} = b)$ and the value of its vertex B_{i-1} ,

$$\angle B_{i-1} = (i-3)\delta + \pi - [(i-2)\delta + \delta] = \pi - 2\delta.$$

So, in every isosceles polygon P_k^a exist k - 2 interior angles with measure $\pi - 2\delta$. Since isosceles polygon P_k^a , is constructed on each side of regular polygon P_n^b , it follows that equilateral semi-regular polygon P_N^a has total of (k - 2)n angles, which we were supposed to prove.

When interior angle of the semi-regular equilateral polygon at vertex A_j , j = 1, 2, ..., n is equal to sum of interior angle of the regular polygon P_n^b and double value of the interior angle of the polygon P_k^a at vertex B_k , (Lema 3.1)is valid $\angle A_{u,j} = \frac{(n-2)\pi}{n} + 2(k-2)\delta$ which we were supposed to prove.

Corollary 3.3. Sum of interior angles of the equilateral semi-regular polygon $P_N^{a,\delta}$ is given in

$$K_N = [N-2]\pi \tag{3.3}$$

Proof. On the basis of Lema 3.2. and relation (3.1) and (3.2) it is true that $K_N = n\alpha + \beta(k-2)n = n[\frac{(n-2)\pi}{n} + 2\delta(k-2)] + n(k-2)(\pi-2\delta) = (n-2)\pi + n(k-2)\pi = (nk-n-2)\pi = [n(k-1)-2]\pi = [N-2]\pi.$

3.2. Convexity semi regular equilateral polygons $P_N^{a,\delta}$. Condition of convexity of the semi-regular equilateral polygon $P_N^{a,\delta}$ and the values of its angle δ is given in the theorem.

Theorem 3.4. Equilateral semi-regular polygon $P_N^{a,\delta}$, N = (k-1)n is convex if the following is true for the angle δ

$$\delta \in \left(0; \frac{\pi}{(k-2)n}\right) \quad k, n \in \mathbb{N}, n, k \ge 3.$$
(3.4)

Proof. Let us write values of the interior angles of the semi-regular polygon $P_N^{a,\delta}$ defined by relations (3.1),(3.2) in the form of linear functions

$$f(\delta) = \frac{(n-2)\pi}{n} + 2(k-2)\delta, g(\delta) = \pi - 2\delta, \dot{k}, n \in \mathbb{N}, \dot{k}, n \ge 3.$$
(3.5)

As the polygon is convex if all its interior angles are smaller than π , to prove the theorem it is enough to show that for $\forall \delta \in \left(0; \frac{\pi}{(k-2)n}\right)$ all interior angles of the semi-regular polygon $P_N^{a,\delta}$ are smaller than π .

Indeed, from this relation $\beta = g(\delta) = \pi - 2\delta$ follows that $\beta = 0$ for $\delta = \frac{\pi}{2}$, (figure 4). On the basis of this and demands $\beta > 0$ and $\delta > 0$, we find that $\beta \in (0, \pi)$ and $0 < \delta < \frac{\pi}{2}$, and thus we have $\delta \in \left(0; \frac{\pi}{(k-2)n}\right), k \ge 3$.

FIGURE 4. Semi-regular polygon and convexity

It is similar for interior angles equal to angle α , (figure 4). If we multiply the inequality $0 < \delta < \frac{\pi}{(k-2)n}$ with 2(k-2), and then add to the left and right side $\frac{(n-2)\pi}{n}$, we get the inequality

$$\frac{(n-2)\pi}{n} < \frac{(n-2)\pi}{n} + 2(k-2)\delta < \frac{2\pi}{n} + \frac{(n-2)\pi}{n} \Leftrightarrow \frac{(n-2)\pi}{n} < \alpha < \pi, \Rightarrow \alpha \in \left(\frac{(n-2)\pi}{n}, \pi\right)$$

for $\delta \in \left(0; \frac{\pi}{(k-2)n}\right)$, $k \ge 3$. So, for every $\delta \in \left(0, \frac{\pi}{(k-2)n}\right)$ interior angles of the semi-regular polygon $P_N^{a,\delta}$ are smaller than π . That is, semi-regular equilateral polygon $P_N^{a,\delta}$ is convex for $\delta \in \left(0; \frac{\pi}{(k-2)n}\right)$. Values of the interior angles of the convex semi-regular equilateral polygon $P_N^{a,\delta}$ depend on the interior angle of the corresponding regular polygon $\gamma = \frac{(n-2)\pi}{n}$ as well as the angle δ . Which means that the following theorem is true:

Theorem 3.5. Values of the interior angles of the equilateral semi-regular polygon $P_{(k-1)n}^{a,\delta}$ are within the interval $\left(\frac{(n-2)\pi}{n};\pi\right)$ if $\beta \leq \alpha$ or within the interval $\left(\frac{(kn-2n-2)\pi}{(k-2)n};\pi\right)$ if $\beta \leq \alpha$ for $k,n \geq 3,k,n \in \mathbb{N}$.

Proof. Let $\beta \ge \alpha$. We find from the inequality $\pi - 2\delta \ge \frac{(n-2)\pi}{n} + 2(k-2)\delta$ that $\delta \le \frac{\pi}{(k-1)n}$. Let us determine values of the interior angles, equal to angles α , β defined in relations (3.1) and (3.2) if $\delta \in \left(0, \frac{\pi}{(k-1)n}\right]$. Let us multiply the inequality $0 < \delta \le \frac{\pi}{(k-1)n}$ with -2, and then add π to the left and

Let us multiply the inequality $0 < \delta \leq \frac{\pi}{(k-1)n}$ with -2, and then add π to the left and right side, we get inequalities from which we determine value interval of the angles equal to angle β .

$$\pi > \pi - 2\delta \ge \pi - \frac{2\pi}{(k-1)n} \Leftrightarrow \pi > \beta \ge \frac{(kn-n-2)\pi}{(k-1)n} \Rightarrow \beta \in \left[\frac{(kn-n-2)\pi}{(k-1)n}, \pi\right).$$

We can similarly determine values of the interior angles equal to angle α . If we multiply the initial inequality $0 < \delta \le \frac{\pi}{(k-1)n}$ is first by $2(k-2), k \ge 3$ and then we add $\frac{(n-2)\pi}{n}, n \ge 3$ to the left and right side.

