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RICCI SOLITONS AND SYMMETRIES OF SPACETIME MANIFOLD OF

GENERAL RELATIVITY

MUSAVVIR ALI AND ZAFAR AHSAN

ABSTRACT. The vector fields associated with Ricci solitons in Riemann manifold have
been studied and the correspondence between these vector fields and symmetries of
spacetime manifold of general relativity have been established. The examples of local
Ricci soliton are given for Lorentzian signature and the case of Reisnerr-Nordström space-
time is explored as a soliton. The relationships between the symmetries of Petrov type D
pure radiation fields and Ricci solitons have also established.
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1. INTRODUCTION

The construction of gravitational potentials satisfying Einstein’s field equations is the
principal aim of all investigations in gravitational physics and this has been
often been achieved by imposing symmetries on the geometry compatible with the dy-
namics of the chosen distribution of matter. The geometrical symmetries of the space-
time are expressible through the vanishing of the Lie derivative of certain tensors with re-
spect to a vector. This vector may be time-like, space-like or null. The role of
symmetries in general theory of relativity has been introduced by Katzin, Levine and
Davis in a series of papers ([14] - [17]). These symmetries, also known as collineations,
were further studied by Ahsan ([1] - [5]), Ahsan and Ali [6] and Ahsan and Husain [7].

Recently geometric flows have become important tools in Riemannian
geometry and general relativity. List [9] has studied a geometric flow whose fixed points
corresponds to static Ricci flat spacetime which is nothing but Ricci flow pullback by
a certain diffeomorphism. The association of each Ricci flat spacetime gives notion
of local Ricci soliton in one higher dimension. The importance of geometric flow in
Riemannian geometry is due to Hamilton who has given the flow equation and List
generalized Hamilton’s equation and extend it to spacetime for static metrics. He has
given system of flow equations whose fixed points solve the Einstein free-scalar field sys-
tem. This observation is useful for the correspondence of solutions of system i.e., Ricci
soliton and symmetry property of spacetime, that how Riemannian space (or spacetime)
with Ricci soliton deals different kind of symmetry properties.

Motivated by the role of symmetries and Ricci soliton, a comparative study of
correspondence between the vector field associated with Ricci soliton and
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symmetries of spacetime is made with some examples in general relativity. In section 2
preliminaries are given. Examples of Ricci soliton and specially Reisnerr-Nordström
soliton are discussed in detail in section 3. The relationship between Einstein spaces,
Petrov type D pure radiation field and Ricci soliton has been discussed in section 4. Fi-
nally section 5 deals with the conclusion.

2. PRELIMINARIES

So far more than twenty six different types of collineations have been studied and
the literature on such collineations is very large and still expanding with results of ele-
gance (cf., [5]). However, here we shall mention only those symmetry assumptions that
are required for subsequent investigation and we have

(i) Motion A spacetime is said to admit motion if there exists a vector field ξa such that

£ξ gij = ξ i;j + ξ j;i = 0 (2.1)

Equation (2.1) is known as Killing equation and vector ξa is called a Killing vector field
(cf. [20]).

(ii) Conformal Motion (Conf M) If

£ξ gij = σgij, (2.2)

where σ is a scalar, then the spacetime is said to admit conformal motion.

(iii) Special Conformal Motion (SCM) A spacetime admits SCM if

£ξ gij = σgij, σ;ij = 0 (2.3)

(iv) Weyl Conformal Collineation (WCC) Infinitesimal transformation
′ξx = ξx + vxdt (2.4)

is called WCC if and only if

£ξCi
jkl = 0, (n > 3) (2.5)

(v) Curvature Collineation (CC) A spacetime admits curvature collineation if there is a

vector field ξ i such that

£ξ Ri
jkl = 0, (2.6)

where Ri
jkl is Riemann curvature tensor.

(vi) Ricci Collineation (RC) A spacetime is said to admit Ricci collineation if there is a

vector field ξ i such that
£ξ Rij = 0, (2.7)

where Rij is the Ricci tensor.
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(vii) Affine Collineation (AC) If

£ξΓ
i
jk = ξ i

;jk + Ri
jmkξm = 0 (2.8)

then the spacetime is said to admit an AC.