We get a series of inequalities from which we can determine value interval (figure 4)

$$\frac{(n-2)\pi}{n} < \frac{(n-2)\pi}{n} + 2(k-2)\delta \le \frac{(n-2)\pi}{n} + \frac{2(k-2)\pi}{(k-1)n}$$
$$\Leftrightarrow \frac{(n-2)\pi}{n} < \alpha \le \frac{(kn-n-2)\pi}{(k-1)n}$$
$$\Rightarrow \alpha \in \left(\frac{(n-2)\pi}{n}, \frac{(kn-n-2)\pi}{(k-1)n}\right].$$

So,

$$\alpha, \beta \in \left(\frac{(n-2)\pi}{n}, \pi\right).$$
(3.6)

Now, let us determine values of the interior angles if $\beta \leq \alpha$. We have the inequality $\pi - 2\delta \leq \frac{(n-2)\pi}{n} + 2(k-2)$ from the condition $\delta \geq \frac{\pi}{n(k-1)}$.

Since the semi-regular polygon is convex we have $\delta \in \left[\frac{\pi}{n(k-1)}, \frac{(n-2)}{\pi}\right)$. If we multiply the inequality $\frac{\pi}{n(k-1)} \leq \delta < \frac{\pi}{(k-2)n}$ with -2, and then add π to the left and right side , we get

$$\begin{aligned} \pi - \frac{2\pi}{n(k-1)} \geq \pi - 2\delta > \pi - \frac{2\pi}{n(k-2)} \Leftrightarrow \frac{(nk-2n-2)\pi}{n(k-2)} < \beta \leq \frac{(nk-n-2)\pi}{n(k-1)} \\ \Rightarrow \beta \in \left(\frac{(nk-2n-2)\pi}{n(k-2)}, \frac{(nk-n-2)\pi}{n(k-1)}\right]. \end{aligned}$$

Similarly, if we multiply the inequality $\frac{\pi}{(k-1)n} \leq \delta < \frac{\pi}{(k-2)n}$ with 2(k-2), and then we add $\frac{(n-2)\pi}{n}$, $n \geq 3$ we get

$$\frac{(n-2)\pi}{n} + \frac{2(k-2)\pi}{(k-1)n} \le \frac{(n-2)\pi}{n} + 2(k-2)\delta < \frac{2\pi}{n} + \frac{(n-2)\pi}{n} \Leftrightarrow \frac{(nk-n-2)\pi}{n(k-1)} \le \alpha < \pi \Rightarrow \alpha \in \left[\frac{(nk-n-2)\pi}{n(k-1)}, \pi\right)$$

So, if $\beta \leq \alpha$ then

$$\alpha.\beta \in \left(\frac{(nk-2n-2)\pi}{n(k-2)},\pi\right)$$
(3.7)

which was supposed to be proven.

Corollary 3.6. Convex semi-regular equilateral polygon $P_N^{a,\delta}$ is regular for $\delta = \frac{\pi}{(k-1)n}$; $k, n \in N, n, k \ge 3, \delta > 0$ and the values of its interior angles are given in the relation

$$\alpha = \beta = \frac{(nk - n - 2)\pi}{n(k - 1)}.$$
(3.8)

Proof. According to the definition of the regular polygon, its every angle has to be equal, thus from $\alpha = \beta$ and the relation (3.1), (3.2) we have the equation

$$\frac{(n-2)\pi}{n} + 2(k-2)\delta = \pi - 2\delta$$

out of which we find out that the sought value of the angle is $\delta = \frac{\pi}{(k-1)n}$ for which the semi-regular equilateral polygon $P_N^{a,\delta}$ is regular. On this basis we find that the value of the interior angles is

$$\alpha = \beta = \frac{(nk - n - 2)\pi}{n(k - 1)}.$$

Example 1 Values of the angle δ and of the interior angles for different values *k* and *n* for which the semi-regular equilateral polygon is regular (Table 1).

Table 1.											
k	n	$\delta = \frac{\pi}{(k-1)n}$	$\frac{(nk-n-2)\pi}{n(k-1)}$								
3	3	$\delta = \frac{\pi}{6}$	$\frac{2\pi}{3}$								
3	4	$\delta = \frac{\pi}{8}$	$\frac{3\pi}{4}$								
4	3	$\delta = \frac{\pi}{9}$	$\frac{7\pi}{9}$								
5	3	$\delta = \frac{\pi}{12}$	$\frac{5\pi}{6}$								
4	4	$\delta = \frac{\pi}{12}$	$\frac{5\pi}{6}$								

Theorem 3.7. Semi-regular equilateral polygon, $P_N^{a,\delta}$ with positively oriented angles is nonconvex for $k, n \in N, n, k \ge 3$, $\delta \in \left(\frac{\pi}{(k-2)n}; \frac{\pi}{2}\right)$, and for $\delta \ge \frac{\pi}{2}$ is not defined.

Proof. It is sufficient to prove that there are interior angles of the semi-regular polygon, $P_N^{a,\delta}$, for those values of angle δ , which are bigger than π . Starting from the inequality $\frac{\pi}{(k-2)n} < \delta < \frac{\pi}{2}$, we find that the value interval of those angles, for the interior angles equal to angle β (Lema 3.2), is

$$0 < \pi - 2\delta < \pi - \frac{2\pi}{(k-2)n} \Leftrightarrow 0 < \beta < \frac{(kn-n-2)\pi}{(k-2)n} \Rightarrow \beta \in \left(0; \frac{(kn-n-2)\pi}{(k-2)n}\right)$$

We can apply the similar procedure here. If we multiply the initial inequality with 2(k-2), and then we add $\frac{(n-2)\pi}{n}$ to the left and right side , after solving the equation we find that the values of the interior angles equal to angle α are within the interval $\left(\pi; \frac{(kn-n-2)\pi}{n}\right)$.

Since $\alpha > \pi$ for all values $\delta \in \left(\frac{\pi}{(k-2)n}; \frac{\pi}{2}\right)$ semi-regular equilateral polygon $P_N^{a,\delta}$ is non-convex. If

$$\delta \ge \frac{\pi}{2} \Rightarrow 2\delta \ge \pi \Rightarrow \pi - 2\delta \le 0 \Rightarrow \beta \le 0$$

Which is opposite to the presumption that interior angles are positively oriented, thus there is no convex semi-regular polygon for $\delta \geq \frac{\pi}{2}$.

3.3. Diagonals of the semi-regular equilateral polygons $P_N^{a,\delta}$.

Theorem 3.8. Length of the diagonal d_i , i = 1, 2, ..., k - 2, and $d_{k-2} = b$, drawn from the vertex A_j , j = 1, 2, ..., n, $A_jA_{j+1} = b$ of the edging polygon $P_k^{a,\delta}$, constructed on side b of the regular polygon P_n^b , defined by the recurrent equations.

$$d_1 = 2a\cos\delta, d_2 = a(1 + 2\cos 2\delta), d_i = d_{i-2} + 2a\cos(i\delta), i \ge 3.$$
(3.9)

Proof. This will be proven by mathematical induction with *i*. Let us check the recurrent formula for i = 3. If the formula is valid then

$$d_3 = d_1 + 2a\cos 3\delta = 2a\cos \delta + 2a\cos 3\delta = 2a(\cos \delta + \cos 3\delta) = 4a\cos 2\delta \cos \delta.$$
(3.10)

In order to prove the equality (3.10) let us presume that isosceles polygon $A_jB_2B_3B_4A_{j+1}$ is constructed on side $b = A_jA_{j+1}$ of the regular polygon P_n^b .(Figure 5a) Diagonals d_1, d_2, d_3 are drawn from the vertex A_j for the rectangle $\Box A_jB_3B_4A_{j+1}$ and on the basis of the definition of the angle δ it is valid that $\delta = \angle (a, d_1) = \angle (d_1d_2) = \angle (d_2d_3)$, $d_3 = b$.

FIGURE 5. Isosceles polygon P_k^a constructed on the side *b* of the regular polygon P_n^b

Let us note that triangle $\triangle A_j B_2 B_3$ is isosceles triangle for which $\angle A_j = \angle B_3 = \delta$, $A_j B_2 B_2 B_3 = a$ and $A_j B_3 = d_1$. On the basis of Lemma 3.1. we have $\angle B_3 = \delta$, $\angle B_4 = 2\delta$, $\angle A_{j+1} = 3\delta$.

Let us construct point S_1 on the base of the triangle $\triangle A_j B_3 B_4$ so that the triangles $\triangle A_j B_3 S_1$ and $\triangle S_1 B_3 B_4$ are isosceles. It is valid that $\angle S_1 = 2\delta$ for it is exterior angle of the triangle $\triangle A_j B_3 S_1$.

Similarly, we will construct point S_2 on the base $A_jA_{j+1} = b$ of the triangle $\triangle A_jB_4A_{j+1}$ so that triangle $\triangle S_2B_4A_{j+1}$ is isosceles with interior angles at the base $\angle S_2 = \angle A_{j+1} = 3\delta$. Further on, $\angle B_4S_2A_{j+1} = 3\delta$ is the exterior angle of the triangle $\triangle A_jB_4S_2$, for which $\angle A_j = \delta$ and $\overline{S_2B_4} = \overline{B_3B_4} = a$ so it is valid that $\angle A_jB_4S_2 = 2\delta$.

Since $\overline{B_3B_4} = \overline{B_4B_2} = \overline{B_4A_{j+1}} = a$ and $\angle A_jB_4B_3 = 2\delta$ triangles $\triangle A_jB_3B_4$ and $\triangle A_jS_2B_4$ are congruent, thus we have $\overline{A_jB_3} = \overline{A_jS_2} = d_1 = 2a\cos\delta$.

Triangle $\triangle S_2 B_4 A_{j+1}$ is isosceles thus we have $S_2 A_{j+1} = 2a \cos 3\delta$. So,

$$d_3 = A_j A_{j+1} = A_j S_2 + S_2 A_{j+1} = 2a\cos\delta + 2a\cos 3\delta$$
$$= 2a(\cos\delta + \cos 3\delta) = 4a\cos\delta\cos 3\delta.$$

This proves that formulas (3.10) is valid.We can similarly check if this is valid for i = 4. That is, it is true for diagonal d_4 drawn from the vertex A_i

$$d_4 = d_2 + 2a\cos 4\delta = a + 2a\cos 2\delta + 2a\cos 4\delta = a + 2a(\cos 2\delta + \cos 4\delta) = a(1 + 4\cos \delta\cos 3\delta).$$

Let us presume that the recurrent formula (3.9) is valid for natural number p - 1, $p \ge 4$, $p \in \mathbb{N}$ that is for i = p - 1 and that

$$d_{p-1} = d_{p-3} + 2a\cos(p-1)\delta.$$
(3.11)

Let us show that the formula is valid for natural number p, that is for i = p. We can take $A_jB_pB_{p+1}B_{p+2}$ from the isosceles polygon P_k^a (figure 5b.) constructed on the side b of the regular polygon P_n^b . This is valid for triangle $\triangle A_jB_pB_{p+1}$ according to definition (2.1), and according to Lemma 3.1, $\angle B_{p+1} = (p-1)\delta$ and $B_pB_{p+1} = a$ is the side of the regular polygon $P_N^{a,\delta}$. Let us construct isosceles triangle $\triangle B_{p+1}S_3B_{p+2}$, so that $\overline{S_3B_{p+1}} = \overline{B_{p+1}B_{p+2}} = a$. Then, according to Lemme 3.1 $\angle B_{p+1}S_3B_{p+2} = p\delta$.

Since $\angle B_{p+1}S_3B_{p+2} = 3\delta$ is the exterior angle of the triangle $\triangle A_jB_{p+1}S_3$ and $\angle A_j = \delta$ it follows that $\angle A_jB_{i+1}S_3 = (p-1)\delta$. So, triangles $\triangle A_jB_iB_{i+1}$ and $\triangle A_jB_{p+1}S_3$ are congruent, thus we have $\overline{A_jB_p} = \overline{A_jS_3} = d_{p-2}$.