(viii) Conformal Collineation ( Conf C) A spacetime admits Conf C if there is a vector
ξa such that

£ξΓ
i
jk = δi

jσ;k + δi
kσ;j − gjkgilσ;l (2.9)

(ix) Special Conformal Collineation ( S Conf C ) If

£ξΓ
i
jk = δi

jσ;k + δi
kσ;j − gjkgilσ;l , σ;jk = 0 (2.10)

then the spacetime admits S Conf C along the vector field ξa.

(x) Ricci Soliton
A family gλ = g(λ; x) of Riemann metrics on a n-dimensional (n ≥ 3) smooth man-

ifold M with parameter λ ranging in a time interval J ⊂ R including zero is called a Ricci
flow if the Hamilton Equations

∂g0

∂λ
= −2Ric0 (2.11)

of the Ricci flow (cf; [10], [11]) for g0 = g(0) and the Ricci tensor Ric0 of the g0 are
satisfied. Corresponding to self similar solution of equation (2.11) is the notion of the
Ricci soliton, defined as a metric g0 satisfying the equation

−2Ric0 = £ξ g0 + 2kg0 (2.12)

for vector field ξ on Vn and a constant k. The Ricci soliton is said to be steady (static) if
k = 0, shrinking if k < 0 and expanding if k > 0. The metric g0 is called a gradient Ricci
soliton if ξ = ∇φ i.e., gradient of some function φ.

For n-dimensional Riemannian manifold equation (2.12) can be written in general
as

Rij −
1

2
£ξ gij = kgij (2.13)

3. REISNERR-NORDSTRÖM SOLITON

Some of the examples of the spaces satisfying equation (2.13) are as follows:
(i) Natural extension of Einstein manifold.
(ii) Self similar (fixed point) solutions of the Ricci flow.
(iii) Positive Einstein manifolds such as round spheres.
(iv) Round cylinders Sn−1 ×R.
(v) Brayant soliton on Rn.
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It may be noted that (iii) and (iv) are examples of gradient shrinking Ricci solitons and
(v) is non-compact gradient steady soliton. There are lots of other examples but our main
interest will be those which are related to general relativity.

For some vector field ξ Hamilton has expressed Ricci flow equation (2.11) by pulling
back along a λ- dependent diffeomorphism as

∂gij

∂λ
= −2Rij + £ξ gij (3.1)

where λ is flow parameter and gij(λ; x) is Riemannian metric. Apart from Ricci flow List
[9] has given equations

∂gij

∂λ
= −2(Rij − k2

n∇i f∇j f ) (3.2)

∂ f

∂λ
= ∆ f (3.3)

where ∆ f represents Laplacian of function f (λ; x), i.e., ∆ f = gij∇i f∇j f . The system
(3.2) - (3.3) is a better approximation than Ricci flow. The fixed points of this system
solve the static vacuum Einstein equations for arbitrary constant k2

n. Choosing kn as
√

n−1
n−2 , n ≥ 3 the spacetime metric ds2 = −e2 f dt2 + e

2 f
n−2 dΩ

2 will be static. These fixed

points are nothing but flat metrics.
The solutions of List flow system of equations obey the Einstein free scalar field

system given as follows ([8])

Rij − k2
n∇i f∇j f − 1

2
£ξ gij = Agij (3.4)

∆ f + £ξ f = 0 (3.5)

where A is an scalar. If ξ vanishes, system (3.4) - (3.5) changes to

Rij − k2
n∇i f∇j f = Agij (3.6)

∆ f = 0 (3.7)

The terminology Einstein free-scalar field arises because for Lorentzian signature gij,
above system (3.6) - (3.7) describe Einstein gravity with cosmological constant, coupled
to a free scalar field. But here we will use the terminology without regard to signature of
gij. The static vacuum Einstein terminology arises because, if gij has Euclidean signature

and when k = 0 and the convensional choice kn =
√

n−1
n−2 is made, system (3.6) - (3.7)

imply that the metric on R× Mn, n > 2, given by

ds2 = Gµνdxµdxν = −e2 f dt2 + e−
2 f

n−2 gijdxidxj

is Ricci flat and
∂

∂t
is hypersurface orthogonal Killing vector field.