We find that $\overline{S_3B_{p+2}} = 2a\cos(i\delta)$ from the isosceles triangle $\triangle B_{p+1}S_3B_{p+2}$. Hence

$$d_p = A_j B_{p+2} = A_j S_3 + S_3 B_{p+2} = d_{p-2} + 2a\cos(p\delta)$$

Thus, the recurrent formula is valid for every i = 3, 4, ..., k - 2.

Theorem 3.9. Length of the diagonal d_i , i = 1, 2, ..., k - 2 of the edging polygons $P_k^{a,\delta}$ drawn from the vertex A_j , j = 1, 2, ..., n, in which $A_jA_{j+1} = b$ is the side of the regular polygon P_n^b for i = 2p, $p \in \mathbb{N}$, is given in the formula

$$d_{2p} = a + 2a \frac{\cos(p+1)\delta\sin p\delta}{\sin\delta}$$
(3.12)

and for $i = 2p - 1, p \in \mathbb{N}$ with formula

$$d_{2p-1} = a \frac{\sin(2p\delta)}{\sin\delta} \tag{3.13}$$

Proof. Using Theorem (3.8) for i = 2p we have

$$d_{2p} = d_{2p-2} + 2a\cos 2p\delta = d_{2p-4} + 2a\cos(2p-2)\delta + 2a\cos 2p\delta$$
$$= d_{2p-6} + 2a\cos(2p-4)\delta + 2a\cos(2p-2)\delta + 2a\cos 2p\delta$$
$$\dots$$
$$= d_2 + 2a\cos 4\delta + 2a\cos 6\delta + \dots + 2a\cos 2p\delta$$
$$= a + 2a(\cos 2\delta + \cos 4\delta + \dots + \cos 2p\delta) = a + 2a\frac{\cos(p+1)\delta \dots \sin p\delta}{\sin\delta}.$$

We find similar thing for i = 2p - 1,

$$\begin{aligned} d_{2p-1} &= d_{2p-3} + 2a\cos(2p-1)\delta = d_{2p-5} + 2a\cos(2p-3)\delta + 2a\cos(2p-1)\delta \\ &= d_{2p-7} + 2a\cos(2p-5)\delta + 2a\cos(2p-3)\delta + 2a\cos(2p-1)\delta \\ & \dots \\ & = d_1 + 2a\cos 3\delta + 2a\cos 5\delta + \dots + 2a\cos(2p-1)\delta \\ &= 2a\cos \delta + 2a\cos 3\delta + \dots + 2a\cos(2p-1)\delta = a\frac{\sin 2p\delta}{\sin\delta}. \end{aligned}$$

Theorem 3.10. *The following is valid for the diagonals drawn from the vertex of the semi-regular* polygon $P_N^{a,\delta}$:

- (1) There are (k-1)n (2k-1) diagonals which are within the interior angle $\gamma = \frac{(n-2)\pi}{n}$ of the corresponding regular polygon P_n^b which together form angle $\frac{\pi}{(k-1)n}$ and 2(k-2) diagonals of the polygon P_k^a constructed on sides of that regular polygon which form angle equal to angle d defined with(2.1) if the interior angle equal to angle L from (3.1) is corresponding to the vertex from which the diagonals are drawn.
- (2) There are (k-1)n 5 diagonals which together form angle $\frac{\pi 4\delta}{(k-1)n-4}$ if interior angle $\beta = \pi 2\delta$ corresponds to the vertex.

Proof.

(1) Let us consider that diagonals are constructed from vertex A_1 and that interior angle α defined in relation (3.1) is corresponding for the vertex. Let us denote with S_{A_1} number of diagonals which can be drawn from vertex A_1 . Then we have $S_{A_1} = (k-1)n - 3$. It was earlier proven that we can construct (k-2) diagonals $d_i, i = 1, 2, ..., k - 2$, from the vertex A_1 of the polygon P_k^a constructed on the side $A_1A_2 = b$ of the regular polygon P_n^b , with interior angle $\gamma = \frac{(n-2)\pi}{n}$, for which $d_{k-2} = b$ and which together form angle δ .

Since there are two such polygons P_k^a constructed on sides $A_1A_2 = b$ and $A_1A_n = b$ with common vertex A_1 number of diagonals which together form angle δ defined in the relation (2.1), is 2(k-2).

Having in mind relation (3.1) number of diagonals within the interior angle γ of the corresponding regular polygon P_n^b , let us mark them $S_{A_n}^{\gamma}$, is

$$S_{A_1}^{\gamma} = (k-1)n - 3 - 2(k-2) = (k-1)n - (2k-1).$$

Those diagonals together form angle which we will mark with $\varepsilon_{A_1}^{\gamma}$, and for which the following is valid

$$\varepsilon_{A_1}^{\gamma} = \frac{\gamma}{S_{A_1}^{\gamma} + 1} = \frac{\frac{(n-2)\pi}{n}}{(k-1)n - (2k-1) + 1} = \frac{\pi}{(k-1)n}$$

which was supposed to be proven.

(2) Let diagonals be drawn from the vertex B_1 with the corresponding interior angle $\beta = \pi - 2\delta$, then we have $S_{B_1}^{\beta} = (k-1)n - 3$ umber of drawn diagonals from the vertex B_1 . Only two of those drawn diagonals form the angle d with the sides of the semi-regular polygon $P_{(k-1)n}^{a,\delta}$ and those are the first and the last diagonal.