Lemma 3.1. ([8]) If ( f , gij) solves the Einstein free scalar field system (3.6) - (3.7) the metric

ds2 = gµνdxµdxν = −e2kn f dt2 + gijdxidxj (3.8)

is a local Ricci soliton on R× Mn solving (2.13).
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For Schwarzschild metric, Akbar and Woolger [8] have given that equation (3.6) can
be applied on the metric gij of the form

ds2 = gijdxidxj ≡ dr2 + h2(r)dΩ
2
k (3.9)

where h(r) is a function of r and dΩ
2
k is an Einstein metric with scalar curvature R nor-

malized to -1, 0 or 1.

For the integrability conditions (3.7), one can take

f ′(r) =
B

[h(r)]n−1
for B = constant (3.10)

This idea can be extended to Kerr-Newman, Kerr or Reisnerr-Nordström spacetime also.
But for the Lorentzian signature, here we discuss Reisnerr-Nordström and
Schwarzschild soliton.

For B = 0, There is a constant f -soliton ds2 = −dt2 + gijdxidxj for Einstein metric gij

(cf., [8]). Now for the case f ′(r) 6= 0, we will establish an example of a soliton which is
solution of Einstein-free scalar field system and the Reisnerr-Nordström metric explains
such soliton. The Reisnerr-Nordström metric is [19]

ds2 = −
(

r2 + e2 − 2mr

r2

)

dt2 +

(

r2

r2 + e2 − 2mr

)

dr2 + r2dθ2 + r2sin2θdφ2 (3.11)

Choosing the functions

f =
1

2
log

(

r2 − 2mr + e2

r2

)

(3.12)

h =
√

r2 − 2mr + e2 (3.13)

and for 4-dimensional spacetime (n = 3), we have

k2
n = 2 ⇒ kn =

√
2 (3.14)

Using equations (3.12) and (3.13), equation (3.11) takes the form as

ds2 = −e2 f dt2 + e−2 f dΩ
2 (3.15)

where
dΩ

2 = dr2 + h2(r)(dθ2 + sin2θdφ2) (3.16)

Further using Lemma 3.1 and equations (3.12) - (3.16), we get the corresponding
soliton

ds∗2 = −e2
√

2 f dt2 + e−2 f dΩ
2

or,

ds∗2 = −
(

r2 + e2 − 2mr

r2

)

√
2

dt2 + dr2 + h2(r)(dθ2 + sin2θdφ2)

The Reisnerr-Nordström soliton is

ds∗2 = −
(

r2 + e2 − 2mr

r2

)

√
2

dt2 + dr2 + (r2 − 2mr − e2)(dθ2 + sin2θdφ2) (3.17)
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Note: If we take e = 0 in equation (3.17), we get Schwarzschild soliton as

ds2 = −
(

r2 − 2mr

r2

)

√
2

dt2 + dr2 + (r2 − 2mr)(dθ2 + sin2θdφ2) (3.18)

4. EINSTEIN SPACES AND PETROV TYPE D GRAVITATIONAL FIELDS

In this section, we shall discuss the role of Ricci solitons in the study of Einstein
spaces and Petrov type D pure radiation fields and we have

(a) Einstein spaces
From equations (2.1) and (2.13), we have

2Rij = £ξ gij + 2kgij (4.1)

= ξ i;j + ξ j;i + 2kgij

Contracting this equation with gij, we get

R = ξ i
;i + kn

which can be expressed as

divξ = ∇iξ
i = (R − kn) (4.2)

where R = gijRij is scalar curvature. From equations (4.1) and (4.2), we get

(n−1Rgij − Rij) = −1

2
£ξ gij + n−1(divξ)gij (4.3)

Now for gij to be Einstein metric i.e., Rij = µgij where µ can be chosen as n−1R, equations
(4.3) and (2.2) will give

Lemma 4.1. ([18]) The vector field ξ associated with Ricci soliton (M, g) is conformally
Killing if and only if (M, g) is an Einstein manifold of dimension (n ≥ 3).

It is known that ([20])

£ξΓ
i
jk =

1

2
gil(∇j£ξ gkl −∇l£ξ gjk + ∇k£ξ glj) (4.4)

If ξ is a conformally Killing vector field, then equations (2.2) and (4.4) lead to

£ξ Γ
i
jk = δi

jσ;k − gil gjkσ;l + δi
kσ;j (4.5)

Thus we have

Lemma 4.2. If in (M, g) a vector field ξ is conformally Killing then it is also a
conformal collineation vector field.