Thus, other diagonals, and there are $S_{B_1} = (k-1)n - 5$ of them, within the angle $\psi = \beta - 2\delta = \pi - 4\delta$ together form angle e $\varepsilon_{B_1}^{\psi}$ and for them the following is valid

$$\varepsilon_{B_1}^{\psi} = \frac{\psi}{S_{B1} + 1} = \frac{\pi - 4\delta}{(k-1)n - 4}$$

Example 2. Here is given tabular review of the values from the previous theorem, in which i = 1, 2, .n and j = 1, 2, ...(k - 2)n, for the convex semi-regular polygon $P_N^{a,\delta}$, for n = 3, 4, 5 and k = 3, 4, 5.(Table 2)

lable 2.												
п	k	$P^{a,\delta}_{(k-1)n}$	$\delta \in \left(0; \frac{\pi}{(k-2)n}\right)$	γ	α	β	$S_{A_i}^{\gamma}$	$\varepsilon_{A_i}^\gamma$	$S^{\psi}_{B_j}$	$arepsilon_{B_j}^\psi$		
3	3	6	$\delta \in \left(0; \frac{\pi}{3}\right)$	$\frac{\pi}{3}$	$\frac{\pi}{3}+2\delta$	$\pi - 2\delta$	1	$\frac{\pi}{6}$	1	$\frac{\pi}{2}-2\delta$		
	4	9	$\delta \in \left(0; \frac{\pi}{6}\right)$	$\frac{\pi}{3}$	$\frac{\pi}{3} + 4\delta$	$\pi - 2\delta$	2	$\frac{\pi}{9}$	4	$\frac{\pi}{5} - \frac{4}{5}\delta$		
	5	12	$\delta \in \left(0; \frac{\pi}{9}\right)$	$\frac{\pi}{3}$	$\frac{\pi}{3}+6\delta$	$\pi - 2\delta$	3	$\frac{\pi}{12}$	7	$\frac{\pi}{8} - \frac{1}{2}\delta$		
4	3	8	$\delta \in \left(0; \frac{\pi}{4}\right)$	$\frac{\pi}{2}$	$\frac{\pi}{2} + 2\delta$	$\pi - 2\delta$	3	$\frac{\pi}{8}$	3	$\frac{\pi}{4} - \delta$		
	4	12	$\delta \in \left(0; \frac{\pi}{8}\right)$	$\frac{\pi}{2}$	$\frac{\pi}{2} + 4\delta$	$\pi - 2\delta$	5	$\frac{\pi}{12}$	7	$\frac{\pi}{8} - \frac{1}{2}\delta$		
	5	16	$\delta \in \left(0; \frac{\pi}{12}\right)$	$\frac{\pi}{2}$	$\frac{\pi}{2} + 6\delta$	$\pi - 2\delta$	7	$\frac{\pi}{16}$	11	$\frac{\pi}{12} - \frac{1}{3}\delta$		
5	3	10	$\delta \in \left(0; \frac{\pi}{5}\right)$	$\frac{3\pi}{5}$	$\frac{3\pi}{5}+2\delta$	$\pi - 2\delta$	5	$\frac{\pi}{10}$	5	$\frac{\pi}{6} - \frac{2}{3}\delta$		
	4	15	$\delta \in \left(0; \frac{\pi}{10}\right)$	$\frac{3\pi}{5}$	$\frac{3\pi}{5}+4\delta$	$\pi - 2\delta$	8	$\frac{\pi}{15}$	10	$\frac{\pi}{11} - \frac{4}{11}\delta$		

Corollary 3.11. $S_{A_i}^{\gamma} = S_{B_j}^{\psi}$, i, j = 1, 2, ..., n is valid for every equilateral semi-regular polygon $P_{2n}^{a,\delta}$ with 2n sides.

Proof. Let us presume that the equality is valid. Let us define semi-regular equilateral polygon for which that equality is valid. From $S_{A_i}^{\gamma} = S_{B_j}^{\psi}$ we have $(k-1)n - (2k-1) = (k-1)n - 5 \Leftrightarrow 2k - 1 = 5 \Rightarrow k = 3$. For k = 3 required semi-regular polygon is $(k-1)n = 2n, n \in \mathbb{N}$.

Corollary 3.12. If $\varepsilon_{A_i}^{\gamma} = \varepsilon_{B_j}^{\psi}$, with i = 1, 2, ..., n and j = 1, 2, ..., (k-2)n polygon is regular.

Proof. If the equality is valid then we have the equation from $\varepsilon_{A_i}^{\gamma} = \varepsilon_{B_j}^{\psi}$ and it $\frac{\pi}{(k-1)n} = \frac{\pi-4\delta}{(k-1)n-4}$, from which we find that $\delta = \frac{\pi}{(k-1)n}$. According to Corollary (3.6) convex semiregular equilateral polygon for that value of the angle δ is regular.

3.4. Area of the semi-regular equilateral polygon $P_N^{a,\delta}$. The following theorems show dependence of the area of the semi-regular polygon $P_N^{a,\delta}$ from the length of its sides *a* and angle δ defined by relation (2.1).

Theorem 3.13. Area of the semi-regular polygon $P_N^{a,\delta}$ is given in the relation

$$P_{(k-1)n}^{a,\delta} = \begin{cases} \frac{1}{4}na^2 \left(1 + 2\frac{\cos\frac{k}{2}\delta \sin(\frac{k}{2}-1)\delta}{\sin\delta}\right)^2 \cot\frac{\pi}{n} + nP_k^a & \text{for even } k\\ \frac{1}{4}na^2 \left(\frac{\sin(k-1)\delta}{\sin\delta}\right)^2 \cot\frac{\pi}{n} + nP_k^a & \text{for odd } k \end{cases}$$
(3.14)

In which area of P_k^a edging isosceles polygon with side a and angle δ defined by (2.1).

Before we prove this Theorem let us prove lemma.

Lemma 3.14. Area of edging polygon P_k^a with side a and angle δ is given in the relation

$$P_{k}^{a} = \frac{a^{2}(k-2)\cot\delta}{4} - \frac{a^{2}}{4\sin\delta} \Big(\sum_{p=1}^{\lceil \frac{k}{2} \rceil - 1} \cos(4p+1)\delta + \sum_{p=1}^{\lceil \frac{k-1}{2} \rceil} \cos(4p-1)\delta \Big).$$
(3.15)

Proof. Area of the isosceles polygon P_k^a can be expressed as sum of triangles' areas of which diagonals d_i , i = 1, 2, ..., k - 2 are bases, that is, the following is valid

$$P_k^a = \sum_{i=1}^{k-2} p_{d_i} \tag{3.16}$$

where p_{d_i} is area of the triangle with base d_i , (figure 3). Since $p_{d_i} = \frac{d_i h_i}{2}$, in which h_i is height of the triangle drawn to the base d_i and $h_i = a \sin i\delta$ id using the relation (3.12) and (3.13) we find that for $k \ge 3$, $k \in \mathbb{N}$.

$$p_{d_{k-2}} = \begin{cases} \frac{a^2}{2} \sin(k-2)\delta\left(1 + 2\frac{\cos\frac{k}{2}\delta\sin(\frac{k}{2}-1)\delta}{\sin\delta}\right) & \text{for even } \mathbf{k} \\ \frac{a^2}{2}\frac{\sin(k-2)\delta\sin(k-1)\delta}{\sin\delta} & \text{for odd } \mathbf{k} \end{cases}$$
(3.17)

So,

$$p_{d_i} = \begin{cases} \frac{a^2}{2} sin2p\delta \left(1 + 2\frac{\cos(p+1)\delta sinp\delta}{\sin \delta} \right) & for \quad i=2p \quad p \in \mathbb{N} \\ \frac{a^2}{2} \frac{\sin(2p-1)\delta sin2p\delta}{\sin \delta} & for \quad i=2p-1 \quad p \in \mathbb{N} \end{cases}$$
(3.18)

On the basis of 3.17 and 3.18 equality 3.16 is transformed

$$P_k^a = \sum_{p=1}^{\lceil\frac{k}{2}\rceil-1} \frac{a^2}{2} \sin 2p\delta(1+2\frac{\cos\left(p+1\right)\delta\sin p\delta}{\sin\delta}) + \sum_{p=1}^{\lceil\frac{k-1}{2}\rceil} \frac{a^2}{2}\frac{\sin\left(2p-1\right)\delta\sin 2p\delta}{\sin\delta}$$
$$= \frac{a^2}{2} \left(\sum_{p=1}^{\lceil\frac{k}{2}\rceil-1} \sin 2p\delta\left(1+2\frac{\cos\left(p+1\right)\delta\sin p\delta}{\sin\delta}\right) + \sum_{p=1}^{\lceil\frac{k-1}{2}\rceil} \frac{\sin 2p\delta\sin(2p-1)\delta}{\sin\delta}\right)$$
$$= \frac{a^2}{2\sin\delta} \left(\sum_{p=1}^{\lceil\frac{k}{2}\rceil-1} \sin 2p\delta(\sin\delta+2\cos\left(p+1\right)\delta\sin p\delta) + \sum_{p=1}^{\lceil\frac{k-1}{2}\rceil} \sin 2p\delta\sin(2p-1)\delta\right)$$

After solving the equation we get the sought relation

$$P_k^a = \frac{a^2(k-2)\cot\delta}{4} - \frac{a^2}{4\sin\delta} \Big(\sum_{p=1}^{\lceil\frac{k}{2}\rceil-1}\cos(4p+1)\delta + \sum_{p=1}^{\lceil\frac{k-1}{2}\rceil}\cos(4p-1)\delta\Big).$$

Let us return to proving the theorem.

Proof. Let us notice that area of the semi-regular polygon $P_N^{a,\delta}$ is equal to sum of area of the regular polygon P_n^b and area of all polygons P_k^a , constructed on each side of the regular polygon, that is

$$P_{(k-1)n}^{a,\delta} = P_n^b + n P_k^a.$$
(3.19)

Since the area of the regular polygon $P_n^b = \frac{1}{4}nb^2 \cot(\frac{\pi}{n})$. with side *b* given in the equality

$$b = d_{k-2} = \begin{cases} a\left(1 + 2\frac{\cos\frac{k}{2}\delta \sin\left(\frac{k}{2} - 1\right)\delta}{\sin\delta}\right) & \text{for even } k\\ a\frac{\sin(k-1)\delta}{\sin\delta} & \text{for odd } k \end{cases}$$
(3.20)

Area of the semi-regular polygon $P_{(k-1)n}^{a,\delta}$ has the following form on the basis of the relations (3.15) and (3.19)

$$P_{(k-1)n}^{a,\delta} = \begin{cases} \frac{1}{4}na^2 \left(1 + 2\frac{\cos\frac{k}{2}\delta \sin(\frac{k}{2}-1)\delta}{\sin\delta}\right)^2 \cot\frac{\pi}{n} + nP_k^a & \text{for even } k\\ \frac{1}{4}na^2 \left(\frac{\sin(k-1)\delta}{\sin\delta}\right)^2 \cot\frac{\pi}{n} + nP_k^a & \text{for odd } k \end{cases}$$
(3.21)

which proves the theorem.

Example 3. Formulas for area of the isosceles polygons, k = 3 and k = 4, if side a and angle δ are given, are as follows; for k = 3, $P_3^a = \frac{a^2 \cot \delta}{4} - \frac{a^2}{4 \sin \delta} \cos 3\delta = \frac{a^2}{4 \sin \delta} (\cos \delta - \cos 3\delta) = \frac{a^2}{2} \sin 2\delta$. Similarly, for k = 4, $P_4^a = \frac{2a^2 \cot \delta}{4} - \frac{a^2}{4 \sin \delta} (\cos 5\delta + \cos 3\delta) = \frac{a^2 \cot \delta}{2} - \frac{a^2 \cot \delta}{2} \cos 4\delta = \frac{a^2}{2} \cot \delta (1 - \cos 4\delta) = \cdots = \frac{a^2}{2} (2sin2\delta + \sin 4\delta)$.

Example 4.Let us determine area of the semi-regular 2n polygon with given side a and andle δ , defined in (2.1),

$$P_{2n}^{a,\delta} = P_n^b + nP_3^a = \frac{1}{4}na^2 (\frac{\sin 2\delta}{\sin \delta})^2 \cot \frac{\pi}{n} + \frac{na^2}{4\sin \delta} (\cos \delta - \cos 3\delta)$$
$$= na^2 \cos \delta \left(\frac{\cos \delta \cos \frac{\pi}{n} + \sin \delta \sin \frac{\pi}{n}}{\sin \frac{\pi}{n}} \right) = \frac{na^2}{\sin \frac{\pi}{n}} \cos \delta \cos (\frac{\pi}{n} - \delta).$$
In which m is the matrix of sides of the regular polygon of

In which *n* is the number of sides of the regular polygon on which semi-regulr polygon is drawn.