From Lemmas 4.1 and 4.2, we have the following
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Theorem 4.3. A vector field ξ associated with a Ricci soliton (M, g) is conformal collineation
vector field if and only if M is Einstein manifold.

While the use of equation (2.3) leads to

Corollary 4.4. If σ;jk = 0 the vector field ξ associated with a Ricci soliton (M, g) is special
conformal collineation vector field if and only if M is an Einstein manifold.

The Weyl conformal tensor is given by

Ci
jkl = Ri

jkl +
1

2
(δi

kRjl − δi
lRjk + gjl R

i
k − gjkRi

l)

+
R

(n − 1)(n − 2)
(δi

lgjk − δi
kgjl)

(4.6)

We prefer 4-dimensional spacetime, so the component of Weyl conformal tensor are

Ci
jkl = Ri

jkl +
1

2
(δi

kRjl − δi
l Rjk + gjl R

i
k − gjkRi

l) +
R

6
(δi

lgjk − δi
kgjl) (4.7)

where Ri
jkl and R are Riemann curvature tensor and scalar curvature tensor

respectively. We know that ([20])

£ξ Ri
jkl = ∇j£ξΓ

i
kl −∇k£ξΓ

i
jl (4.8)

Using equation (4.5) in equation (4.8), we get

£ξ Ri
jkl = −2δi

[j∇k]σ;l − 2(∇[jσ
;i)gk]l (4.9)

On contraction we get

£ξ Rkl = −(n − 2)∇kσ;l − gkl∇mσ;m (4.10)

Contracting equation (4.10) with gkl , we get

£ξ R = −2σl
;lR − 2(n − 1)∇mσ;m

or, for 4-dimensional spacetime

£ξ R = −2φR − 6∇mσ;m (4.11)

where φ = divσ.

Now taking the Lie derivative of equation (4.7) and using equations (4.9) - (4.11),
we get

£ξCi
jkl = 0 (4.12)

Thus from equation (2.5), we state

Lemma 4.5. Every conformally Killing vector is also Weyl conformal collineation
vector for the spacetime of general relativity.
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From Lemmas 4.1 and 4.5, we have

Theorem 4.6. A vector field ξ associated with Ricci soliton (M, g) is Weyl conformal
collineation vector if and only if M is an Einstein space.

(b) Petrov type D pure radiation fields
The study of Petrov type D gravitational fields is an important activity in general

relativity as most of the physically significant metrics are of Petrov type D. The most
familiar important members of this class are Schwarzschild exterior solution, Reisnerr-
Nordström metric, Kerr and Gödel solutions. De Groote et al [13] have solved the prob-
lem of aligned Petrov type D pure radiation fields and have presented all Petrov type D
pure radiation spacetimes with a shear-free and non-diverging geodesic
principal null congruences. Recently, Ahsan and Ali [6] have studied the symmetries
of Petrov type D pure radiation fields and have established a number of relations be-
tween different types of collineations. From Ahsan and Ali [6], we have

Lemma 4.7. In a pure radiation type D field conformal motion, special conformal
motion and homothetic motion all degenerate to motion.

Thus by using Lemmas 4.1 and 4.7, we have the following

Theorem 4.8. Type D pure radiation fields do admit motion along a vector field ξ associ-
ated to Ricci soliton (M, g) if and only if M is an Einstein space.

For Killing vector field ξ, equation (2.13) changes to

Rij = kgij (4.13)

Taking Lie derivative with respect to vector field ξ

£ξ Rij = k£ξ gij = 0

Thus we have

Theorem 4.9. Type D PR fields admit Ricci collineation along a vector field ξ
associated to Ricci soliton (M, g) if and only if M is Einstein space.

Remark: A number of similar results can be obtained easily as motion implies approxi-
mately all symmetry properties of a spacetime (cf., [14]).

5. CONCLUSION

Reisnerr-Nordström soliton has been derived and Schwarzschild soliton is given as
a special case. For Einstein spaces different kind of symmetry properties are established
with the help of vector field associated with Ricci soliton. Further the idea is extended
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for type D pure radiation fields.
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