Theorem 3.15. Area of the isosceles polygon P_k^a , which given side a and angle δ , constructed on sides of the regular polygon P_n^b , is determined by relation

$$P_k^a = \frac{a^2}{8} \frac{(k-1)\sin 2\delta - \sin 2(k-1)\delta}{\sin^2 \delta}$$
(3.22)

 $za k \geq 3.$

Proof. Let the polygon P_k^a be given, side *a* and diagonals d_i , i = 1, 2, ..., k - 2, $k \ge 3$ drawn from the vertex A_j , j = 1, 2, ..., n, $A_j = B_1$, $B_k = A_{j+1}$, with $A_jA_{j+1} = b$ side of the regular polygons P_n^b . Let us note triangles $A_jB_{k-1}B_k$ basis of which are diagonals d_i . Let us introduce marks $P^1, P^2, P^3, ..., P^k$ for areas of triangles $A_jB_2B_3, A_jB_3B_4, ..., A_jB_{k-1}B_k$ respectively. It is easily proven that the following relations are valid for areas of those triangles

$$P^{1} = \frac{a^{2}}{2} \sin 2\delta = P^{a,\delta}$$

$$P^{2} = \frac{a^{2}}{2} (2\sin 2\delta + \sin 4\delta) = P^{a,\delta} + P^{a,2\delta}$$

$$P^{3} = P^{a,\delta} + P^{a,2\delta} + P^{a,3\delta}$$

$$\dots$$

$$P^{i} = P^{a,\delta} + P^{a,2\delta} + P^{a,3\delta} + \dots + P^{a,i\delta}.$$

 $P^{a,i\delta} = \frac{a^2}{2} \sin 2i\delta$ is area of the isosceles triangle with side *a* and angle at the base *delta*, i = 1, 2, ..., k - 2. Since the area of the enge polygon P_k^a is equal to sum of areas of the triangles $A_j b_{k-1} b_k$ is valid

$$P_k^a = (k-2)P^{a,\delta} + (k-3)P^{a,2\delta} + \dots + P^{a,(k-3)\delta} + P^{(k-2)\delta}.$$

That is

$$P_k^a = \frac{a^2}{2} \Big[(k-2)\sin 2\delta + (k-3)\sin 4\delta + \dots + 2\sin 2(k-3)\delta + \sin 2(k-2)\delta \Big].$$

Or

$$P_k^a = \frac{a^2}{2} \sum_{\nu=1}^{k-2} (k - \nu - 1) \sin(2\nu\delta).$$
(3.23)

So, in order to prove the theorem it is necessary to determine sum of row (3.23). In order to calculate the sum of that row let us note the function

$$F(\theta) = \sum_{\nu=1}^{k-2} (k - \nu - 1) \cos(\nu\theta) + i \sum_{\nu=1}^{k-2} (k - \nu - 1) \sin(\nu\theta)$$
(3.24)

In which $\theta = 2\delta$. If replace $\cos \nu \theta = \frac{1}{2}(e^{i\nu\theta} + e^{-i\nu\theta})$ and $\sin \nu \theta = \frac{1}{2i}(e^{i\nu\theta} - e^{-i\nu\theta})$ into (3.24) we get the equality

$$F(\theta) = \sum_{\nu=1}^{k-2} (k-\nu-1) \frac{1}{2} (e^{i\nu\theta} + e^{-i\nu\theta}) + i \sum_{\nu=1}^{k-2} (k-\nu-1) \frac{1}{2i} (e^{i\nu\theta} - e^{-i\nu\theta}),$$

After arranging it it is transformed into

$$F(\theta) = \sum_{\nu=1}^{k-2} (k-1)e^{i\nu\theta} - \sum_{\nu=1}^{k-2} \nu e^{i\nu\theta}.$$
(3.25)

Since

$$\sum_{\nu=1}^{k-2} (k-1)e^{i\nu\theta} = (k-1)e^{i\theta}\frac{e^{i(k-2)\theta}-1}{e^{i\theta}-1}$$
(3.26)

and

$$\sum_{\nu=1}^{k-2} \nu e^{i\nu\theta} = \frac{1}{i} \frac{d}{d\theta} \Big(\sum_{\nu=1}^{k-2} e^{i\theta} \Big) = e^{i\theta} \frac{(k-2)e^{i(k-1)\theta} - (k-1)e^{i(k-2)\theta} + 1}{(e^{i\theta} - 1)^2}$$
(3.27)

Equality (3.25) can be rearranged into

$$F(\theta) = e^{i\theta} \frac{e^{i(k-1)\theta} - (k-1)e^{i\theta} + (k-2)}{(e^{i\theta} - 1)^2}$$
(3.28)

Having in mind that $e^{i\theta} = \cos \theta + i \sin \theta$ and $e^{-i\theta} = \cos \theta - i \sin \theta$ the last equality can be reduced into following form

$$F(\theta) = \frac{(k-1)\cos\theta - \cos(k-1)\theta - (k-2)}{4\sin^2\frac{\theta}{2}} + i\Big(\frac{(k-1)\sin\theta - \sin(k-1)\theta}{4\sin^2\frac{\theta}{2}}\Big).$$
 (3.29)

By comparison of the initial equality (3.24) with (3.29) and by giving $\theta = 2\delta$, we find that the requested sum of row

$$\sum_{\nu=1}^{k-2} (k-\nu-1)\sin(2\nu\delta) = \frac{(k-1)\sin 2\delta - \sin 2(k-1)\delta}{4\sin^2\delta}.$$
 (3.30)

On the basis of (3.23) and (3.30) we find that

$$P_k^a = \frac{a^2}{2} \sum_{\nu=1}^{k-2} (k - \nu - 1) \sin(2\nu\delta) = \frac{a^2}{8} \frac{(k-1)\sin 2\delta - \sin 2(k-1)\delta}{\sin^2 \delta}$$
(3.31)

that we wanted to prove.

Corollary 3.16. Area of the semi-regular equilateral polygon $P_N^{a,\delta}$ constructed on the regular polygon P_n^B if side a and angle δ are given, defined in (2.1) is given in the relation

$$P_{(k-1)n}^{a,\delta} = \frac{na^2}{4} \left[\left(1 + 2\frac{\cos(\frac{k}{2}\delta)\sin(\frac{k}{2}-1)\delta}{\sin\delta} \right)^2 \cot\frac{\pi}{n} + \frac{(k-1)\sin 2\delta - \sin 2(k-1)\delta}{2\sin^2\delta} \right]$$
(3.32)

for even k, and

$$P_{(k-1)n}^{a,\delta} = \frac{na^2}{4} \left[\left(\frac{\sin(k-1)\delta}{\sin\delta} \right)^2 \cot\frac{\pi}{n} + \frac{(k-1)\sin 2\delta - \sin 2(k-1)\delta}{2\sin^2\delta} \right]$$
(3.33)

for odd k.

Proof. Using results of the theorems (Theorem 3.13) and equality (3.21) we get the required relations (3.32) and (3.33).

Example 5 Area of the semi-regular equilateral polygon with 2n sides, with given side *a* and angle δ is

$$P_{2n}^{a,\delta} = \frac{na^2}{4} \left[\left(\frac{\sin 2\delta}{\sin \delta} \right)^2 \cot \frac{\pi}{n} + \frac{2\sin 2\delta - \sin 4\delta}{2\sin^2 \delta} \right] \\ = \frac{na^2}{4} \left[4\cos^2 \delta \cot \frac{\pi}{n} + \frac{2\sin 2\delta(1 - \cos 2\delta)}{2\sin^2 \delta} \right] \\ = \frac{na^2}{\sin \frac{\pi}{n}} \cos \delta \cos \left(\frac{\pi}{n} - \delta \right).$$

Theorem 3.17. Convex regular polygon P_n^b and semi-regular equilateral polygon $P_N^{a,\delta}$ constructed on it cannot have equal sides.

Proof.Let us presume opposite, that is, semi-regular and regular polygons have equal sides. Then we have b = a, in which a is side of the semi-regular polygon and b is side of the regular polygon on which it is constructed. Then on the basis of the equality (3.20) we have the equation $\cos \frac{k}{2}\delta \sin (\frac{k}{2} - 1)\delta = 0$ if the edging polygon P_k^a has even number of sides and equation $\sin (k - 1)\delta - \sin \delta = 0$ if k if k is odd number. We can see out of these equations that $\delta = \frac{(2p+1)\pi}{k}$ or $\delta = \frac{2s\pi}{(k-2)}$. On the basis of the theorem (3.4) and convexity of the semi-regular polygon we have that $\delta \in \left(0; \frac{\pi}{(k-2)n}\right); k, n \geq 3; k, n \in \mathbb{N}$ and the inequality

$$\begin{cases} 0 < \frac{(2p+1)\pi}{k} < \frac{\pi}{(k-2)n} \\ 0 < \frac{2s\pi}{(k-2)} < \frac{\pi}{(k-2)n}. \end{cases}$$

That is

$$\left\{ \begin{array}{l} 0 < n < \frac{k}{(k-2)(2p+1)} \\ 0 < n < \frac{1}{2s} \end{array} \right.$$

From these inequality we can draw a conclusion that there are no values *n* and *k* in the set N for which the semi-regular polygon is convex, and the values of the angle δ are given in the relation $\delta = \frac{(2p+1)\pi}{k}$ or $\delta = \frac{2s\pi}{(k-2)}$. We get the same results by similar procedure from the other equation

$$a = a \frac{\sin(k-1)\delta}{\sin\delta}$$

Thus, there is no angle δ defined with (2.1) for which the semi-regular polygon is convex and it has side which is equal to the side of the regular polygon on which it is constructed, which was meant to prove.

3.5. **Application.** By using results of the Lemma 3.14 and Theorem 3.15 we can define sum of rows,

$$\sum_{p=1}^{\lceil \frac{k}{2}\rceil - 1} \cos(4p+1)\delta + \sum_{p=1}^{\lceil \frac{k-1}{2}\rceil} \cos(4p-1)\delta, k \in \mathbb{N}, k \ge 3$$

Which means that it is valid.

Corollary 3.18. It is valid

.

$$\sum_{p=1}^{\lceil \frac{k}{2}\rceil - 1} \cos(4p+1)\delta + \sum_{p=1}^{\lceil \frac{k-1}{2}\rceil} \cos(4p-1)\delta = \frac{\sin 2(p-1)\delta - \sin 2\delta}{2\sin \delta}, k \in \mathbb{N}, k \ge 3$$
(3.34)

Proof. If we equalize relations (3.15) and (3.31), after shortening and arranging we get that the requested sum is

$$\sum_{p=1}^{\lceil \frac{k}{2}\rceil - 1} \cos(4p+1)\delta + \sum_{p=1}^{\lceil \frac{k-1}{2}\rceil} \cos(4p-1)\delta = \frac{\sin 2(k-1)\delta - \sin 2\delta}{2\sin \delta}$$

REFERENCES

[1] V.V. Vavilov, A. Ustinov, *Polupravilni mnogouglovi na reVsetkama*, Kvant, *N*₀6, (2007.)

[2] V.V. Vavilov, A.V. Ustinov, *Mnogouglovi na reVsetkama*, Moskva, (2006.)

[3] D. Hilbert, S. Cohn-Vossen, Anschauliche Geometrie, Verlig von J.Springer, Berlin, (1932.)

[4] A.D. Aleksandrov, *Konveksni poliedri*, Moskva, (1950.).

[5] M. RadojVcić, Elementarna geometrija-Osnove i elementi euklidske geometrije ,Beograd,1961.

[6] P. Ponarin, *Elementarna Geometrija*, Tom 1., Moskva, (2004.)

UNIVERSITY OF BANJA LUKA, FACULTY OF AGRICULTURE *E-mail address*: nsnest10gmail.com